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h. Atlantic warm pool—C. Wang
The Atlantic warm pool (AWP), defined by water 

warmer than 28.5°C, consists of the Gulf of Mexico, 
the Caribbean Sea, and the western tropical North 
Atlantic (Wang and Enfield 2001, 2003). The AWP 
is a primary moisture source for precipitation in the 
Americas and plays an important role in TC activity 
(e.g., Wang et al. 2006, 2008a, 2011; Drumond et al. 
2011). Previous studies show that the AWP under-
goes significant variability from seasonal to secular 
changes (Wang and Enfield 2003; Wang et al. 2006, 
2008b). Figures 4.38a and b depict the long-term total 
and detrended June–November (JJASON) AWP area 
indices. The multidecadal and interannual variations 
of the AWP are displayed in Fig. 4.38c and d, respec-
tively. The multidecadal variability (Fig. 4.38c) shows 
that the AWPs were larger during the period 1930–60 
and since the early 2000s, and smaller during 1905–25 
and 1965–95. These multidecadal variations of the 
AWP are consistent with the phases of the Atlantic 
multidecadal oscillation (AMO; Delworth and Mann 
2000; Enfield et al. 2001). Because of this in-phase 
relationship and the importance of low-latitude heat 
forcing in the AWP region, the influences of the AMO 
on TC activity and climate may operate through the 
atmospheric changes induced by the AWP (Wang 
et al. 2008b). The JJASON AWP interannual index 
of Fig. 4.38d is significantly correlated with the 
prior December–February (DJF) Niño3 region of 
SST anomalies, indicating a delayed ENSO effect on 
the AWP (Wang et al. 2008b). Both the local oceanic/
atmospheric processes and the remote delayed influ-
ence of Pacific ENSO are responsible for the interan-
nual AWP variability.

The AWP was larger than its climatological mean 
each month in 2014 (Fig. 4.39a), with the largest AWP 
occurring in September. As shown by the climato-
logical AWP (Fig. 4.39a), normally appears in May 
and peaks in September. However, the 2014 AWP 
appeared early in April. This is consistent with the 
recent study (Misra et al. 2014) which demonstrates 
that the onset date of the AWP during 1979–2012 
ranged from late April to early August. The 2014 AWP 
was also distinctive in that the AWP was unusually 
large in November compared with the climatological 
AWP. As in previous years, the 2014 AWP started to 
develop in June between the Gulf of Mexico and Ca-
ribbean Sea with the 28.5°C SST almost overlapped 
with the climatological AWP (Fig. 4.39b). By July and 
August, the AWP was well developed in the Gulf of 
Mexico and Caribbean Sea and reached eastward to 
the western tropical North Atlantic (Fig. 4.39c,d). By 
September, the AWP had further expanded south-

eastward and the isotherm of 28.5°C covered almost 
the entire tropical North Atlantic (Fig. 4.39e). The 
AWP started to decay after October when the waters 
in the Gulf of Mexico began cooling (Fig. 4.39f). The 
isotherm of 28.5°C in November still covered the 
Caribbean Sea and part of the western North Atlantic 
Ocean (Fig. 4.39e).

C. Wang et al. (2011) has shown that AWP vari-
ability plays an important role in steering hurricanes 
in the Atlantic. A large AWP tends to shift the TC 
genesis location eastward, which increases the pos-
sibility for hurricanes to move northward without 
making landfall in the southeastern United States. A 
large AWP also weakens the North Atlantic subtropi-
cal high and produces the eastward TC steering flow 
anomalies along the eastern seaboard of the United 
States. Due to these two mechanisms, hurricanes are 
generally steered toward the north and northeast dur-
ing a large AWP year. The TC steering flow anomalies 
in 2014 were consistent with those of the observed 
large AWP years (C. Wang et al. 2011).

