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Abstract This study explores the phenomenology of zonally elongated transients (ZELTs) in the ocean
and the sensitivity of their properties to changes in several environmental factors. ZELTs explain a major
part of anisotropy in mesoscale turbulent flow. Calculations are performed in a two-layer, quasi-geostrophic
model. Empirical Orthogonal Functions (EOF) decomposition allows for the separation of ZELTs from the
background turbulent flow as several leading EOF modes. The leading Extended EOF reveals that ZELTs
propagate westward at the speed of �1 cm s21. The decrease in the planetary vorticity gradient and
increase in the bottom drag coefficient each leads to flattening of the variance spectrum, isotropization of
the leading EOF, and fast decay of the autocorrelation function of its corresponding Principal Component.

1. Introduction

Satellite observations and numerical model simulations reveal a series of zonally elongated transient flow
patterns populating every basin of the World Ocean (Maximenko et al., 2005). We refer to these flow struc-
tures as zonally elongated transients or ZELTs (Kamenkovich et al., 2015). Anisotropic and nonuniform distri-
bution of Eulerian (Huang et al., 2007; Scott et al., 2008; Stewart et al., 2015) and Lagrangian (Kamenkovich
et al., 2015; Laurindo et al., 2017; Rypina et al., 2012) statistics further suggests that ZELTs exhibit a signifi-
cant spatial variability over different parts of the World Ocean. The present article focuses on two aspects of
ZELTs: first, their proper identification and separation from the background flow, and second, their sensitiv-
ity to and dependence on environmental parameters.

Multiple, predominantly zonal oceanic flows are detected in time-mean sea surface height (Maximenko
et al., 2008) and Argo data (Van Sebille et al., 2011). These flow structures are claimed to be the counterparts
of stationary jets observed in the atmospheres of giant planets (Galperin et al., 2004; Williams, 1975). How-
ever, most of the kinetic energy at the mesoscale in the ocean is contained in the time-evolving flow anom-
alies (Zang & Wunsch, 2001). Averaged over 18–200 weeks, these flow anomalies reveal the presence of
low-frequency zonally elongated flow patterns (Maximenko et al., 2005). On the other hand, even randomly
distributed westward propagating vortices can appear as zonally elongated flow patterns in time-averaged
fields (Schlax & Chelton, 2008). Although Buckingham and Cornillon (2013) and Chen et al. (2016) argue that
randomly distributed propagating eddies cannot explain the entire signal associated with anisotropic flow
patterns, the time-averaging does not seem to be a reliable tool for identifying ZELTs.

Zonally elongated flow structures can also be isolated from the background flow by applying spatial Fourier
filtering (Kamenkovich et al., 2015; Maximenko et al., 2008). However, the spatial Fourier spectrum of oce-
anic turbulence is broadband (McWilliams, 2008); the lack of scale separation between different flow com-
ponents renders the Fourier filtering inefficient in that there is no clear choice for the cut-off wave number.
To this end, the problem of efficient ZELTs extraction becomes equivocal: both time-averaging and spatial
Fourier filtering can produce spurious flow patterns. A double-spectral approach seems to be an appealing
remedy to this problem (Ivanov & Collins, 2009). The approach consists of dividing a data set into several
frequency bands by means of wavelet transform to apply spatial Fourier decomposition within each of the
bands. Ivanov et al. (2012) find that zonally elongated flow patterns have a dominant period greater than
2.5 years. While such an approach certainly helps to identify the time scale, as mentioned above, spatial
Fourier decomposition precludes unambiguous detection of a particular flow pattern.
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Many environmental parameters can influence the variability of oceanic turbulence and its associated
anisotropy, including Earth’s rotation, stratification, and dissipative processes. Simulations of geostrophic
turbulence suggest that varying bottom friction causes a 10-fold change in the magnitude of the stationary
zonal jets; a less pronounced effect is observed due to variations in lateral friction (Berloff et al., 2011). The
anisotropy of the time-variable flow associated with ZELTs, on the other hand, can respond differently to
variations in friction. The impact of Earth’s rotation (b-effect) and stratification on the anisotropy of ocean
variability also remains unknown.

