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ABSTRACT

Eddy–mean flow decomposition is crucial to the estimation of Lagrangian diffusivity based on drifter data.

Previous studies have shown that inhomogeneous mean flow induces shear dispersion that increases the

estimated diffusivity with time. In the present study, the influences of nonstationary mean flows on the es-

timation of Lagrangian diffusivity, especially the asymptotic behavior, are investigated using a first-order

stochastic model, with both idealized and satellite-based oceanic mean flows. Results from both experiments

show that, in addition to inhomogeneity, nonstationarity of mean flows that contain slowly varying signals,

such as a seasonal cycle, also cause large biases in the estimates of diffusivity within a time lag of 2 months if

a traditional binning method is used. Therefore, when assessing Lagrangian diffusivity over regions where

a seasonal cycle is significant [e.g., the Indian Ocean (IO) dominated by monsoon winds], inhomogeneity and

nonstationarity of the mean flow should be simultaneously taken into account in eddy–mean flow de-

composition. A temporally and spatially continuous fit through the Gauss–Markov (GM) estimator turns out

to be very efficient in isolating the effects of inhomogeneity and nonstationarity of the mean flow, resulting in

estimates that are closest to the true diffusivity, especially in regions where strong seasonal cycles exist such as

the eastern coast of Somalia and the equatorial IO.

1. Introduction

Phenomena associated with the spreading of passive

tracers in the ocean, such as plankton, marine debris,

and chemical pollutants (e.g., oil), are of practical im-

portance. These problems are usually described by an

advection–diffusion model, in which a diffusivity co-

efficient is employed. Finding a proper diffusivity co-

efficient for the advection–diffusion model is the

pursuit of many studies since the magnitude of diffu-

sivity and how it varies in space and time still remain

unclear.

Theoretical studies have tried to seek mathematical ex-

pressions of diffusivity. Under the assumptions of a ho-

mogeneous and stationary eddy field, Taylor (1922) related

the diffusivity to the product of eddy velocity variance and

Lagrangian integral time scale.Davis (1987, 1991) regarded

the diffusivity as an observable quantity and generalized

the diffusivity into a second-order tensor to describe quasi-

2D diffusion in an inhomogeneous eddy field. These

methods are categorized as single-particle statistics

(LaCasce 2008) that require only a large number of

current-following (Lagrangian) observations from oceans.

The increasing Lagrangian observations by satellite-

tracked subsurface floats and surface drifters have facili-

tated researches on the estimates of diffusivity over various

ocean basins (LaCasce 2008; Lumpkin and Pazos 2007).

One important assumption upon which those diffu-

sion theories are based is the scale-separation assump-

tion. However, this assumption is not satisfied because
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no spectral gap between the large- and small-scale motions

is found in the real ocean. Fortunately, Davis’s (1991)

theory relaxes this hypothesis by introducing a ‘‘history

term’’ that allows interaction between large- and small-

scale motions, and the scale-separation assumption could

thus be made for practical purposes. In this assumption,

velocity u can be separated into a large-scale background

mean flow U that is usually well captured by numerical

models and a small-scale (subgrid scale) eddy/residual

velocity u0 5u2U that cannot be resolved by models

(especially coarse-resolution climate models). Estimation

of eddy diffusivity is based on u0 and the scale separation

would thus affect the accuracy of the estimates. In the real

ocean, both the mean and eddy fields can be inho-

mogeneous and nonstationary. Therefore, the calculation

procedures of diffusivity based on these theories should be

elaborated so that they can be applied to complex oceanic

flows. Here, the effects of inhomogeneity and non-

stationarity ofU on diffusivity estimation are summarized.

Inhomogeneity of the mean flow implies that U(x)

varies with space x. Studies (e.g., Davis 1991; Taylor

1953) have demonstrated that the spatial gradient of

U(x) would contribute to the particle dispersion [known

as shear dispersion, see review by Young and Jones

(1991)] and lead to an increase of estimated diffusivity

with time lags (e.g., Bauer et al. 1998; Oh et al. 2000).

Therefore, inhomogeneity of U(x) should be taken into

account in the scale separation. A common way to re-

duce the shear dispersion is using a binning technique.

This approach groups Lagrangian observations into

geographic bins, andU is estimated as the average of all

observations within each bin. Thus, U(x) varies as a

function of bin but remains constant inside a bin. The

common rectangular bin has also been modified, for

example, into overlapping circular bins (e.g., Poulain

2001; Poulain and Zambianchi 2007) that allow for

smooth estimation ofU(x) or elliptic bins (e.g., Johnson

2001; Lumpkin and Johnson 2013) that are oriented

following variance ellipses. However, shear dispersion

still exists within bins if bin size is not small enough to

resolve strong shear flows such as western boundary

currents or jets. Reducing the bin size could give a better

resolution of U(x), but on the other hand would reduce

the samples within bins, leading to a statistical result of

low significance and a U(x) field potentially dominated

by noise. Besides, smaller bins alsomake the stationarity

assumption dubious (e.g., bins over the Gulf Stream

meanders). Bauer et al. (1998) proposed an optimized

bicubic spline to fit U(x). Compared to the binning

technique, their spline method has the advantage that

the estimatedU(x) is a smooth and continuous function

of space, allowing for a better resolution of the shear.

Then the values of u0 can be computed more accurately

by subtracting the exact values of U(x) along drifter

trajectories, rather than discrete bin-mean values. They

provided a concrete example to show that the spline

technique tends to make diffusivity converge to an as-

ymptotic value while smaller bin size would only reduce

the increasing rate of the estimated diffusivity for larger

time lags. Since the spline method is quite efficient in

isolating shear dispersion (i.e., the effect of inhomo-

geneous mean flow), it has been adopted in many studies

(e.g., Bauer et al. 2002; Falco et al. 2000; Falco and

Zambianchi 2011; Maurizi et al. 2004; Veneziani et al.

2004).

