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a  b  s  t  r  a  c  t

Two  oil  particle  trajectory  forecasting  systems  were  developed
and  applied  to the  2010  Deepwater  Horizon  Oil  Spill  in  the
Gulf of  Mexico.  Both  systems  use  ocean  current  fields  from
high-resolution  numerical  ocean  circulation  model  simulations,
Lagrangian stochastic  models  to  represent  unresolved  sub-grid
scale  variability  to  advect  oil particles,  and  Monte  Carlo-based
schemes  for  representing  uncertain  biochemical  and physical  pro-
cesses.  The  first  system  assumes  two-dimensional  particle  motion
at  the  ocean  surface,  the oil  is in  one  state,  and  the  particle  removal
is  modeled  as  a Monte  Carlo  process  parameterized  by  a  one
number removal  rate. Oil particles  are  seeded  using  both  initial
conditions  based  on  observations  and  particles  released  at the  loca-
tion  of  the  Maconda  well.  The  initial  conditions  (ICs)  of  oil particle
location for  the  two-dimensional  surface  oil  trajectory  forecasts  are
based  on  a fusing  of  all  available  information  including  satellite-
based analyses.  The  resulting  oil map  is  digitized  into  a  shape  file
within  which  a polygon  filling  software  generates  longitude  and
latitude  with  variable  particle  density  depending  on the amount
of  oil present  in  the  observations  for the IC.  The  more  complex
system  assumes  three  (light,  medium,  heavy)  states  for  the  oil,
each  state  has  a different  removal  rate  in the Monte  Carlo  process,
three-dimensional  particle  motion,  and  a particle  size-dependent
oil mixing  model.
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Simulations  from  the  two-dimensional  forecast  system  produced
results  that  qualitatively  agreed  with  the  uncertain  “truth”  fields.
These  simulations  validated  the  use of  our  Monte  Carlo  scheme  for
representing  oil  removal  by  evaporation  and  other  weathering  pro-
cesses.  Eulerian  velocity  fields  for predicting  particle  motion  from
data-assimilative  models  produced  better  particle  trajectory  distri-
butions than  a free  running  model  with  no  data  assimilation.  Monte
Carlo simulations  of  the  three-dimensional  oil  particle  trajectory,
whose  ensembles  were  generated  by  perturbing  the  size  of  the  oil
particles  and  the  fraction  in a given  size  range  that  are  released  at
depth, the  two  largest  unknowns  in  this  problem.  36  realizations
of  the  model  were  run  with  only  subsurface  oil releases.  An  aver-
age of  these  results  yields  that after  three  months,  about  25%  of  the
oil  remains  in  the  water  column  and  that most  of the  oil  is  below
800  m.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Following the tragic Deepwater Horizon oil rig explosion on April 20, 2010, oil gushed from the
bottom of the Gulf of Mexico at a depth of 1500 m, latitude 28.74◦N and longitude 88.32◦W,  for 87
days before it was capped. The gushing Mississippi Canyon (MC) 252 oil is a complex mixture of
hydrocarbons and other trace compounds with a mean density of about 0.85 g/cm3, lighter than the
surrounding seawater that has a density of about 1.03 g/cm3 (Deepwater Horizon MC  252 Response
Unified Area Command, 2010). A buoyant plume is driven by gases that are gushing out of the bro-
ken pipes and by the density difference between the oil/gas mixture and the surrounding seawater.
The official time-varying flow rate, announced on August 2, 2010, decreased from an initial rate of
62,000 to a final rate of 53,000 barrels of oil per day, for a total release of 4.9 million barrels of
oil from the well, though as much as 25,000 barrels per day were collected by surface ships dur-
ing the latter part of the oil spill (McNutt et al., 2011). Peak flow rates are about 104 m3 a day with
an uncertainty in the flow rate estimates of ±10%. The surface slick, first seen on April 22, 2010,
quickly spread to a slick with a surface area of about 17,725 km2 on May  17, 2010 based on the
analysis of a multichannel MODIS (MODerate-resolution Imaging Spectroradiometer) satellite image
(Labson et al., 2010). On the average, NOAA and the USCG estimated that 2% of the oil was  thick, 10%
was characterized as dull, and 88% was classified as sheen (Labson et al., 2010). The temporal evolu-
tion of the spatial extent of the oil spill, and a measure of the error of that estimate, will be needed
for the natural resource damage assessment such as quantifying the oil that is impacting marine
habitats.

There are a number of different satellite, in situ, and model-based estimates of the location of
the oil. There are considerable differences in the oil location between these estimates (see Fig. 1)
and each estimate exhibits significant variation in a temporal sequence of oil location maps. In situ
observations are limited by available resources, large search domain, weather, and observing error.
High-resolution visible and infra-red images of the upper few millimeters of the ocean surface can
be obscured by clouds, while microwave-based measurements with a coarser sampling resolution of
25 km would miss oil filaments, for example, seen in other observations. SAR images work best in
limited wind regimes (Brekke and Solberg, 2005) between 3 and 10 m/s, with best results for winds
around 5–6 m/s. At low wind speeds, there is a high probability of oil slick look-alikes due to local
wind variability, and at higher wind speeds, light oil is mixed and dispersed.