We perform simulations in a two-layer quasi-geostrophic model. This model is conceptually simple yet rep-
resents the essential dynamics well; furthermore, its computational efficiency allows an efficient exploration
of the model’s parameter space. A more complex and costly model would be impractical computationally
because of the long integration times required for each numerical simulation. The details of the numerical
model are provided in section 2. By applying Fourier and EOF decomposition to simulated isotropic and
anisotropic turbulent flows, we demonstrate that EOF decomposition is a more appropriate technique to

Figure 1. Upper-layer snapshots of the velocity stream function 3104 of simulated (a) anisotropic and (b) isotropic turbulent flows.
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Figure 2. Upper-layer spatial Fourier spectra of the velocity stream function of simulated (a) anisotropic and (b) isotropic turbulent flows. Rectangle denotes the
range of wave numbers within which Fourier filter is applied (see the text).
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identify ZELTs. We then quantify the propagation of ZELTs by means of the Extended EOF decomposition.
We compare the variance spectrum, the leading EOF and autocorrelation function (ACF) of the correspond-
ing Principal Component (PC) for several values of b and bottom drag coefficient. Finally, we quantify the
sensitivity of the anisotropy associated with the leading EOF to simultaneous variations in b and bottom
drag coefficient by constructing a response surface in b-bottom drag parameter space.

2. Numerical Model and Experiment Design

The governing equations of the two-layer quasi-geostrophic model are the conservation of potential vortic-
ity in each layer (Pedlosky, 2013) with added forcing and viscous terms:

@q1

@t
1Jðw1; q1Þ5F1mr4w1 (1)

Figure 3. Low-passed Fourier filtered velocity stream function 3103 of simulated (a) anisotropic and (b) isotropic turbulent flows.
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Figure 4. Amount of explained variance by 30 leading EOF modes of simulated anisotropic (red curve) and isotropic
(black curve) turbulent flows.
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Figure 5. The first four leading EOFs31023. Left column: anisotropic turbulent flow. Right column: isotropic turbulent flow. (a and b) EOF1, (c and d) EOF2, (e and
f) EOF3, and (g and h) EOF4.
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@q2

@t
1Jðw2; q2Þ52cr2w21mr4w2 (2)

Here wn is the stream function in layer n, n 5 1, 2 (hereafter, indices 1 and 2 refer to the top and bottom
layers, respectively), Jðwn; qnÞ5 @wn

@x
@qn
@y 2

@wn
@y

@qn
@x is the Jacobian operator, m is a lateral eddy viscosity, c is a
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Figure 6. ACF of PCs corresponding to several leading EOF modes. Left column: anisotropic turbulent flow. Right column: isotropic turbulent flow. (a and b) PC1,
(c and d) PC2, (e and f) PC3, and (g and h) PC4.
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bottom drag coefficient, and F is the forcing function. Potential vorticity is related to the stream function in
each layer by

q15r2w11S1ðw22w1Þ1by

q25r2w21S2ðw12w2Þ1by

where b is the north-south gradient of planetary vorticity, S15
f 2
0

H1 g01
and S25

f 2
0

H2 g01
are the stratification param-

eters, and f0 is the reference value of the Coriolis parameter.

For anisotropic turbulence simulations, the model was forced by a horizontally homogeneous, baroclinically
unstable flow with zonal velocity U in the top layer only (Haidvogel & Held, 1980). In this case, the model
can be written as

@n1

@t
1Jðw1; n1Þ1ðb1S1UÞ @w1

@x
52U

@n1

@x
1mr4w1 (3)

@n2

@t
1Jðw2; n2Þ1ðb2S2UÞ @w2

@x
52cr2w21mr4w2 (4)

where

n15r2w12S1ðw12w2Þ
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Figure 7. Extended EOF1 31023 along (a) zonal direction and (b) meridional direction as a function of time lag.

Table 1
Values of Different Parameters for 1-D Sensitivity Analysis

(b; m21s21; c; s21)
# of EOF modes

with a � 0:6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EOFt
EOFc

� �2
r

(b; m21s21; c; s21)
# of EOF modes

with a � 0:6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EOFt
EOFc

� �2
r

(2.15; 1) 3 1.01 (1.14; 5) 0 0.47
(2.15; 2) 0 0.82 (1.47; 5) 0 0.43
(2.15; 3) 9 0.58 (1.75; 5) 0 0.40
(2.15; 4) 11 0.49 (1.98; 5) 0 0.39
(2.15; 7) 0 0.37 (2.15; 5) 5 0.38
(2.15; 9) 0 0.34 (2.25; 5) 7 0.37
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n25r2w22S2ðw22w1Þ

The stratification parameters define the first baroclinic Rossby deformation radius Rd5 1ffiffiffiffiffiffiffiffiffi
S11S2
p , which serves

as the energy injection length scale. The Rossby deformation radius is 25 km.