Nonstationarity of the mean flow implies that U(t)

varies as a function of time t. However, this feature has

been less well addressed in the literature than spatial

inhomogeneity. Davis (1991) suggested thatU should be

estimated by taking observations of many years, and

ocean variability within this time scale would have an

effect on scale separation. Temporal variabilities from

seasonal to interannual time scales are obviously within

the range of consideration and could be well resolved by

numerical models as compared to eddy-scale motions.

The seasonal cycle is typically the most dominant signal

among these low-frequency variabilities. However, many

works do not explicitly take into account seasonal varia-

tion of U(t), which can be justified if the domains of in-

terest do not show strong seasonal variability. This is not

true in monsoon-dominated regions such as the tropical

Pacific, Atlantic, and Indian Oceans. An analogous

method to deal with nonstationarity is to construct U(t)

in different temporal bins, that is, grouping observations

into different seasons and then obtaining u0 with respect

to seasonal means. Bauer et al. (2002) grouped drifter

observations into four seasons (3months each) to ensure

stationarity within each seasons when estimating the

diffusivity in the equatorial Pacific. Maurizi et al. (2004)

used only two seasons (6 months each) when analyzing

the surface circulation of the Adriatic Sea. Quite re-

cently, Zhurbas et al. (2014) calculated diffusivities in

the Indian Ocean relative to a monthly varying mean (1

month each) and found that the estimated diffusivities

are smaller than those relative to a constant mean. Their

treatment of the nonstationaryU(t) actually extends the

binning technique from spatial bins to temporal bins,

and within each temporal bin, stationarity is approxi-

mately assumed. Problems of the spatial binning tech-

nique, however, still exist for temporal bins. Longer

(fewer) bins cannot ensure stationarity, while shorter

(more) bins cannot guarantee sufficient samples for

statistical significance. Approaches capable of continu-

ously estimating the temporal variations (similar to

spatial spline method) are desirable for isolating the

effect of nonstationary U(t). Recently, when estimating
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the diffusivity over the South China Sea region where

monsoon winds dominate, Qian et al. (2013) have found

that seasonal variation can be efficiently included inU(x)

by using a Gauss–Markov (GM) estimator proposed by

Lumpkin (2003). Asymptotic diffusivities can then be

approximately obtained after removing seasonal cycles.

Although Qian et al. (2013) as well as Zhurbas et al.

(2014) have shown that seasonal variation would bias

the diffusivity if not removed from u0, it still remains

unclear how the nonstationary U(t) affects the estima-

tion, especially the asymptotic behavior of diffusivity. In

addition, whether the seasonal binning method can elim-

inate the influence of nonstationary U(t) is not well

demonstrated. Recently, Lumpkin and Johnson (2013)

improved Lumpkin’s (2003) method by adding spatial

terms into the GM estimator that could simultaneously

estimate multiscale temporal variability and spatial vari-

ation ofU(x, t) within bins, providing a newway for scale

separation. This newmethod, however, has not been fully

tested regarding its efficiency in isolating the temporal

and spatial variability of U(x, t) in the calculation of

diffusivity. Therefore, it is best to test the performance

of the newGMmethod in fittingU(x, t) and compared it

to those of other methods in the framework of idealized

mean flows. If this method can well capture the inhomo-

geneous and nonstationaryU(x, t), it could be applied to

estimate diffusivity over regions such as the Indian

Ocean where both inhomogeneity and nonstationarity

are significant (e.g., Lumpkin and Johnson 2013; Shenoi

et al. 1999).

The rest of paper is organized as follows to address the

above issues. Section 2 describes the methods. Results

are presented in sections 3 and 4. Conclusions and dis-

cussion are given in section 5.

2. Methods

Generating synthetic drifters in idealized or model

output flow has been widely used in diffusion-related

studies (e.g., De Dominicis et al. 2012; Griesel et al. 2010;

Koszalka and LaCasce 2010; McClean et al. 2002; Oh

et al. 2000; Veneziani et al. 2005). This method has

several obvious advantages. First, the background mean

flow U(x, t) and Lagrangian parameters (e.g., integral

time scale and diffusivity) are already prescribed or

determined. Second, synthetic drifter data are free from

complex data processing, such as high-frequency filter-

ing to suppress tidal/inertial signals (e.g., Chaigneau and

Pizarro 2005; Poulain 2001), wind-slip corrections (e.g.,

Niiler 2001; Poulain et al. 2009), and drogued/undrogued

drifter reassessment (e.g., Grodsky et al. 2011; Lumpkin

et al. 2013; Rio 2012). Third, if the computational con-

dition allows, an arbitrarily large number of synthetic

drifter could be deployed to overcome the ‘‘array bias’’

(Davis 1991) as well as seasonal sampling bias.

a. Stochastic model

To simulated synthetic drifters in a prescribed back-

ground mean flow, stochastic (random flight/walk)

models are usually adopted. Zero-order, first-order, and

second-order stochastic models are most commonly used

(Griffa 1996; LaCasce 2008), in which displacement, ve-

locity, and acceleration are noised variables, respectively.

The simplest zeroth-order model cannot be applied to

inhomogeneous turbulent field because it does not meet

the ‘‘well-mixed’’ criterion proposed by Thomson

(1987). Moreover, it cannot be applied to motions of

time scale smaller than the Lagrangian integral velocity

time scale, since its autocorrelation function is a delta

function (Griffa 1996). The first-order model becomes

a littlemore complex and could resolve finite velocity time

scale motion. Although it has an unrealistic delta auto-

correlation function of acceleration as compared to that of

the second-order model and may also fail the well-mixed

criterion, it is sufficient for the present study in which

diffusivity is specified constantly and will be used here.