FIG. 4.38. The AWP index from 1900 to 2014. The AWP 
area index (% deviations from normal) is calculated as 
the anomalies of the area of SST warmer than 28.5°C 
divided by the climatological Jun–Nov AWP area. 
Shown are the (a) total, (b) detrended (removing the 
linear trend), (c) multidecadal, and (d) interannual area 
anomalies. The multidecadal variability is obtained by 
performing a 7-year running mean to the detrended 
AWP index. The interannual variability is calculated 
by subtracting the multidecadal variability from the 
detrended AWP index. The black straight line in (a) is 
the linear trend fitted to the total area anomaly. The 
extended reconstructed SST dataset is used.

S123JULY 2015STATE OF THE CLIMATE IN 2014 |



During the 2014 Atlantic tropical cyclone season 
of June–November, the TC steering flow anomalies 
were characterized by an anomalous cyclone and 
an anomalous anticyclone (Fig. 4.40). Associated 
with these patterns were the mostly eastward flow 
anomalies in the western tropical North Atlantic and 
the northward and northeastward flow anomalies in 
the open ocean of the North Atlantic. The distribu-
tion of the 2014 TC steering flow was unfavorable for 
tropical cyclones to make landfall in the southeastern 
United States. While a large AWP is consistent with 
the fact that no storms made landfall in the south-
eastern United States in 2014 (either by decaying or 
moving northward or northeastward), the AWP had 
no apparent enhancing effect on the number of TCs 
for the North Atlantic TC season [see section 4f(2)] 
as a large AWP typically results in more TCs (Wang 
et al. 2006).

i. Indian Ocean dipole—J.-J. Luo
The Indian Ocean dipole (IOD) represents a local 

air–sea coupled climate mode in the tropical Indian 
Ocean (IO). It can be driven by the tropical Pacific 
ENSO and/or occur independently (Luo et al. 2008, 
2010). Positive IOD usually features anomalous SST 
cooling in the eastern IO and weak warming in the 
west during boreal summer and fall and vice versa for 
negative IOD. IOD displays a strong nonlinearity—
positive IOD is usually stronger than negative IOD 
(Hong et al. 2008). In other words, air–sea coupling 
is generally weak in the negative IOD case.

Following the weak negative IOD event in 2013 
(Luo 2014), SST anomalies in the tropical IO during 
most months of 2014 again reflected a neutral-to-
weak negative IOD condition with the IOD index 
reaching about −0.5 in July–September 2014 (Fig. 
4.41b). There are major differences between the two 
consecutive negative IOD events. First, the 2013 event 
co-occurred with a neutral-to-weak La Niña, while 
the 2014 event co-occurred with a neutral-to-weak El 
Niño condition in the Pacific (Fig. 4.41c). This sug-
gests that this season’s IOD might have been mainly 
driven by local processes in the IO. Second, in the 
2013 case, the peak phase was generated by cold SST 
anomalies in the western IO and warm SST anomalies 
in the east during May–July 2013. Whereas, in the 
2014 case, SST anomalies in both the eastern and 

FIG. 4.39. (a) The monthly AWP area in 2014 (1012 m2; 
blue) and the climatological AWP area (red) and the 
spatial distributions of the 2014 AWP in (b) Jun, (c) 
Jul, (d) Aug, (e) Sep, (f) Oct, and (g) Nov. The AWP is 
defined by SST >28.5°C. The black thick contours in 
(b)–(g) are the climatological AWP based on the data 
from 1971–2000 and the white thick contours are the 
2014 28.5°C SST. The extended reconstructed SST 
dataset is used.

FIG. 4.40. The TC steering flow anomalies (103 hPa 
m s–1) in the 2014 Atlantic hurricane season of (a) 
Jun, (b) Jul, (c) Aug, (d) Sep, (e) Oct, and (f) Nov. The 
TC steering flow anomalies are calculated by the 
vertically-averaged wind anomalies from 850 hPa to 
200 hPa relative to the 1971–2000 climatology. The 
NCEP-NCAR reanalysis field is used.

S124 JULY 2015|