Isotropic turbulence simulations were conducted on the f-plane

@n1

@t
1Jðw1; n1Þ5F1mr4w1 (5)

@n2

@t
1Jðw2; n2Þ52cr2w21mr4w2 (6)

with a forcing function of the following form:

Fðx; y; tÞ5Reð
XNx

m51

XNy

n51

A
1ffiffiffiffiffi
dt
p wmnei/ðtÞ

� �
eiðkm x1lnyÞ

where A is a constant amplitude,
ffiffiffiffiffi
dt
p

is a square root of the time step, /ðtÞ is a randomly chosen phase
from the interval ½0; 2p� of a uniform distribution, km5 m

Lx
and ln5 n

Ly
are the wave numbers in the zonal and
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Figure 8. Amount of explained variance by 12 leading EOF modes of simulated anisotropic turbulent flow for b52:15310211 m21 s21 (red curves) and (a)
c5131027 s21, (b) c5231027 s21, (c) c5331027 s21, (d) c5431027 s21, (e) c5731027 s21, and (f) c5931027 s21. The variance spectrum of simulated isotropic
turbulent flow (black curves) with the same parameters as in Figure 4 is plotted for comparison.
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meridional directions, and Lx and Ly are the length of the domain in the zonal and meridional directions. We
use the ‘‘ring-shaped’’ forcing function for which

wmn5
1; jK2Kf j � 3

0; jK2Kf j > 3:

(
(7)

K5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

m1l2n

q
, Kf 5 33. This is a typical forcing function used in many studies of two-dimensional turbulence

(Danilov & Gurarie, 2000).

The model was integrated over the rectangular domain (Lx3Ly; Ly53; 600 km and Lx57; 200 km) and over
the square domain (Lx3Ly ; Lx53; 600 km and Ly53; 600 km). The number of grid points in the zonal and
meridional directions was chosen to be Nx 5 512 and Ny 5 256 for the rectangular domain, and Nx5Ny5

256 for the square domain. This gives a resolution of approximately 14 km for both cases. Periodic bound-
ary conditions were applied on each boundary. The nonlinear terms were discretized with the Arakawa
energy, enstrophy, and symmetry conserving scheme (Arakawa, 1966). Time integration was performed
with Adams-Bashford third-order scheme for 70,000 days, or equivalently, 192 years.
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Figure 9. Amount of explained variance by 12 leading EOF modes of simulated anisotropic turbulent flow (red curves) for c5531027 s21 and (a)
b51:14310211 m21 s21, (b) b51:47310211 m21 s21, (c) b51:75310211 m21 s21, (d) b51:98310211 m21 s21, (e) b52:15310211 m21 s21, and (f)
b52:25310211 m21 s21. The variance spectrum of simulated isotropic turbulent flow (black curves) with the same parameters as in Figure 4 is plotted for
comparison.
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Examples of model output are shown in Figure 1. Simulated anisotropic turbulent flow (Figure 1a) consists
of multiple zonal jets and numerous eddies. Isotropic turbulent flow contains eddies propagating around
the domain and interacting with each other (Figure 1b). Unlike the anisotropic turbulent flow, the isotropic
flow does not have a preference for zonal direction and is not expected to have ZELTs.

3. Phenomenology

3.1. Separating ZELTs From the Background Field
In this section, we perform simulations of anisotropic (c5331027 s21; b52:15310211 m21 s21) and isotro-
pic (c5331027 s21; b50310211 m21 s21) turbulent flows and utilize them as a test bed for the efficiency
of EOF versus Fourier decompositions in extracting ZELTs from the background flow. The simulations are
performed on a square domain for the ease of comparison. To unambiguously distinguish ZELTs from previ-
ously analyzed zonal jets (Berloff et al., 2011 and all references therein; see also Venaille et al., 2014), we
remove the zonal and time-mean component of the total flow.