Assuming two components of velocity are indepen-

dent, the first-order stochastic model can be written in

one-dimensional form as (e.g.,Maurizi et al. 2004; Risken

1996)

du052
u0

TL

dt1

ffiffiffiffiffiffiffiffi
2k‘

p

TL

dW, and (1)

dx5 (U1 u0)dt , (2)

whereU and u0 are the advective background velocity and
eddy velocity, x is the displacement, TL is the Lagrangian

integral time scale, k‘ is the asymptotic eddy diffusivity,

and dW is a random increment following normal distri-

bution N(0, dt) (i.e., a Weiner process of infinitesimal

variance). By specifying two constant parameters of k‘

and TL (the eddy field u0 becomes homogeneous and

stationary), synthetic drifters released in a specifiedU can

be tracked by integrating Eqs. (1) and (2) forward. The

corresponding eddy velocity autocovariance is

P(t)5
k‘

TL

exp

�
2

t

TL

�
, (3)

where t is the time lag. Equation (1) is an Ornstein–

Uhlenbeck process. For practical purposes, Eq. (1)

should be discretized with a finite time intervalDt so that
it becomes a first-order autoregressive model whose au-

tocovariance is different from Eq. (3). However, the

difference is negligible when Dt � TL. This requirement

is roughly met by using Dt5 1/4 days and TL 5 4 days
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here, and Eq. (3) is thus used as the analytic reference for

estimated autocovariance.

b. Estimation of lateral eddy diffusivity

The single-particle diffusivity tensor is defined as

(Davis 1991)

kij(t)5

ð0
2t

Pij(t) dt5

ð0
2t

hu0i(0)u0j(t)iL dt , (4)

where index i or j stands for the zonal or meridional

component, Pij is the component of velocity covariance

matrix, and hiL is the Lagrangian ensemble average over

time and space at t before/after the drifter is located in

a domain of interest. The above calculation is done using

the pseudotrack method following Swenson and Niiler

(1996). Every data point in an area of interest is con-

sidered as the initial point of a pseudotrack with both

positive and negative values of time lag t. To obtain the

diffusivity that is calculated from u0, the mean flow U

needs to be estimated first. For comparison, three

techniques are employed for this: the classical spatial

binning technique, the seasonal binning technique (i.e.,

estimating bin mean for each seasons), and the Gauss–

Markov estimator. Once U is obtained by each of the

three techniques, u0 is computed by subtractingU from u.

c. Gauss–Markov estimator

Drifter data are first grouped into geographical bins,

and all velocity observations in each bin are treated as

a series consisting of large-scale and eddy-scale motions,

that is, u5U1u0. The large-scale component U is

modeled following themethod of Lumpkin and Johnson

(2013):

U5Az , (5)

where z is the amplitude coefficient matrix for temporal

and spatial variabilities to be determined in matrix A.

Components of A are expressed as

Al 5
�
1 sin(2ptl) cos(2ptl) sin(4ptl) cos(4ptl) xl x2l yl y2l xlyl

�
, (6)

where the subscript l indicates that observation l is

collected at time tl (in unit of year); xl and yl are the

zonal and meridional distances from bin center, non-

dimensionalized by dividing by 18 longitude and latitude.

The first term stands for a constant mean, the next four

terms are for the seasonal (annual/semiannual) variability,

and the last five terms are for the spatial variability within

a bin. Thus, the treatment of U has simultaneously taken

into account the inhomogeneity and nonstationarity.

The amplitude coefficient matrix z can be computed by

the GM estimator (Lumpkin and Johnson 2013; Wunsch

1996)

z5RzA
T(ARzA

T 1Rn)
21u , (7)

provided the a priori covariance matrix Rz of the un-

known z and the variance structure Rn of the eddy noise

u0 (details of Rz and Rn will be provided later for dif-

ferent tests). The superscript T stands for matrix trans-

pose. After obtaining z, U is calculated through Eq. (5).

3. Results from idealized scenarios

Idealized tests are carried out first to show the effects of

nonstationary U(t) in a clear and illustrative way. A do-

main (108S–108N, 1408–2008E) centered on the equator

with 3013 101 longitude/latitude grids (0.28 grid spacing)
is set up. Synthetic drifters are then deployed uniformly in

the domain with 0.358 spacing and tracked for 2 yr. This

spacing (0.358) is a trade-off between computational load

and high statistical significance. Thus, at initial time, 4800

drifters in allwill be deployed simultaneously and aportion

of themmaydrift or be advected out of the domain.Drifter

motion is governed by Eqs. (1) and (2) with k‘ 5 1 3
107 cm2 s21 and TL 5 4 days. A coarse bin of 28 (as

compared to domain grid of 0.28) is chosen here for the

estimation of U. Smaller bins (e.g., 0.58) will reduce the

shear dispersion, and thus we choose 28 bins here to keep
some shear effect inside the bin so that it can be clearly

identified. Only a subdomain (28S–28N, 1688–1728E) is
considered as the origins of pseudotracks. Four tests

(Tests I–IV) are designed (Table 1) with a transition

from highly idealized to less idealized oceanic currents.

As a first step of the test, a constant U5 4 cm s21 is

used (Test I). The mean flow is completely homoge-

neous and stationary so that the simple binning tech-

nique is sufficient to provide an accurate estimate of U.

Figure 1 shows the velocity covariance and eddy diffu-

sivity estimated using Eq. (4). Both the estimated zonal

and meridional velocity autocovariance (Pxx and Pyy)

nearly overlap with the analytic solution given by

Eq. (3). The estimated symmetric diffusivity compo-

nents (kxx and kyy) are also quite close to the analytic

solution and asymptote to the specified value of k‘ 5 13
107 cm2 s21 after 20 days. The asymmetric compo-

nents (Pxy and Pyx) are close to zero because the two

velocity components are integrated independently and
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thus do not covary with each other, yielding near-zero

estimated asymmetric components of diffusivity (kxy
and kyx). These results confirm that our stochastic

tracking model Eqs. (1) and (2) and the estimation of

eddy diffusivity using Eq. (4) as well as a simple binning

technique work well in a completely homogeneous and

stationary flow.