The identification of the location of the oil spill is further complicated by the fact that locations
with no oil can be due to either no reliable observations in that region or highly accurate observations
of no oil found in the region. Fig. 1a and b is the most complete estimate of oil locations incorporating
the most observations. Fig. 1c shows a composite of 2 SAR images for June 11, 2010 from CSTARS that
contains very detailed oil locations where data are available, but complete data voids in areas where
oil was observed in the other data sets. Fig. 1d is a composite based on satellite images (Section 3)
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Fig. 1. The top two panels are NOAA’s 24 h forecast of oil location for June 11, 2010. The digitized versions of estimates of oil
location by U. Miami  CSTARS (middle left panel) and U. South Florida (middle right panel), and ROFFSTM (bottom panel). There
is  considerable variability among the four different analyses for this day and also for the other days (see Figs. 3–5).

from C. Hu (USF) that is most similar with the NOAA trajectory estimates (Fig. 1a). Fig. 1e is an analysis
(Section 3) done by Roffer’s Ocean Fishing Forecasting Service, Inc. (ROFFSTM) that contains more oil in
the far field than the other estimates. Oil location estimates Fig. 1a and e also vary with respect to the
characteristics of the oil, e.g thick oil versus light sheen. Consequently, estimating oil location from
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observations, that are used for initial conditions, data assimilation, and as truth for benchmarking
numerical simulations of oil trajectories, is difficult and different approaches should be evaluated.

Oil is not a conservative tracer since it undergoes physical and chemical changes called “weath-
ering” due to wind- and wave-enhanced mixing, evaporation, sedimentation/sinking, dissolution,
re-suspension, emulsification, photo-oxidation, and biodegradation (Scholz et al., 1999). Emulsi-
fication slows down the removal process and results in heavy, mousse colored waters and tar
balls/patties/lumps/mats, and these end products can account for 10–25% of the oil. In particular,
tar mats can form on the bottom on the order of 5 cm thick and this typically accounts for 2–5% of the
oil. Larger subsurface oil droplets are formed by turbulent enhanced mixing of emulsified fluid and
this process can account for 10–20% of the oil (Scholz et al., 1999). The use of dispersants enhances the
formation of oil droplets in the water column. The National Incident Command for this spill estimated
that 30% of the dispersant-laden leaked oil is dispersed in the water column as oil droplets (Lubchenco
et al., 2010). Historical estimates of evaporation range from 20 to 80% of oil evaporating during the first
week after the oil surfaces and then evaporation becomes a slower process (Scholz et al., 1999). The
National Incident Command for this spill estimated that 25% of the oil evaporated, 17% was recovered
by siphoning into ships, and approximately 10% of the oil was also being removed by clean-up crews
using methods including suction hoses, skimming boats, and controlled burning. 16% and 8% of the
oil was naturally and chemically dispersed in the water column, respectively, and that 26% of the oil
was “residual” and is sheen, tar balls, washed ashore, or is buried in sand and sediments (Lubchenco
et al., 2010). Photo-oxidation and biodegradation are both slow, steady processes that will remove the
residual and dispersed oil with biodegradation being the most important on the longest time-scales
of year(s). There may  be microbes that are more efficient at biodegradation or that oil concentrated in
subsurface plumes may  lead to more microbes (Hazen et al., 2010; Camilli et al., 2010) and this time
scale may  be months.

In reality, a tertiary fluid model (water, salt, oil) would be needed for the most realistic oil spill
model since the amount of oil created significant frontal regions where the horizontal density dif-
ference between water and oil governed the local fluid dynamics. These regions are evident in aerial
images of the spill. In practice, oil weathering models are coupled to numerical circulation models to
include these nonconservative processes, e.g. STATMAP (Skognes and Johansen, 2004), GNOME (NOAA,
2002), and OILMAP from Applied Science Associates. However, an incomplete understanding of the
weathering processing and of turbulent mixing introduces the need for weathering and sub-grid scale
parameterizations in all oil spill models. These parameterizations require the estimation of empirical
coefficients that depend on both the type and age of oil, and on environmental factors such as wind
speed, temperature, wave height, and salinity. Uncertainties in parameterizations used in these mod-
els, initial conditions, and environmental data all lead to uncertainties in estimates of oil locations and
state. This is especially true in new settings such as a deep spill laced with dispersants or when there are
significant errors in the environmental data. Thus it may  be advantageous to run less complex models,
that parameterize the main error sources and unresolved processes, by perturbing parameters, initial
conditions, flow rates, and/or advective velocities to generate ensembles of oil trajectories that can
be analyzed. Monte Carlo based averages of oil location may  be as accurate as coupled circulation–oil
weather models.

Two Lagrangian trajectory simulations models with increasing level of complexity on the param-
eterization of particle properties and of the processes controlling the particle trajectories, have been
developed. The first model assumes only one oil state and that the oil is passively advected and
dispersed by the two-dimensional horizontal velocity fields from the hydrodynamic model and by
a Lagrangian-based stochastic parameterization of the unresolved velocity fields. A Monte Carlo
approach for parameterizing the net effects of oil weathering and removal is introduced and evaluated
in the two-dimensional simulations. The second model simulates three-dimensional oil trajectories
with particles that can also have three states; light, medium and heavy oil. The three-dimensional
model incorporates more processes and uses a Monte Carlo approach for weathering and for perturb-
ing flow rates and the oil state, as well as, the Lagrangian stochastic models to represent uncertainties
in the velocities from the hydrodynamical model (Section 2).