The spatial Fourier spectrum of the velocity stream function for anisotropic turbulence simulation shows a
power peak located at long zonal wavelengths and outlined by a rectangle (Figure 2a). Isolating spectral

Figure 10. EOF131023 of simulated anisotropic turbulent flow for b52:15310211 m21 s21 and (a) c5131027 s21, (b) c5231027 s21, (c) c5331027 s21,
(d) c5431027 s21, (e) c5731027 s21, and (f) c5931027 s21.
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modes corresponding to this power peak we readily obtain zonally elongated flow patterns, which can be
associated with ZELTs (Figure 3a). Two major problems arise with this approach of identifying ZELTs. First,
the cut-off wave numbers are not unique; we choose these wave numbers rather subjectively (1 and 3
along k-axis, and 8 and 12 along l-axis). Second, spatial Fourier filtering can produce bogus flow patterns. To
illustrate this point, we apply the same Fourier filter to simulated isotropic turbulent flow with its spectrum
shown in Figure 2b. Since ZELTs do not exist in such a flow, the extracted zonally elongated flow patterns
(Figure 3b) are clearly the artifact of the filtering procedure. Unlike Fourier decomposition, EOF decomposi-
tion does not suffer these shortcomings. We next test the efficiency of the filter based on EOF decomposi-
tion (see also Chen et al., 2016). The technical details are presented in Appendix A.

Comparing the amount of the explained variance by each of the EOF modes, one can see that the variance
spectrum of the anisotropic turbulence is steeper than one of the isotropic turbulence (Figure 4). While the
EOF modes of the isotropic turbulent flow are not well-separated, the first four EOF modes of anisotropic
turbulent flow are clearly distinct from the rest of the spectrum. This is further confirmed by the spatial
structure of the first four EOFs displayed in Figure 5a. Unlike higher order EOFs that do not exhibit long
zonal length scales (not shown), these four leading modes have the form of zonally extended patterns with
several eddies superimposed on them (see also Ivanov et al., 2012). This spatial structure is also in sharp

Figure 11. EOF131023 of simulated anisotropic turbulent flow for c5531027 s21 and (a) b51:14310211 m21 s21, (b) b51:47310211 m21 s21,
(c) b51:75310211 m21 s21, (d) b51:98310211 m21 s21, (e) b52:15310211 m21 s21, and (f) b52:25310211 m21 s21.
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contrast to EOFs of the isotropic turbulent flow, which display randomly distributed eddies (Figure 5b). The
autocorrelation function (ACF) of the corresponding Principal Components (PC) oscillates and decays slowly
for all four leading EOFs of the anisotropic turbulent flow (Figure 6a). This is at odds with the four leading
EOFs of isotropic turbulent flow, for which the ACF of the corresponding PC decays quickly and fluctuates
around zero.

In the rest of the study, we associate ZELTs with zonally elongated modes of flow variability. A convenient
measure to quantify anisotropy of the flow field is the anisotropic ratio defined as a5 <u02>2<v02>

<u02>1<v02>, where
< > denotes spatial averaging, u0 and v0 are the zonal and meridional eddy velocities, respectively. Its val-
ues range from 21, for which the velocities are purely meridional, to 1, for which velocities are purely
zonal. The value of a 5 0 indicates that the flow field is perfectly isotropic. We use this parameter to define
the number of EOFs that represent ZELTs as those with anisotropic ratio a � 0:6. In the case discussed
above, only four EOF modes have anisotropic ratio a � 0:6.

3.2. Propagation of ZELTs
One important property of a distinct flow structure is its ability to propagate across the medium. By con-
struction, each separate EOF mode can be interpreted as a stationary oscillation, so the propagation of the
flow structure it represents cannot be tracked. Unlike regular EOF decomposition, which makes use only of
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Figure 12. ACF of PC1 of simulated anisotropic turbulent flow for b52:15310211 m21 s21 and (a) c5131027 s21, (b) c5231027 s21, (c) c5331027 s21,
(d) c5431027 s21, (e) c5731027 s21, and (f) c5931027 s21.
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spatial correlation of the data set, Extended EOF decomposition also takes into account the fact that geo-
physical data are usually highly correlated in time. This allows us to track the propagation of ZELTs and esti-
mate their speed.