In Test II, the nonstationary U(t) is implemented by

adding a single oscillating signal to the uniform mean

flow:

U(t)5Um 1A sin

�
2pt

T
1 u

�
,

with the amplitude A5 4 cm s21, period T5 45 days,

and phase u5 0. The velocity Um 5 4 cm s21 is the con-

stant background mean as in Test I. For simplicity, only

the zonal component of the flow is considered (Fig. 2a)

and discussed hereafter.

Two techniques are used to estimate U(t). The first

method is the classical binning method, in which U is

obtained by grouping drifter observations into 28 geo-
graphic bins and then averaging all observations within

each bin. The second method is the seasonal binning

technique, in which several seasons (temporal bins) are

used, and U is estimated for each individual season.

Here, two (6 months each) and four seasons (3 months

each) will be considered for comparison. Finally, diffu-

sivity is computed using u0 corresponding to the different

U(t).

The estimated zonal velocity autocovariance from the

different methods are shown in Fig. 2b. The results from

the different methods are indistinguishable. The esti-

mated autocovariance decreases within ;22 days and

then oscillates around the analytic result. This is not sur-

prising for the classical binning method because it com-

pletely overlooks the sinusoid signal contained in U.

Thus, when doing the scale separation u0 5 u2U, this

signal is not removed and resides in u0, making the ve-

locity autocovariance oscillate around the true value

with period T5 45 days. For the seasonal binning

method, two-season (four-season) binning is only able to

resolve signals with periods longer than 1 yr (half year).

Thus, for this sinusoid, results from the seasonal binning

method would not be better than those from the simple

binning method. Such oscillated autocovariance will of

course yield an oscillated diffusivity (Fig. 2c) according to

Eq. (4).

In Test III, twomore realistic sinusoids are added, one

with A5 3 cm s21, T5 365 days, and u521.64 to

mimic the annual cycle and the other with A5 2 cm s21,

TABLE 1. Summary of the zonal mean advective flow in four idealized tests (Test I–IV). The mean flow is the sum of a constant mean

flow, harmonic oscillations, and a mean flow shear. The variables A, T, and u stand for amplitude, period, and initial phase for a single

harmonic. The quantity u is latitude, and the shear is 5 cm s21 per degree latitude in Test IV.

Test I Test II Test III Test IV

Constant zonal mean flow (cm s21) 4 4 4 4

Zonal harmonic oscillations No A5 4 cm s21 A5 3 cm s21 A5 4 cm s21

T5 365 days T5 45 days

u521.64 u521.64

T5 45 days A5 2 cm s21 A5 4 cm s21

u5 0 T5 182.5 days T5 45 days

u520.85 u520.85

Mean flow shear No No No 5u

FIG. 1. Estimates of (a) velocity covariance (cm2 s22) and (b)

lateral eddy diffusivity (107 cm2 s21) as a function of time lag using

the binning technique in Test I, in which a uniform zonal mean flow

U5 4 cm s21 is specified. Black lines show the analytic solutions for

the symmetric components Pxx, Pyy, kxx, and kyy.
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T5 182.5 days, and u520.85 to mimic the semiannual

cycle (Fig. 3a). The estimated velocity covariance

(Fig. 3b) using simple binning and two-season binning

decreases and approaches the analytic result within sev-

eral days. Then the decreasing rates of both curves slow

down and make the first zero-crossing at about 65 days.

Such a behavior of velocity covariance yields a dramatic

increase in the corresponding diffusivities within 65 days

and then a decrease similar to a sinusoid with a period of

1 yr (only a half period is shown in Fig. 3c). When the

temporal bin is increased to four seasons, the effects of

the annual cycle are isolated quite well but the effects of

the semiannual cycle still make the estimate oscillate with

a period of half a year (green line in Fig. 3c).

Since seasonal binning only partially resolves the con-

tinuous signalU(t) and increasing the number of seasons

in the binning only reduces the ‘‘leakage’’ of the oscil-

lating signals into u0, the corresponding diffusivity still has
oscillating behavior. Thus, we use the GM estimator [Eq.

(7)] to provide a continuous estimation ofU(t). InEq. (7),

the diagonal elements of Rz are assigned to the squared

half range of u, while off-diagonal elements are set to

zero. Elements in Rn are determined by Eq. (3):

Rn(t)5s2 exp(2t/TL) ,

where s2 is the sample variance of the velocity compo-

nent within a bin. AsU is homogeneous here, the spatial

terms in Eq. (6) are not included [similar to Lumpkin

FIG. 2. (a) Evolution of background zonal mean flow U (cm s21)

in Test II. (b) The estimated zonal autocovariance (cm2 s22) and

(c) eddy diffusivity (107 cm2 s21) using different methods in Test II.

FIG. 3. As in Fig. 2, but for Test III.
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(2003)]. The GM method resolves and excludes both

cycles in U(t) successfully, resulting in a much more

accurate u0, and hence providing the best estimates of

velocity covariance and diffusivity that are almost iden-

tical to the analytic solution.

In Test IV, the situation becomes a little more com-

plex. Spatial shear equal to 5u (where u is the latitude in

degrees) along the meridional direction is added in ad-

dition to the constant mean and the seasonal cycle. Then

U(x, t) is not only nonstationary but also inhomogeneous

(Fig. 4a). To isolate the effect of the horizontal shear of

the mean flow, spatial terms (ST) are included in the GM

method [the last five terms in Eq. (6)] to obtain themean

flow (Figs. 4b,c). Similar to those in Test III, estimates of

diffusivity from the simple binning and two-season

binning methods oscillate with a period of ;200 days

(Fig. 4c), while that from the four-season binning

method oscillates with a period of half a year. The GM

method without ST is capable of resolving the oscillating

U(t), but cannot suppress the shear-induced dispersion,

yielding a larger value (;1.7 3 107 cm2 s21) after 20

days. Note that the shear dispersion is partially resolved

even without ST because of the spatial binning tech-

nique and the unresolved part of shear is inside bins. If

no binning is applied, the estimated diffusivity will not

asymptote to a constant at all (e.g., Bauer et al. 1998)

since its velocity spectrum is red (see blue solid line in

Fig. 5a).With the ST included, theGMmethod is able to

resolve both the seasonal variation and spatial shear of

U(x, t) simultaneously, resulting in more accurate eddy

velocity and the best estimate of diffusivity (Fig. 4c).