It is well-known that due to the nonlinearity of Lagrangian motion in the geophysical fluids, the
reliable prediction of particle trajectories is limited to about twice the Lagrangian integral time scale of
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Fig. 2. The Gulf of Mexico modeling domain and topography (depth color scale in m).

the velocity field (Piterbarg et al., 2007). This corresponds to a predictability limit of about 1.5–6 days,
smaller values for coastal regions near the Mississippi Delta and larger values for sub-surface deep
water regions of the Gulf of Mexico. New data for the location of the oil spill must be fused with model
predictions so that the model-estimated location of the oil spill does not diverge too far from reality.
However, reliable identification of oil location is hampered by clouds that obscure satellite-based
visible images, non-optimal wind regimes for SAR oil detection, and rough, rainy conditions for in situ
observations. Another difficulty is whether no oil means that the area was  reliably observed and no
oil was found or that no observations were available in that region. Section 3 details our methodology
for initializing an oil spill forecast model. The results of our simulations are shown and discussed in
Section 4.

2. Model description

2.1. Hydrodynamic model

The HYbrid Coordinate Ocean Model, hereafter HYCOM, is a generalized hybrid coordinate ocean
model developed by the HYCOM Consortium (http://hycom.org). The model vertical coordinate is
isopycnal in the open stratified ocean; either z-level or terrain-following in shallow coastal regions,
and z-level in the surface mixed layer. This generalized vertical coordinate approach is dynamic in
space and time via the layered continuity equation, which allows a smooth dynamical transition
between the coordinate types (Chassignet et al., 2003, 2006, 2007; Halliwell, 2004, 2009). The regional
Gulf of Mexico HYCOM (GoM-HYCOM) is run in real time at the Naval Oceanographic Office (NAVO-
CEANO) DoD Supercomputing Resource Center (DSRC) by Pat Hogan and Ole-Martin Smedstad using
atmospheric forcing from the Navy Operational Global Atmospheric Prediction System (NOGAPS). The
model set-up is similar to Prasad and Hogan (2007).  The horizontal resolution is 0.04◦ with 20 vertical
layers. The model domain with bathymetry is shown in Fig. 2. The model has a realistic coastline with
the minimum depth of 2 m.  Boundary conditions are provided by a synoptically forced, lower reso-
lution (0.08◦) North Atlantic HYCOM model. Fields were averaged at the GoM-HYCOM boundaries to
compute a model generated climatology in the Loop Current inflow through the Yucatan peninsula

http://hycom.org
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and the Florida Current outflow through the Straits of Florida and adjacent passages between Cuba and
the Bahamas (Kourafalou et al., 2009). Vertical mixing is provided by the K-Profile Parameterization
(KPP) scheme (Large et al., 1994).

The data assimilation is performed using the Navy Coupled Ocean Data Assimilation (NCODA) sys-
tem (Cummings, 2005) with a model nowcast used as the first guess. NCODA assimilates available
satellite altimeter observations (along track obtained via the NAVOCEANO Altimeter Data Fusion Cen-
ter), satellite and in situ sea surface temperature (SST) as well as available in situ vertical temperature
and salinity profiles from XBTs and moored buoys. (ARGO floats are assimilated but are rarely present
in this model domain.) Because there are significant time delays for observations to be made available
on the GTS server for assimilation, a five-day old nowcast is used as the first guess for each forecast
cycle, which is sufficient time for all altimetry observations to be made available. In order to examine
the impact of data assimilation on the accuracy of model computed velocity fields (which were used for
the trajectory modeling, see Section 2.2), a twin experiment with no data assimilation (free-running)
was also performed. The free-running case uses the same initial and boundary conditions as the data
assimilation simulation but no data are assimilated during the simulations.

2.2. Lagrangian trajectory modeling

The hydrodynamic model code allows the computation of particle trajectories using the HYCOM
model Lagrangian particle package developed at the University of Miami. The particles are moved
by both geostrophic and wind-driven ageostrophic currents plus an additional stochastic component
represented by a Lagrangian stochastic model (LSM). The trajectory model advects particles using
a fourth-order Runge–Kutta horizontal interpolation of the velocity field and was  initially used for
Lagrangian studies in a high-resolution MICOM simulation of the Atlantic Ocean (Garraffo et al., 2001).
This trajectory model was implemented in HYCOM with multiple choices of vertical motion (advec-
tion by w, constant isopycnal surface, constant pressure surface) and the capability to sample model
fields. This model was used to study the upper-limb pathways of the Atlantic Meridional Overturning
Circulation by Halliwell et al. (2003).  An offline version of this code with the LSM included was  used for
this study. Constant pressure floats were released in the top model layer in all of the two-dimensional
oil spill trajectory forecast experiments reported here.