Figure 7 shows the zonal-time and meridional-time Hovm€oller diagrams of the Extended EOF1. The spa-
tial structure of these Extended EOFs closely matches the regular EOFs discussed earlier and is not shown
here. Due to computational expense required to compute Extended EOFs, we use only three time lags:
500, 1,000, and 1,500 days. As indicated by slanted contours in the zonal-time diagram (Figure 7a), the
signal propagates westward with the speed of around 1.15 cm s21. Nearly vertical contours in the
meridional-time diagram (Figure 7b) suggest that ZELTs have negligible meridional speed. The zonal propaga-
tion speed can be compared to the zonal phase speed of linear modes for the Phillips model, which gives 4.75–
5 cm s21 for small zonal wave numbers (see formula 7.11.6 in Pedlosky, 2013). Higher order Extended EOFs,
which are involved in representing ZELTs, show similar slopes in the zonal-time and meridional-time Hovm€oller
diagrams.

The discrepancy between the values of propagation speed suggests that ZELTs are nonlinear phenomenon
and cannot be explained by linear dynamics. However, Berloff and Kamenkovich (2013a, 2013b) demon-
strate that accounting for modulations of the mean flow by stationary zonal jets can alter the propagation
of linear modes and result in close match between nonlinear and linear dynamics.
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Figure 13. ACF of PC1 of simulated anisotropic turbulent flow for c5531027 s21 and (a) b51:14310211 m21 s21, (b) b51:47310211 m21 s21,
(c) b51:75310211 m21 s21, (d) b51:98310211 m21 s21, (e) b52:15310211 m21 s21, and (f) b52:25310211 m21 s21.
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4. Sensitivity Analysis

4.1. Sensitivity to a Single Parameter
In this section, we examine the sensitivity of ZELTs properties to two model parameters, planetary vorticity
gradient b and bottom friction c. Sensitivity to other model parameters, such as vertical stratification and
lateral friction, is found to be weak and is not discussed in this section. We first study the sensitivity to each
of these parameters separately, by fixing one parameter and varying the other. The corresponding values
are given in Table 1.

Variance spectra are shown in Figure 8 (varying c, fixed b) and Figure 9 (varying b, fixed c). The variance
spectrum of isotropic turbulence also shown in these plots is identical to the one in Figure 4. The general
property of the spectra is that for larger values of c and smaller values of b, the flatter the spectrum tends
to be. For c5931027 s21 and b51:14310211 m21 s21, the spectra of the isotropic and anisotropic turbu-
lence are nearly identical. The regime at low values of bottom friction is unusual. First, for the case of fixed
b52:15310211 m21 s21 and c5131027 s21, only two EOF modes are strongly separated from the rest of
the spectrum (Figure 8a). Second, there is a substantial decrease in the amount of the explained variance
by the leading EOFs between the cases of c5131027 s21 and c5231027 s21 (Figures 8a and 8b).

We next discuss the sensitivity of the spatial structure of ZELTs. Even though ZELTs are represented as sev-
eral leading EOFs (Table 1), the changes in ZELT structure can be derived from analyzing only the first mode
(EOF1). For some parameters, there are no EOFs with anisotropic ratio a � 0:6 (Table 1). However, this value
was chosen rather arbitrarily and, as we will see below, some leading EOFs are still characterized by a rather
noticeable degree of anisotropy. The changes in EOF1 confirms the expectation from the analysis of the var-
iance spectrum: EOF1 becomes more isotropic with increasing bottom drag c (Figure 10) and decreasing b
(Figure 11). EOF1 remains anisotropic even for very large values of c (c5931027 s21), whereas no signature
of zonal anisotropy is observed for small values of b (b51:14310211 m21 s21). The sharp transition in the
shape of the variance spectra between c5131027 s21 and c5231027 s21 is also reflected in the spatial

Figure 14. Zonal (EZ ) and residual (ER) spectra of barotropic kinetic energy for b52:15310211 m21 s21 and varying c. The vertical line denotes meridional wave
number for Rossby deformation radius (ld).
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structure of EOF1, which changes from strictly structured, nearly zonal patterns to meandering bands with
eddies embedded in them. We also quantify baroclinicity of ZELTs by computing the root mean square of
the ratio between barotropic and baroclinic components of EOF1 (Table 1); the results suggest that EOF1
has a stronger baroclinic component except for c5131027 s21 case, in which the magnitude of baroclinic
and barotropic components are nearly identical.