It is also interesting to see the Lagrangian velocity

spectra in Test IV since the eddy–mean flow decom-

position is based on the assumption of the existence of

a spectra gap between large- and small-scale motions.

Figure 5a shows the zonal velocity spectral density by

removing U estimated by the different techniques. The

analytic spectral density (thin black line in Fig. 5a) is the

Fourier transform of Eq. (3):

S(f )5

ð‘
2‘

P(t)e2i2pf t dt5
2k‘

11 (2pfTL)
2
,

where f is the frequency in units of cycles per day (cpd).

Its slope on the log–log plot is

Y(f )5
d lnS(f )

d lnf
52

2

1/(4p2T2
Lf

2)1 1
.

Therefore, the slope approaches 22 as the frequency

goes to infinity. On the other hand, the spectra become

white (Y/ 0) when f / 0, forming a spectrum plateau.

Spectra from all methods agree well with the analytic

one except at very low and high frequencies. The de-

viation at the high-frequency end is due to the dis-

cretization of Eqs. (1)–(2) with a finite sampling rate

Dt5 1/4 day. The deviation at the low-frequency end is

more important and would affect the estimation of dif-

fusivity because

k‘ 52

ð‘
0
P(t) dt5

1

2
S(0) .

This is why a time-invariant mean flow (f 5 0) should be

removed as the diffusivity is determined by the lowest

frequency of motion. The spectrum of original velocity

FIG. 4. (a) Latitude–time plot of background zonal mean flow

U (cms21) in Test IV. (b) The estimated zonal autocovariance

(cm2 s22) and (c) eddy diffusivity (107 cm2 s21) using differentmethods

in Test IV.
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(blue solid line in Fig. 5), containing spatial shear (in-

homogeneity) and low-frequency variabilities (non-

stationarity), is obviously red even at periods longer

than 100 days. The simple binning and the two-season

binning methods are capable of partially reducing the

shear effect, but incapable of reducing the two spectral

peaks associated with the annual (365 days) and semi-

annual (182.5 days) cycles. The four-season binning

method removes the annual peak but only slightly re-

duces the semiannual peak. TheGMmethod without ST

has successfully removed the two peaks but fails to re-

duce the shear inside bins, leaving the spectra at low

frequencies slightly red. When ST is added, the GM

method produces a nearly perfect spectrum that co-

incides with the analytic one.

Figure 5b shows the variance-preserving spectra

(spectral density multiplied by f ), in which the area

under the curve represents the variance (or, equiva-

lently, energy) contribution of each frequency band to

the total variance of the series (Emery and Thomson

2001). The energy-containing band peaks at 2pTL and

decays toward the two ends of the spectrum. It is found

that the variance contributions of both the seasonal cy-

cle and the mean flow shear in the low-frequency band

(. 90 days) are comparable to (or even larger than) the

energy-containing eddies (pink line in Fig. 5b), which

depend on the prescribed parameters of seasonal cycle

amplitude and diffusivity. The GM method with ST in-

cluded has isolated their contributions successfully.

Note that the GM method performs near perfectly in

these cases. This is because the mean flow is designed

consistently with Eq. (6), that is, a linear combination of

temporal and spatial variations by assuming stationary

spatial variation and homogeneous temporal variation.

These mean flows are intentionally designed so that we

can clearly see different performances of methods

caused only by the nonstationarity of the mean flow

rather than other factors. Actually, there are also many

cases in which the GM method performs not so well or

even fails. For example, the spatial variation of themean

flow follows higher-order (third order) polynomial var-

iation rather than the second-order form used in Eq. (6)

or even nonpolynomial variations (e.g., exponential var-

iation). Besides, if the shear strength changes with time

(nonstationary spatial variation) or amplitude of tempo-

ral variation changes with space (inhomogeneous tem-

poral variation), that is, the prescribed form in Eq. (6)

does not exactly apply, the GM method is likely to fail

in fitting suchmean flows. Fortunately, if theGMmethod

is used in conjugation with the spatial binning technique

(domain is divided into smaller bins), the performance

of the GM would improve because homogeneity is ap-

proximately valid inside a smaller bin. Thus, the second-

order polynomial fit in Eq. (6) is good enough to resolve

any kind of nonsharp spatial variation inside a smaller

bin, and the amplitude of temporal variation will also

remain roughly a constant. The GM performance in

these cases will be shown in the next section through

more realistic tests in which the mean flows are derived

from satellite-based observations without prescribed

forms.

Conclusions can nowbe drawn from the above idealized

tests. If U is nonstationary (even if it is homogeneous),

containing low-frequency variabilities such as a seasonal

cycle, the classical binning method cannot provide an ac-

curate estimation of diffusivity but will instead produce

an oscillating estimate. The oscillating behavior depends

on the amplitudes, periods, and phases of the signals.

FIG. 5. Lagrangian zonal velocity (a) power spectral density (cm2 s22 cpd21) on a log–log plot and (b) variance-

preserving spectra (cm2 s22) on a semilog plot in Test IV. The thick black line in (a) indicates a slope of 22.
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Although the positive and negative lobes around the

analytic velocity autocovariance (e.g., Fig. 2b) seem to

cancel each other as time approaches infinity, making no

net contribution to the asymptotic diffusivity, they

would bias the diffusivity and make the estimation in-

crease at relatively short time lags. In practice, estimates

are usually done within several tens of days, for exam-

ple, below a month for energetic or small-scale basins

(e.g., Andersson et al. 2011; Bauer et al. 2002; Maurizi

et al. 2004; Poulain 2001; Qian et al. 2013; Ursella et al.