LSMs have been widely used in oceanography and meteorology to represent the unresolved veloc-
ity variability in ocean currents and winds, respectively. A random flight model is chosen to model
both the unresolved ocean currents and wind speeds. In the random flight model (Griffa, 1996) the
velocity field is expanded into deterministic ū(x, t) and stochastic u′(r, t) components, as u = ū + u′. The
deterministic component ū(x, t) is given by the GoM-HYCOM simulations. The stochastic component
u′(r, t) is modeled by a first-order auto-regressive (AR(1)) or Markovian process,

u′(r, tk) = u′(r, tk−1)
(

1 − �t

TL

)
+ �u

√
2 �t

TL
� (1)

where �t  = (tk − tk−1) is the time step, � is a unit-variance white noise process, �u is root mean square
(rms) of the fluctuating velocity component u, assumed here to be 10 cm/s for the ocean component,
and TL is the Lagrangian integral time scale whose value is 3 days in the simulations presented below.
A similar decomposition with the same paramter values is also performed for v. These LSM parameter
values are based on estimates from Ohlmann and Niiler (2005).

In addition to this LSM, it was necessary for this study to develop a new component to the
Lagrangian particle code to parameterize the nonconservative behavior of oil. A Monte Carlo method
was introduced into the particle model code to represent weathering, mostly evaporation, sinking,
biodegradation, and oil removal. Evaporation/sinking of this type of light crude is estimated to be
about 30% of the oil in a week after surfacing. 5% of the oil sinks to the bottom and 5% dissolves over
time (Scholz et al., 1999). Skimming and burning of the oil by workers is believed to have removed
on the order of 10% of the oil (Lubchenco et al., 2010). All these oil removal processes are assumed to
be unknown, completely random, and will be parameterized by a single number in our Monte Carlo
resampling scheme. The rate of particle removal is controlled by a number c such that 0 < c < 1. If c
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is large, evaporation/oil removal is fast and if c is small, oil particles are around for a longer time. At
each time step and for each particle, a uniform random number generator selects a random number
RN between 0 and 1. If RN < c, then the particle is removed; otherwise, it is not removed. For example,
if c = 0.01, 1% of the particles on the average would be removed at each time step. Let n equal the total
number of time steps in a week, let s equal the percentage of particles that are removed in one week,
then c = O(s/100n). Based on the combined oil removal effects noted in the introduction, c needs to be
selected so that at least 50% of the particles are removed after a week. Experiments with different val-
ues of c are shown and discussed in Section 4. The particle removal rate parameter c can be generalized
to be temperature- or wind-dependent, as well as a function of the particle’s age or oil state as for the
three-dimensional simulations, but a constant c was  adapted for the first set of two-dimensional oil
trajectory simulations.

For the three-dimensional Lagrangian oil trajectory model where the oil particles can have three
different states, three different particle removal rates were assumed corresponding to a 1/2-life of
10 h, 50 h, and 250 h for light, medium, and heavy oil, respectively. In addition, a biodegradation term
was formulated to model the removal of oil by bacteria and it is a very slow function of the temperature
and salinity with a time scale of years. The values of all of these parameters are chosen to within an
order of magnitude and thus require further evaluation.

3. Initial conditions and oil source

The initialization of the Lagrangian trajectory model requires the position of all oil particles at the
start of the model integration. These ICs were determined by blending the oil location information from
all available observation-based analyses. The Deepwater Horizon surface oil spill had many charac-
teristics that permitted identification from satellite including distinct color, surface reflectance, wave
dampening characteristics, and sea surface temperature. The satellite, aerial, and in situ observations
of the surface oil, especially when oil hit the coast, are abundant relative to subsurface observations.
The U.S. National Oceanic and Atmospheric Administration (NOAA), the University of Miami’s Center
for Southeastern Tropical Advanced Remote Sensing (CSTARS), Roffer’s Ocean Fishing Forecasting Ser-
vice, Inc. (ROFFSTM), the University of South Florida (USF), to name a few sources, all produced maps
of surface oil locations. In general, infrared and ocean color satellite images, derived from polar orbit-
ing NOAA satellites (NOAA15, NOAA16,NOAA17, NOAA18, and NOAA19), NASA (Aqua and Terra) and
European (MetopA) satellites, were used to identify and track the water masses in the Gulf of Mexico.
These satellite data along with data derived from satellite based synthetic aperture radar (TerraSARX,
Envisat, Radarsat1, Palsar, Ers2, and CosmoSkymed1,CosmoSkymed2,CosmoSkymed3), have a variety
of spectral signals (infrared, near infra-red, visible, RGB, radar), as well as, a relatively high spatial
resolutions of 75 m to 1 km,  to visualize the surface oil and follow the water masses associated with
the spill. Surface oil could be identified using a combination of SAR and visible-RGB with and without
sun glint. The surface oil slick was very evident in clear satellite images in the visible part of observing
spectrum, as well as in SAR images during times of optimal wind speed, and infra-red measurements,
especially after particles surface. The different imagery provide complementary data and by studying
the different images and image composites in a sequential manner one can follow the these water
masses over hours, days, and weeks (Acker et al., 2009; Roffer et al., 2006).

The ICs for the two-dimensional model were calculated by specifying the locations of individual
surface oil particles based on the observations. The ICs for the three-dimensional model also required
specifying the state of the oil via its density, the size of the oil particles, and since it a three-dimensional
Lagrangian trajectory calculation, the subsurface distribution. The primary contribution to the subsur-
face distribution is the gusher itself. Two release methods were used together to model the input of oil
into the GoM for the two-dimensional Lagrangian trajectory model. The predominant “initial release”
method was to release a large number of oil particles at an initial time with the density and distribution
based on maps produced by fusing the different observations. Please see Figs. 1 and 3–6 for examples
of these products and the resulting ICs. The second release method was to “continuously” release oil
particles at the location of the Deepwater Horizon rig, latitude 28.74◦N and longitude 88.39◦W,  as our
model for an oil gusher source. Given the qualitative nature of the initial part of the investigation and
the uncertainty in oil flow rates, eight oil particles were released in our two-dimensional simulations
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every 3 h throughout the duration of the spill. The two-dimensional Lagrangian trajectory simula-
tions are used to illustrate how the horizontal spread of the oil plume is sensitive to different particle
removal rates provided by the Monte Carlo method and, as expected, to the ICs.