The impact of environmental parameters on the temporal variability of ZELTs can be deduced from changes
in the ACF of PC1 structure, which for the cases with fixed b52:15310211 m21 s21 shows that the leading
mode of variability exhibits perfect oscillations for low values of bottom friction (c5131027 s21), damped
oscillations for the moderate values (c5231027 s21; 331027 s21; 431027 s21) and a noisy decay modu-
lated by wiggles for the high values (c5731027 s21; 931027 s21) (Figure 12). For the cases of fixed c, the
ACF of PC1 is characterized only by decaying behavior, and the decay occurs faster with decreasing b (Fig-
ure 13). This is evidenced by a decreasing decorrelation time scale, defined here and elsewhere as a time
lag of the first zero crossing of ACF. When b reaches its minimum value 1:14310211 m21 s21, the decorrela-
tion time scale becomes very short and the ACF of PC1 bears a lot of resemblance to the one of the isotro-
pic turbulence simulation.

Lastly, we compare the energy spectra of simulated baroclinic and barotropic turbullent flows. Two distinct
regimes can be found in simulations of barotropic turbulence on the b-plane: zonostrophic regime, in which
turbulence develops strong anisotropy with 25 (zonal spectrum) and 2 5

3 (residual spectrum) slopes of
energy spectra and friction-dominated regime featuring 2 8

3 (zonal spectrum) and 2 5
3 (residual spectrum)

slopes of energy spectra analogous to classical isotropic turbulence (Galperin et al., 2010; Sukoriansky et al.,
2007). In contrast, our simulations demonstrate that both zonal and residual spectra have rather steep slope
close to -5 for all considered parameter values (Figures 14 and 15; but see also Berloff & Kamenkovich
(2013b)). Such an unexpected steepness of energy spectra and the potential role of ZELTs in causing it cer-
tainly require further investigation.

Figure 15. Zonal (EZ ) and residual (ER) spectra of barotropic kinetic energy for c5531027 s21 and varying b. The vertical line denotes meridional wave number for
Rossby deformation radius (ld).
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4.2. Joint Sensitivity Analysis
In the previous subsection, we showed that for some parameter values the EOF1 apparently lacks zonal
anisotropy. In this section, we investigate anisotropy of EOF1 by constructing the response surface, which
shows the changes in the anisotropic ratio a due to simultaneous variations in c and b. Being a nonqua-
dratic quantity, the anisotropic ratio cannot be easily split into contributions from several EOFs. We con-
struct the response surface for EOF1 only and associate the changes in it with the changes in ZELTs. The

Figure 16. Interpolation points in b 2 c parameter space (black �); diamonds (�) are additional interpolation points; red � are the points at which the response
surface is validated.
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response surfaces of several higher order leading EOFs do not provide any additional information. The tech-
nical details of the response surface construction are presented in Appendix B.

The anisotropic ratio is <0.2 in the upper-left corner of the response surface, indicating that the leading
EOF is nearly isotropic and ZELTs do not exist in that region of the parameter space (Figure 17b). Increasing
from the upper-left to the lower-right corner along the diagonal, the anisotropic ratio goes through inter-
mediate values (0.3–0.7) and reaches high values (�0:8). We associate the values of a � 0:6 with ZELTs
being present in the flow field and identify the swath of the a � 0:8 as the region, in which ZELTs are the

Figure 17. Response surface of anisotropic ratio derived from the EOF1 for smoothing parameter p 5 0.5. The surfaces obtained (a) without and (b) with additional
interpolation points.

Figure 18. Validation error of the response surface for smoothing parameter p 5 0.5. The error computed for response surfaces (a) without and (b) with additional
interpolation points.
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most pronounced. Another swath with a � 0:9 indicates that EOF1 is strongly anisotropic analogous to the
one seen in Figure 10a. These two swathes are separated by the tongue of moderate values of a ’ 0:5, the
origin of which remains unclear. We were not able to run the numerical model for c < 131027 s21 and
small values of b. This limits the considered parameter space.

Finally, we compare the sensitivity of the anisotropic ratio a in our model with the geographical distribution
of a estimated from observations in Scott et al. (2008). The highest values of a in Figure 4 of Scott et al.
(2008) are 0.5–0.6 and are found at around 20

�
S–30

�
S, decreasing poleward up to 0.3–0.4 between 30

�
S

and 40
�
S and reaching the minimum values of �0:1 at 30

�
S–60

�
S, although some spots of large values of

a are also observed. The range of values of bottom drag c in the real ocean is largely unknown. However,
taking this value to be equal to 531027 s21 we readily observe the consistency between the prediction of
idealized model and observations. We also note that the values of anisotropic ratio computed from altime-
try data never reach the values higher than 0.6. This can be explained by the fact that the intensity of the
signal associated with ZELTs in the real ocean can be weakened by other types of mesoscale variability not
included in our idealized model.