2006) and 1 to 2months for quiescent basins (e.g., Bograd

et al. 1999; Falco et al. 2000; Swenson and Niiler 1996;

Zhang et al. 2001). Only those studies based on synthetic

drifters can assess much longer time lags to several years

(e.g., Banyte et al. 2013; Griesel et al. 2010). However,

longer time lags may also induce the nonlocal mixing

problem since drifters will sample a range of mixing be-

havior over several years. The seasonal binning method,

viewed in a piecewise way, is capable of partially reducing

the impact caused by seasonal variations but incapable of

completely eliminating it (Fig. 3). Increasing the tempo-

ral resolution (more seasons are used) could approach the

true solution but remain impractical because this also

significantly reduces the number of samples within each

season. Continuous estimation ofU(t) such as via theGM

method provides a good remedy for the estimation of

diffusivity in a nonstationary background mean flow. As

for the newGMmethod with ST, it can isolate the effects

of both nonstationarity and inhomogeneity of U(x, t) on

estimating diffusivity.

4. Results from the OSCAR scenario

The above tests may be too idealized because the

velocity spectra in real oceans may be quite different.

Therefore, in this section, a more realistic scenario re-

garding the background flows in the Indian Ocean (IO)

is considered. Synthetic drifters are deployed in currents

depicted by the globalOcean SurfaceCurrentsAnalyses–

Real time (OSCAR) data obtained online (from

www.oscar.noaa.gov). The velocity of OSCAR is di-

rectly derived from sea surface height, surface wind, and

sea surface temperature collected from both satellites

and in situ instruments, including geostrophic, Ekman,

and Stommel shear dynamics and a term from the sur-

face buoyancy gradient (Bonjean and Lagerloef 2002).

The 5 yr of data from 2006 to 2010 are used, with 1/72-yr

(5 days) temporal and 1/38 spatial resolutions. Only the

Indian Ocean is examined here (508S–308N, 208–1208E;
Fig. 5) because of strong seasonal cycle within this re-

gion. Notice that the Rossby radius and thus the scale of

eddies gets small at 508S, and so the satellite altimetry

(and theOSCAR data) would tend to underestimate the

in situ eddy kinetic energy at the southern edge of our

domain. However, as this only affects the southernmost

part of the domain, results shown here are not sensitive

to this.

This OSCAR scenario is different from the previous

idealized scenario in several aspects. First of all, the

velocity spectra of the OSCAR data range from meso-

scale to interannual variabilities that are expected to be

closer to reality than in the previous scenario. The sec-

ond aspect is that not only the amplitude and phase of

the seasonal cycle vary with space (inhomogeneous tem-

poral variation), but also the shear strength would change

with time (nonstationary spatial variation). Therefore,

no prescribed mathematical form of the mean flow is

assumed. Third, only segments of Lagrangian observa-

tions contain the seasonal signal when drifters traveled

over the region of strong seasonal cycle, which is dif-

ferent from the earlier scenario.

The deployment strategy is as follows. Synthetic

drifters are released in four patches each year (one patch

every 3 months). Drifters in each patch are deployed

simultaneously at a uniform 1.58 latitude/longitude in-

terval over the whole basin and then tracked for half

a year using Eq. (1) with k‘ 5 13 103 cm2 s21 andTL 5 4

days. Such a tiny diffusivity value (as compared tok‘ 5 13
107 cm2 s21 in idealized tests) is only used to introduce

a random movement of drifters without affecting the

velocity spectra of the OSCAR data, so that drifters

follow different pathways even if they are deployed at

exactly the same initial location. OSCAR data are first

linearly interpolated into daily data and drifter veloci-

ties are recorded every day. Tracking is stopped if

a drifter moves onto land.

Figure 6 shows the number of daily observations in 28
bins after 6-yr simulations. The southern IO and the

eastern equatorial IO are heavily sampled, whereas the

western equatorial IO and the coastal regions are sam-

pled less. For most parts of the IO, the number of daily

observations is above 2000. As the drifters are deployed

regularly (one patch every 3months), drifter observations

in each season would be roughly equal, and no significant

seasonal sampling bias exists. On the other hand, drifters

are deployed uniformly in space, and the array bias

caused by nonuniform drifter observations should be

partially reduced. However, Fig. 6 shows that drifter

numbers also vary from bin to bin and such distribution is

probably attributed to the divergence/convergence of

OSCAR currents. Therefore, following Poulain (2001),

the array bias is computed by assuming constant zonal

(20 3 107 cm2 s21) and meridional (10 3 107 cm2 s21)

diffusivities. Results (figure not shown) show that in the

ocean interior, array biases are below 1 cms21, except for

the western equatorial regions where bias remains below
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4 cms21. This is relatively small as compared to the mean

flow shown in Fig. 7 and would not much affect the

results.

First, we will validate the estimate of the mean flow

U(x, t) using the new GM method with ST included

against the ‘‘true’’ mean derived from OSCAR data.

The true mean defined here consists of a time-invariant

Eulerian mean and a seasonal cycle (including annual

cycle and semiannual cycle). The time-invariant Euler-

ian mean is a simple temporal average from 2006 to

2010, and the seasonal cycle is computed using a least

squares fit of annual and semiannual sinusoids at each

grid. For the GM estimates, the time-invariant mean,

seasonal cycle, as well as ST are all included in Eq. (6)

using 28 bins, and elements ofRn in Eq. (7) are computed

following Lumpkin (2003):

Rn(t)5s2 cos

�
pt

Td

�
exp

2
42
 

pt

2
ffiffiffi
2

p
Td

!2
3
5 ,

where s2 is the sample variance of the velocity compo-

nent within a bin and Td ’ 8.27 days, consistent with an

integral eddy time scale of 4 days. The matrix Rz is

identical to that in idealized Tests III and IV.