Given the day-to-day difficulty in observing the oil distribution, a fusing procedure that blends
the visible oil distributions from various sources on a given day with the oil distribution on that day
predicted by the prior model run, or alternately with the most recent good observations on days with
bad observing weather should be used to construct the initial conditions. Only observations are used
for the ICs of the particle locations in the simulations presented here. The basic premise for our method
for fusing observations of oil location is that if any observation detects oil, it should be included since
oil detection can be severely hampered by weather. The possibility of this fusing procedure over-
estimating the size of the oil spill can be reduced if at least two  observations (or model predictions
in a more general setting) are required for reliable specification of oil at that location on that day. On
the other hand, given that weather events reduce the chance of detecting oil and the finite in situ
resources, this leads to an under-estimate of oil locations that can be partially compensated for by a
data fusing technique. The initial conditions for our simulations were produced from superimposing
digitizations of all estimates for a given day from CSTARS, ROFFS, and USF. NOAA estimates are used as
a truth field to validate the simulations. If no data were available on a day, multi-day data composites
were used. Given that the oil spill location data show regions with both thick oil and regions with
oil/water/tar ball mixtures, the different regions, corresponding to high oil and low oil concentrations,
were digitized separately. Visual inspection and comparison to other estimates, including the NOAA
forecasts and the Lagrangian trajectory forecasts of our group and other groups at the University of
South Florida and Florida State University, of the resulting oil locations maps were also consulted. A
shape file was digitized from the oil analysis map  and a polygon filling program generated longitude
and latitude points inside the oil spill region. Particles at a large density of 10,000 per square degree
were used for locations with high oil concentration and a particle density of 625 per square degree for
locations with light oil (see Fig. 3 for an example). The two-dimensional Lagrangian simulations were
initialized with these particle location maps, particles were added at the gusher site throughout all
runs, every time step in short simulations and every 3 h in the longer time simulations, while particles
were removed at each time step by the Monte Carlo scheme.

4. Lagrangian trajectory simulations

4.1. Two-dimensional simulation of oil particle trajectories

Figs. 4–8 are particle trajectory simulations performed by the UM/RSMAS Coastal
and Shelf Modeling Group using the two-dimensional Lagrangian trajectory mode and
output from the regional GoM-HYCOM. Other simulations and details are available at
http://coastalmodeling.rsmas.miami.edu/Models/View/DEEPWATER HORIZON OIL SPILL.

Fig. 4 shows different initial conditions and the distribution of particles from a “continuous” surface
release of eight particles above the Macondo well location every 3 h from April 20th to May  14th with
either no particle removal/evaporation, slow particle removal, or fast particle removal. The time for
one-half of the particles to be removed is 120 h or 5 days for slow evaporation case, while the 1/2
life is 60 h or 2.5 days for the fast evaporation case. Even though the simulation lacks some of the oil
that spread to west and toward the Mississippi Delta, that is seen in the oil location maps (Fig. 4),
the estimated oil locations from the model are in good qualitative agreement with the data. The
simulation of Lagrangian trajectories with no evaporation clearly over-estimates the amount of oil
that is estimated on May  14, 2010 by either NOAA, ROFFSTM, and CSTARS. The simulation with no
particle evaporation has too many particles that are wrapped around the eastern flank of an eddy. The
distribution of particles for the fast evaporation case agrees the best with both NOAA and CSTAR oil
location estimates. This rate of particle removal/“evaporation” is commensurate with our estimates
of oil removal rates by weathering and by in situ oil removal operations.

A series of ten-day Lagrangian simulations following the oil spill were performed; we  will discuss
an example for the time period July 12–22, 2010. We  note that this is a tough test for model predictions,
since ten days is greater than 4–6 days corresponding to twice the Lagrangian integral scale. Liu et al.

http://coastalmodeling.rsmas.miami.edu/Models/View/DEEPWATER_HORIZON_OIL_SPILL


330 A.J. Mariano et al. / Dynamics of Atmospheres and Oceans 52 (2011) 322– 340

Fig. 3. The top left panel is NOAA’s 24 h operational forecast of oil location for July 12, 2010, while the top right and bottom
left  panels are the near-field and far-field oil estimates from ROFFSTM for the same day. The bottom right panel is NOAA’s 24 h
operational forecast of oil location for July 22, 2010.