5. Discussion and Conclusions

This study demonstrates that ZELTs represent the leading mode of mesoscale variability in baroclinic turbu-
lent flow and have properties and structure that are sensitive several environmental factors. We test the
performance of two filtering techniques to efficiently separate ZELTs from the background flow and quan-
tify the sensitivity of ZELTs properties to changes in the bottom drag coefficient and the meridional gradi-
ent of planetary vorticity.

Low pass Fourier filtered isotropic and anisotropic turbulent flow fields reveal a series of similar zonally
elongated patterns, thereby suggesting the inadequacy of this technique to identify ZELTs. Alternatively,
the EOF decomposition provides a framework for efficient representation of ZELTs. The leading EOF modes
derived from the anisotropic turbulent flow field reveal a series of zonally elongated patterns with eddies
embedded in them, while each EOF mode of an isotropic turbulent flow field consists of randomly distrib-
uted eddies. The variance spectrum of anisotropic turbulent flow is steeper with several leading EOFS being
well-separated from the remaining EOFs. Analyzing the ACF of the corresponding PCs, we found that it
oscillates with a slow decay for the anisotropic turbulent flow and fluctuates around zero followed by a fast
decay for the isotropic turbulent flow. We also investigated the propagation of ZELTs by means of Extended
EOF decomposition. As revealed by Hovfm€oller diagrams of the leading Extended EOF, the patterns propa-
gate in the zonal direction.

The spatiotemporal variability of ZELTs is strongly affected by bottom drag (c) and the meridional gradient
of planetary vorticity (b). Decreasing b or increasing c each leads to flattening of the variance spectra, iso-
tropization of the EOF1 and faster decay of ACF of PC1. The response surface of the anisotropic ratio reveals
the region of relatively high values (�0:8) in the b 2 c parameter space; ZELTs are the most pronounced in
this region.

This study suggests that the mesoscale variability at low-latitude and midlatitude can be dominated by zon-
ally propagating ZELTs. As a consequence, any attempts to parameterize the impact of mesoscale eddies by
the isotropic viscosity and diffusivity will lead to biases in simulated flow and tracer distribution (see Kamen-
kovich et al., 2015, for example). The results reported in this paper reveal complicated phenomenological
and structural properties of ZELTs, with the underpinning mechanism of their formation and maintenance
remaining unknown. This will be a subject of a separate study.

Appendix A: Computational Aspects of EOF/EEOF

We discuss some of the key properties of Empirical Orthogonal Functions (EOF) and Extended Empirical
Orthogonal Functions (EEOF), and present the technical details of their computation pertinent to our model
configuration. For general discussion of EOF application to turbulent flows, the reader can consult Berkooz
et al. (1993), Holmes (2012), Aubry et al. (1988), and Sirovich (1987a, 1987b).
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The output of the model is represented as a two-dimensional matrix Xml , where index m corresponds to a
grid point and index l denotes sampling time, m51; . . . ;Ngr ; l51; . . . ; T . Here Ngr is the number of grid
points of the computational domain, T is the number of samples. Each column of this matrix is a state vector
at a particular instance, which is assumed to have zero time mean. The matrix is a discrete version of time-
evolving, continuous state vector xðtÞ. The computation of EOFs boils down to the eigenvalue problem

Amm/m5km/m (A1)

where km are the eigenvalues and /m are the corresponding eigenvectors (EOF). Amm is a covariance matrix
defined as

Amm5
XT

l51

XmlXlm (A2)

Direct computation of eigenvectors and eigenvalues of matrix Amm is impossible due to the enormous size
of the matrix. To circumvent this problem, we instead compute the eigenvectors and eigenvalues of matrix
Bll5

PNgr

m51 XlmXml , which has the same nonzero eigenvalues as matrix Amm and its eigenvectors related to
the eigenvectors gl of matrix Bll through a simple linear transformation (Von Storch & Zwiers, 2002)

/m5
XT

l51

Xml

detðXmlÞ
gl

Since the covariance matrix Amm is positive definite, the eigenvectors (EOF) of this matrix form a complete
orthonormal basis in the space with appropriately chosen inner product. Examples of the inner product
include area integrated energy, enstrophy, or squared stream function. Since the focus of this study is on
large-scale flows, we use the inner product in the form of squared stream function (Selten, 1995). Now, the
state vector xðtÞ, that is stream function, can be expanded in series over this basis

xðtÞ5
XT

k51

akðtÞ/k (A3)

where the expansion coefficients akðtÞ are referred to as Principal Components (PC). The basis spanned by EOF
suggest that the squared norm generated by the inner product, or equivalently the variance, is minimized. The
EOFs are typically arranged according to the fraction of explained variance, which can be expressed as

varðxkÞPT
i51 var xi

5
kkPT
i51 ki

(A4)

where varxk are variance of the kth EOF mode.