Figure 7 shows the spatial mean U(x) obtained from

the above two approaches. Although the resolutions are

different, both means agree quite well with each other.

Figure 8 shows the amplitude of the annual cycle from

the two methods. Ignoring those unreliable results within

the South China Sea region due to sparse samples, the

estimates also agree well with each other. The Somali

Current, driven by the annually reversing Indian mon-

soon, exhibits significant annual variation where both

zonal and meridional amplitude maxima are located.

Large zonal amplitudes also occur in the equatorial re-

gion, extending from the African coast to ;758E and

then shifting north to south of India as well as south-

southeast of Sri Lanka, where the currents are influ-

enced by monsoon winds switching annually between

summer (southwest) and winter (northeast). South of

108S, the amplitude of the annual cycle is quite weak.

For the semiannual cycle (Fig. 9), the zonal amplitude

maxima are located almost along the equator, extending

from coast of Africa to ;908E, while the meridional

ones are trivial, indicating the semiannual variation

mainly exists in the equatorial jet occurring twice a year

during the intermonsoon periods.

The above comparison proves that the GM method

with ST is capable of reproducing the trueU(x, t). Based

on the above analysis, three subregions are defined (see

Fig. 6) within which drifter observations are used as the

origins of pseudotracks for diffusivity estimation. Re-

gion 1 [equatorial (EQ)] is centered in the equatorial

region where both annual and semiannual cycles are

strong (Figs. 8, 9). Region 2 [western boundary (WB)]

covers the western boundary current (i.e., the Somali

jet) where the annual cycle is strong. Region 3 [southern

Indian Ocean (SIO)] is located in the relatively quies-

cent region in the southern Indian Ocean where the

seasonal cycle is quite weak.

For the OSCAR scenario, there is no analytic solution

for comparison as in the idealized scenarios. We could

nevertheless define a true diffusivity by taking the ad-

vantage of the exactly known Eulerian field. The in-

homogeneous and nonstationary mean flow U(x, t) is

defined as the sum of the time-invariant Eulerian mean

from 2006 to 2010 and a seasonal cycle reconstructed by

least squares fit at each grid. The residual velocity of

synthetic drifters for computing true diffusivity is rela-

tive to this U(x, t).

The true and estimated diffusivities from the different

methods are shown in Fig. 10. In view of the asymptotic

nature, the true diffusivities of both zonal and meridio-

nal components over the three regions all approach

some steady values at larger lags and thus could be used

as references for the estimates from different techniques.

At first glance, the classical binning method gives the

largest estimates (in magnitude), followed by the two-

season binningmethod. The four-season binning andGM

with STmethods provide estimates quite close to the true

diffusivity, especially in the EQ and WB regions where

the seasonal signal is significant (Figs. 10a–d). In the SIO

region where the seasonal cycle is negligible, the four

FIG. 6. Number of daily synthetic drifter observations (103) in 28
bins after 5-yr simulation using OSCAR data. Black boxes define

three regions for the estimates of diffusivity.
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methods produce similar estimates to the true diffusiv-

ity. Conclusions from previous idealized tests can also be

validated here. In the EQ region, for example, where the

seasonal cycle is strong, the estimate from the classical bin-

ning method seems to have a complete wave trough/ridge

within half a year, indicating an oscillation with a period

of 1 yr (see negative time lags in Fig. 10a and positive

time lags in Fig. 10c). The two-season binning method

also provides a similar estimate but the amplitude is re-

duced. The meridional estimates in the EQ and WB

regions (Figs. 10b,d) show less oscillating characteris-

tics, but the asymptotic values from the classical binning

method (or two-season binning method) are also much

larger than those from the GMmethod with ST (or true).

Increasing the temporal bins to four seasons further re-

duces the oscillating features andmakes the corresponding

estimate much closer to the true diffusivity. However,

apparent differences between the estimate by the four-

season binning method and the true diffusivity can also be

found in both the EQ and WB regions, especially in

the meridional component (Figs. 10b, 10d). The GM

method with ST included performs best and provides

an estimate that never deviates far from the true

diffusivity.

This conclusion also applies to the SIO region, but the

differences are much smaller since the seasonal signal in

this region is quite weak (Figs. 8, 9). Thus, the simple

binning method would yield a reasonable result. To our

surprise, for the zonal component (Fig. 10e), all methods

(even the true diffusivity) provide results that only

marginally asymptote to constant values after 90 days. In

addition, the meridional estimates overshoot at 15 days

and then level off to a constant after 50 days (Fig. 10f),

indicating a significant negative lobe in the autocovar-

iance function that is usually observed in cross-stream

estimates (e.g., Bauer et al. 2002; Griesel et al. 2010;

Klocker et al. 2012). These features are likely attributed

to the low-frequency (Rossby) waves resolved by

OSCAR data, which is in line with the description by

Klocker et al. (2012).

FIG. 7. (a) Zonal and (c) meridional components of surface mean flows (cm s21) derived from the OSCAR 2006–10

mean. (b),(d) As in (a),(c) but derived from synthetic drifters grouped into 28 bins using the GM method with ST.
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5. Conclusions and discussion

To demonstrate the effects of a nonstationary mean

flow on the estimation of Lagrangian diffusivity, two

scenarios are designed in the present study. In the first

scenario, synthetic drifters are deployed in a completely

idealizedmean flow that consists of a time-invariant part

and a sinusoidal oscillated part. When decomposing the

velocities sampled by drifters into eddy and mean

components using the classical binning method, the os-

cillating part of the mean flow leaks into the eddy com-

ponent, resulting in an oscillating estimate of diffusivity.

Using a temporal binning method such as the seasonal

binning method can partially resolve the nonstationary

part of the mean flow and thus reduce the amplitude of

oscillation in the estimated diffusivity. The new GM

method (with spatial terms included) proposed by

Lumpkin and Johnson (2013), fitting the mean flow in

a continuous sense, gives the best estimate of diffusivity

even when the mean flow is both nonstationary and in-

homogeneous. Although the seasonal variability does

not have a net contribution to the dispersion, it may

cause large bias in the estimate of diffusivity within

a time lag of ;2 months, especially when the classical

binning method is used.