(2011) also performed a qualitative analysis but with six different modeling systems and reached a
similar conclusion that there was not much skill in predicting oil locations after a few days. Our goal
is to elucidate some of the processes that impacted the transport and fate of oil particles. We  have
employed a series of simulations to examine the impact of data assimilation, model initialization and
particle removal rate on the predicted trajectories. We  have used either the free-running (Figs. 5 and 6)
or data assimilative (Figs. 7 and 8) GoM-HYCOM simulations. We  present the particle pathways during
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Fig. 4. The top left panel is NOAA’s estimate of oil location for May  14, 2010, while the top right panel is an estimate from
ROFFSTM. The middle panels are oil location maps from CSTARS; and are based on a composite of SAR images for that day. The
middle left panel is May  13, 2010 and there is an obvious swath discontinuity on the eastern edge of the blow. The middle
right  panel is the May  14, 2010 composite of SAR data and the westernmost oil from the day before is missing. Two model
simulations, with a continuous particle release at the Macondo well location (marked with a white circle) are illustrated in the
bottom panels. In both simulations, the no evaporation case is shown in blue and slow (lower left panel) and fast (lower right
panel) evaporation in red. Depth contours and depth ranges are also plotted in the lower panels (depth color scale in m).
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Fig. 5. Results using free-running hydrodynamic model velocities. The IC based on a satellite analysis provided by C. Hu (USF) for
July  12, 2010 is plotted in the top right panel. The other 3 panels are maps of particle pathways during the 10-day simulations
(blue) and their final position at the end of day 10 (red) for 3 different rates of evaporation. The upper left panel has no
evaporation, the lower left panel is the slow evaporation rate (5.0 days) and the lower right panel is the fast evaporation rate
(2.5  days) simulation.

the 10-day simulations and their final position at the end of day 10. Two different sets of ICs, provided
by C. Hu (USF) (Figs. 5 and 7) or by ROFFSTM (Figs. 6 and 8) are used in the simulations presented next.
One day trajectory predictions from NOAA of the oil location for the starting and ending date of the
simulations are given in Fig. 3. We  note certain differences in the two  sets of observational composites
that we are using to initialize the Lagrangian predictions. There is more oil in both the near field and
in the far field in the ROFFSTM analysis, although the far field has very few particles. Observational
limitations are an issue, especially in distinctions of pure oil and water and oil mixtures. Our goal is
not to determine which of the ICs is better, but to illustrate the impact of differences in observational
analyses on model forecasts.

The free-running GoM-HYCOM had the Loop Current well extended in the Gulf in the summer of
2010, which had a resemblance to the actual situation, but was  over-extended, at close proximity to
the Northern GoM shelf and the oil spill location. Regardless of evaporation rate and initial condition,
a large number of particles was entrained into the Loop Current with some oil entering the Florida
Current (Figs. 5 and 6). Without particle removal, a number of particles were quickly transported
northward as part of the Gulf Stream current system. Fast evaporation rate (2.5 days) was  more effec-
tive than slow evaporation rate (5 days) in limiting the amount of particles advected toward the Gulf
interior and beyond. With the ROFFS ICs, more particles were specified to be already entrained in the
Loop Current system, so the above pathways were amplified. These results had serious errors, as there
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Fig. 6. Results using free-running hydrodynamic model velocities. The IC based on ROFFSTM analysis for July 12, 2010 is plotted
in  the top right panel. The other 3 panels are maps of particle pathways during the 10-day simulations (blue) and their final
position at the end of day 10 (red) for 3 different rates of evaporation. The upper left panel has no evaporation, the lower left
panel is the slow evaporation rate (5.0 days) and the lower right panel is the fast evaporation rate (2.5 days) simulation.

were no official reports of oil offshore of Florida’s east coast at this time (Fig. 3). In all cases a small
number of particles crossed the western Gulf shelfbreak and showed tendency to travel across the
West Florida Shelf. In the case of maximum number of particles remaining in the domain (ROFFS ICs
and no evaporation, Fig. 5), traces along Northwestern Cuba, the Florida Keys and Florida Bay were
also found.

The data assimilative GoM-HYCOM had the Loop Current in the right position, with a consider-
ably smaller extension than in the free-run. Regardless of initialization, the vast amount of particles
remained in the Northern Gulf area (Figs. 7 and 8), spreading toward along isobaths in a good rep-
resentation of what was observed (Fig. 3). Particles already present in the Loop Current system (ICs
from ROFFS) remained in the large scale current system and traveled toward the west Florida shelf
and the Florida Straits. The increased amounts of oil present in ROFFS is probably due to their oil
tracking algorithm relying too much on persistence advection of oil and no sinks of oil. This also led
to an overestimation of oil impacting the shoreline when using ICs from ROFFS. However, there was
a significant underestimation of oil near the coastline when using the USF oil spill location estimate
for initialization. For both set of initial conditions, the fast evaporation rate and using velocity fields
from a data assimilative model was found to produce the best results.

Our results illustrate some of the challenges for the prediction of oil pathways: observational issues,
such as the accurate estimate of the oil patch; modeling issues, where velocities from data assimilative
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Fig. 7. Results using data assimilative hydrodynamic model velocities. The IC based on a satellite analysis provided by C. Hu
(USF)TM analysis for July 12, 2010 is plotted in the top right panel. The left panels are maps of particle pathways during the
10-day simulations (blue) and their final position at the end of day 10 (red) for 2 different rates of evaporation. The upper left
panel has no evaporation, the lower left panel is the fast evaporation rate (2.5 days) simulation. The lower right panel is the
number of days it takes (under fast evaporation conditions) for particles to reach their destination (color scale is days from 1 to
11).