For Extended EOFs, the data matrix takes into account the correlation in time, so that index m runs as
m51; . . . ;M � Ngr , and index l runs as l51; . . . ; T2M11. Here M is a number of time lags. For the rest,
Extended and regular EOFs are computed in a similar fashion.

Appendix B: Response Surface Construction

We introduce the basic idea of the response surface construction (Iskandarani et al., 2016). For simplicity,
consider anisotropic ratio a, which depends only on a single parameter c. The ~aðcÞ approximates the true
anisotropic ratio aðcÞ computed at several points in the parameter space and can be represented as a series
expansion over some basis:

aðcÞ5~aðcÞ1�ðcÞ5
XM13

i51

ci/iðcÞ1�ðcÞ (B1)

where � is an error committed by the approximation, /iðcÞ are the basis functions, and ci are the expansion
coefficients to be determined. In this study, we choose /iðcÞ in the form of cubic B-splines (Chin et al., 2004;
De Boor, 1978; Inoue, 1986)
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/iðcÞ5

0; c < ni24

B1
c2ni24

f

� �
; ni24 < c < ni23

B2
c2ni23

f

� �
; ni23 < c < ni22

B3
c2ni22

f

� �
; ni22 < c < ni21

B4
c2ni21

f

� �
; ni21 < c < ni

0; ni < c:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

(B2)

where n23 . . . n0; n1; . . . ; nM . . . nM13 are equispaced knots, f is a common knot interval and

B1ðrÞ5
r3

6

B2ðrÞ5
23r313r213r11

6

B3ðrÞ5
3r326r214

6

B4ðrÞ5
2r313r223r11

6

The coefficients ci are determined by minimizing the error norm. We choose the norm in the following
form:

jj�ðcÞjj5p
XM13

i51

f ðciÞ2~f ðciÞ
df ðciÞ

 !2

1ð12pÞ
ðcM

c1

f 2
c dc (B3)

Here aðciÞ and ~aðciÞ are the values of anisotropic ratio aðcÞ and its approximation ~aðcÞ at the data sites ci, d
aðciÞ is an estimate of the standard deviation in aðciÞ. The smoothing parameter p ranges from p 5 0, in
which case the fit is just a straight line, to p 5 1 2 the least-square fit. The generalization for multiple param-
eters case is straightforward. Now, our anisotropic ratio aðc;bÞ depends on two parameters c and b, and is
approximated by ~aðc;bÞ with committed error �ðc; bÞ

aðc; bÞ5~aðc; bÞ1�ðc; bÞ5
XM13

i51

XN13

j51

cij/iðcÞ/iðbÞ1�ðc; bÞ (B4)

and the coefficients cij are found by minimizing the error norm of the form

jj�ðc; bÞjj5p
XM13

i51

XN13

j51

aðci ; bjÞ2~aðci ; bjÞ
daðci; bjÞ

 !2

1ð12pÞ
ðcM

c1

ðbN

b1

ððacÞ21ðabÞ2Þdbdc (B5)

The values of data sites in the parameter space are shown in Figure 16 with black stars. The validation error
is computed as

jj�ðcv ; bvÞjj5jaðcv ; bvÞ2~aðcv ; bvÞj (B6)

The index v refers to the location of validation points in the parameter space marked by red stars in Figure 16.

Figure 17a displays the response surface obtained with interpolation points marked by black stars in Figure
16. Even though the value 0.5 of smoothing parameter gives the best approximation, the validation error
shown in Figure 18a indicates that the surface approximates the anisotropic ratio poorly in the lower-right
corner. After adding several interpolation points marked by diamonds as shown in Figure 16, the new
response surface resolves more finer structures in the lower-right corner (Figure 17b) and the validation
error is significantly decreased in that area (Figure 18b).
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