In the second scenario, a large number of synthetic

drifters are released in the ocean currents in the IO basin

prescribed by the 2006–10 OSCAR product. This sce-

nario is more complex than the idealized one, and the

velocity spectra from the former are expected to be

closer to real oceanic conditions. In this case, the in-

homogeneous and nonstationary Eulerian mean flow is

exactly defined by OSCAR regular-gridded data. Hence,

a true diffusivity could be computed using residual ve-

locities with respect to the true Eulerian mean. When

estimating diffusivities over regions where the seasonal

cycle is strong (e.g., equatorial and western boundary

regions), the classical binning method gives the largest

estimates that increase within 2 months, showing an os-

cillating behavior similar to that in the idealized scenario.

The two-season binning method reduces the magni-

tude of oscillation, while the four-season binning method

FIG. 8. (a) Zonal and (c)meridional amplitudes (cm s21) of the annual cycle of surface flows derived from the 2006–

10 OSCAR data using a least squares fit. (b),(d) As in (a),(c) but derived from synthetic drifters grouped into 28 bins
using the GM method with ST.
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provides acceptable results. The new GM method with

ST included successfully captures the temporal variation

as well as spatial variation of the mean flow, resulting

in a quick convergence of estimates to the true diffu-

sivity, especially in the eastern coast of Somalia and the

equatorial IO where a strong signal of seasonal cycle

exists in the surface currents influenced by the monsoon

winds. For the region over the southern IO where sea-

sonal variation is weak, the simple binning method is

sufficient to give a result close to the true diffusivity.

The seasonal cycle focused on here is not the only

signal that contributes to the nonstationary mean flow.

At a shorter time scale, as shown in Fig. 11, there are also

triannual (;120 days) peaks in the zonal velocity over

the EQ and WB regions besides the annual and semi-

annual spikes. Actually, if trapped by a strong rotational

eddy field, the autocovariance of a drifter would also

show the oscillation feature (e.g., Veneziani et al. 2005).

Therefore, at a longer time scale (cannot be shown in

Fig. 11), interannual variability might also exert some

influence on diffusivity estimation.

On the other hand, the present study only discusses the

nonstationarity of U(t). It should be noted that the

statistical properties of u0 are also nonstationary (e.g.,

diffusivity varies with time). In this situation, the seasonal

binning technique is quite suitable for temporal analysis.

For example, Andersson et al. (2011) provided diffusiv-

ities in summer and winter over the Nordic Seas using the

two-season (6 month each) binning technique. Never-

theless, removing a nonstationaryU(t) (as emphasized in

this study) may provide more accurate u0 statistics.
It is worth mentioning the strategy used by several

studies (e.g., Krauss andBöning 1987; Lumpkin et al. 2002;

Rupolo 2007) in which drifters are divided into equal

length segments and then the Lagrangian mean and linear

trend of segments are removed to obtain the residual ve-

locity for diffusivity estimation. This approach cuts off the

velocity spectrum at a specific period, and variabilities

longer than that period are excluded naturally. Rupolo

(2007) used 64-day segments that filter out the impact of

seasonal and interannual variabilities much longer than 64

days. If the spectral plateau can be reached at 64 days

(become a white spectrum), the true diffusivity could

converge. If the spectrumwas still red, no diffusivitywould

exist (LaCasce 2008). Velocities over some regions (e.g.,

the equatorial region) might be red at the cutoff period

FIG. 9. As in Fig. 8, but for amplitude (cm s21) of semiannual cycle.
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(Fig. 11). Increasing the cutoff period, such as in Lumpkin

et al. (2002), who used 120-day segments, however, would

face the potential problems of fewer segments.

Recently, discrepancies between diffusivity estimates

from different methods are reported, especially those

from drifter-based and tracer-based methods. While

many studies have obtained larger values from drifter-

based methods than those from tracer-based methods

(e.g., Chiswell 2013; Lumpkin and Pazos 2007; Sallée
et al. 2008; Sundermeyer and Price 1998), Klocker et al.

(2012) has shown that the overestimated diffusivities

from drifter-based methods would be reduced to agree

with those from tracer-based methods when using suf-

ficiently long times. The present study demonstrated

that if the seasonal variability is removed from residual

velocity, the magnitude of estimated diffusivity would

also be reduced significantly for monsoon-dominated

regions (also seeZhurbas et al. 2014). Another benefit of

isolating the seasonal variability is that the estimates

quickly converge to the true diffusivity. This may help to

obtain the asymptotic value of diffusivity estimate in

a relatively short time using real drifter data, since long

FIG. 10. Estimated (left) zonal and (right) meridional diffusivity (107 cm2 s21) using different methods for (a),(b)

region 1 (EQ), (c),(d) region 2 (WB), and (e),(f) region 3 (SIO) defined in Fig. 6.
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time assessment (e.g., several months) is usually un-

practical for the real drifter due to error increments

(Davis 1991) and nonlocality (drifters would move

outside the domain of interest). But one should be aware

of other factors affecting the short time estimates of

diffusivity such as the presence of Rossby waves. These

waves tend to inhibit dispersion across the meridional

mean vorticity gradient and are not resolved in themean

flow we remove, potentially complicating the diffusivity

for small lags.

As already shown in the present study, nonstationary, as

well as inhomogeneous, mean flows exert some influence

on diffusivity estimates. Scale-separation methods should

take them into account if they cannot be ignored. The new

GM method with ST, as one of the choices but not the

only, is very efficient in simultaneously removing both the

seasonal variability and spatial shear of mean currents.

Therefore, it is particularly appropriate for diffusivity es-

timation using real drifter data in those regions where

significant nonstationarity and inhomogeneity exist, such

as the Indian Ocean. This will be presented in our next

publication.
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