hydrodynamic models offer a significant improvement of the background flow; technical issues that
are hard to parameterize, such as oil booning and removal near the shoreline. The nonconservative
behavior of oil makes the tracking and prediction more difficult than tracking of conservative water
masses. It is well-known that particle trajectories are sensitive to ICs and the differences between
Figs. 5 and 6 and between Figs. 7 and 8 highlight the difficulty in making operational predictions given
large uncertainty in ICs. Oil particles approached the Loop Current system and some were entrained
in our simulations. There was some observational evidence from ROFFSTM analysis that oil substances
were, indeed, entrained in the LCE, but there was  no in situ validation of this. It should be noted that
oil was detected in the far field at other times, e.g. on June 8, 2010 at 26◦45.85′N, 86◦03.65′ W (Wood,
2010). The differences between the slow and fast evaporation cases is the extent of dispersion with,
of course, the faster evaporation case exhibiting less dispersion and less trajectories in the far field.
Comparisons for other time periods yielded similar results.

4.2. Three-dimensional simulation of oil particle trajectories

Given the uncertainty in oil flow rates, evaporation rate, settling rate, winds, and ocean currents, a
multi-dimensional set of parameters should be included in the Monte Carlo simulations for more accu-
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Fig. 8. Fig. 7 results using data assimilative hydrodynamic model velocities. The IC based on ROFFSTM analysis for July 12, 2010
is  plotted in the top right panel. The left panels are maps of particle pathways during the 10-day simulations (blue) and their
final  position at the end of day 10 (red) for 2 different rates of evaporation. The upper left panel has no evaporation, the lower
left  panel is the fast evaporation rate (2.5 days) simulation. The lower right panel is the number of days it takes (under fast
evaporation conditions) for particles to reach their destination (color scale is days from 1 to 11).

rate estimates oil location via ensemble averaging. This simulation requires additional and expanded
super computing resources, as compared to the hydrodynamic and particle model simulations pre-
sented in the previous sections. The primary differences are that the advanced Lagrangian model uses
multi-state particles, three-dimensional currents, wind advection set to 1% of wind speed to incor-
porate a Stoke’s Drift component from wave-induced motion, more realistic oil properties, and huge
numbers of released particles proportional to the estimated flow rate. 10,000 particles were released
every 30 min  at a depth of 1200 m where the plume of mixed oil and gas is estimated to split into
individual oil droplets and gas bubbles (Pers Comm Pete Cayragher, BP geologist). Each particle rep-
resents a fraction of the mass of the oil released and the number of particles released is adjusted so
that each particle represents about 1 kg of oil. The oil properties such as the hydrocarbon fractions
and the droplet size distribution at the source are two  of the most crucial parameters affecting the
time-varying footprint of oil in the water column. O(107) particles were released in a 85 day model
simulation. The model assumes that the oil is composed of three fractions, light, medium and heavy.
The droplet (particle) sizes are assigned randomly between an assumed minimum and maximum val-
ues. In this study, as we are interested in examining the long-term budget of oil depending on its ability
to stay at depth, only modeled oil droplets with diameter ranging from 1 to 300 �m are employed.
This range allows studying particles that will remain at depth, as well as those that will raise rapidly
to the surface. Particles larger than 300 �m are considered to reach the surface so quickly that their
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size does not influence their fate. The model also includes the effects of evaporation and degradation
due to physical and biological processes. These effects are parameterized based on the half-life times
of the particle state. Only particles at the surface are subject to evaporative decay, while particles at
all depths are subject to degradation. Srinivasan et al. (2010) details the computational aspects and
error analysis of this large simulation.

Results of the three-dimensional Lagrangian model simulation are shown in Fig. 10.  These sim-
ulation results are based on running 36 different simulations that differ with respect to the type of
oil particles seeded as the oil source at depth. Both oil droplet size and the fraction of oil that cor-
responds to the 3 states (light, medium, and heavy oil) are varied from realization to realization.
These two parameters were picked to be the perturbation source for the Monte Carlo simulations
since this is the biggest unknown in this problem given the use of dispersants applied at the deep
gusher and the lack of oil state data and they are important (Yapa and Chen, 2004). In contrast to the
previous two-dimensional model simulations, this three-dimensional Lagrangian model simulation
starts with particles at depth that rise to the surface driven by the imposed density differences and
governed by turbulent mixing. Mixing is modeled using classical eddy diffusivity with Kh = 10 m2/s2

and Kz = 10−5 m2/s2.
The light, medium, and heavy oil states correspond to densities of .78, .84, and .95 g/cm3, respec-

tively. The nominal density was set to .842 g/cm3. A fraction of one oil was picked randomly to generate
an initial ensemble and the other two were calculated by a weak constraint on the nominal density.
No oil particle locations were specified at the surface in these trajectory simulations. The results for
the fate of the oil for a three month simulation of the oil spill over its lifetime are shown in Fig. 9. The
error bars are calculated based on polynomial chaos theory applied to the 36 Monte Carlo ensembles
(Srinivasan et al., 2010). This calculation predicts that after 3 months, approximately 80% of the oil
from the gusher below the depth of 800 m is gone and that 25% of the oil is still dispersed throughout
the water column after 90 days, compared to the Lubchenco et al. (2010) estimate of 30%; surface
evaporation removed 30% of the total oil, compared to 25% estimated by Lubchenco et al. (2010),  and
evaporation and other processes removed 99% of the surface oil so that only 1% of the oil is left on the
surface. These calculations suggest that biodegradation throughout the water column was effective
as surface evaporation at removing the oil. More realizations of this Monte Carlo simulation would
lower the error bounds and change these estimates.

5. Discussion

The 2010 GoM oil spill was both a tragedy on many levels, as well as, an opportunity for ocean
modelers to put their knowledge to the test on a highly visible and important practical problem. The
first issue that was obvious is that the skill of any type of climatological winds and ocean currents for
predicting Lagrangian motion is low. Climatological predictions had oil throughout the Gulf Stream
system and into the North Atlantic (not shown), but this was  not observed. The value of regional
models (with improved resolution and topography) in regional forecasts was  demonstrated here, by
the official NOAA forecasts, and by other groups Liu et al. (2011).  It was  also demonstrated that the
forecasts were better if the Eulerian velocity fields used to advect the Lagrangian particles were from
data assimilative hydrodynamic models. Fig. 10 shows the root-mean-square (rms) position prediction
error of the simulated trajectories at 15 m depth, and average distance travelled by both the model and
in situ drifters, using AOML’s drifters as both truth and to determine the launch location of the model
simulated or synthetic drifters. These statistics were calculated over a three-month window beginning
on June 13, 2010 with synthetic drifters “deployed” every 7 days at in situ drifter locations in the Gulf of
Mexico east of 92◦W,  resulting in a total of 221 releases. Fig. 10a shows that data assimilation reduced
the rms  Lagrangian position error by 57% for 12 h prediction, by 50% for two day predictions, and with
a 25% reduction in error and an average error of less than 20 km/day after 7 days. Fig. 10b  shows that
the velocity fields from data assimilative models over-smooths the Lagrangian trajectory, presumably
because of Eulerian velocity fields that are smooth due to lack of high resolution data. Some preliminary
calculations (not shown) have demonstrated that local, in situ data velocity data from either an array
of floats or velocity profilers can further reduce the error by another 25%. Liu et al. (2011) also used
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Fig. 9. Summary of the computed oil fate. The panels show the time history of the oil in the water column at different depths and
the  oil fraction lost due to evaporation and biodegradation. These mean and standard deviations are based on 36 realizations
of  the oil model run for range of droplet sizes and oil properties. In the mean, evaporation and degradation together remove
about 70% of the oil released by 80 days.

satellite images to initialize six different regional and global numerical ocean circulation models.
Their study also concluded that more observations are needed for data assimilation, that all aspects
of weathering must be taken into account, and that the state of the oil should be modeled. This study
presents a model that starts to address the last two issues.
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Fig. 10. (a) The left panel is the root-mean-square distance error between synthetic and real drifters for no data assimilation
(black,  top curve) and with data assimilation (red). (b) The right panel is the mean path length starting at release points for real
drifters (black, middle curve), for synthetic drifters for no data assimilation (red, top curve) and with data assimilation (blue,
bottom curve). (For interpretation of the references to color in this figure legend, the reader is referred to the web  version of
the  article.)

In this paper, a method for producing ICs of oil location and a Monte Carlo method were intro-
duced and evaluated to parameterize all oil removal processes such as evaporation. These simulations
showed the well-known fact on the importance of ICs for good oil spill forecasts. The real-time deter-
mination of these ICs is hampered by many factors that are primarily economic/resource-rleated or
related to atmospheric and oceanic variability. Liu et al. (2011) also stated besides the need for better
ICs, there was also a need for better wind data for forcing circulation models. Real-time velocity data
can make up for deficiencies in forcing, and optimal use of Lagrangian data (Chin et al., 2007; Molcard
et al., 2007) can further reduce the model velocity and Lagrangian trajectory prediction error. Near
the coast, HF radar would supply excellent data for assimilation. Given the similar performance of
ocean circulation models (Liu et al., 2011) and that in a comparison of four advanced data assimilation
schemes in the Gulf of Mexico (Srinivasan et al., 2011), all the methods produced similar results; it is
the set of environmental data that is available that is the limiting factor for the success of a prediction
scheme. This is well-known in operational weather forecasting, and in oceanography, introduced by
Professor Allan R. Robinson over 30 years ago.

Two different oil spill trajectory modeling systems were presented with one system used for surface
oil prediction given a set of ICs and another system that predicts the three dimensional oil distribu-
tion from a deep influx of oil particles of different sizes and densities. Both systems used Monte Carlo
based methods because of the large amount of uncertainty in all components of the oil trajectory
forecasting problem resulting from error in oil particle size composition, oil spill flow rate at source,
operational wind and ocean current estimates, and in the observational oil location data that is ampli-
fied by the nonlinearity of the forward Lagrangian prediction problem. Though relatively elementary
methods were used for combining the different observations and for oil weathering/removal, our
maps produced the main features seen in the observations. The importance of using velocity fields
from data-assimilative models for Lagrangian prediction was demonstrated. It should be noted that
the paper focused on methodology, rather than aiming at accurate oil spill predictions, because of the
inherent difficulty in the oil spill prediction problem. The uncertainties in input data that challenge
such predictions were also discussed. Further improvements to the presented methodology would
be a more general oil removal criterion, such as c being a function of oil age in the Monte Carlo oil
removal algorithm, a Markov transition matrix between oil states, and improvements in how to fuse
the model-based oil location estimates with observed locations. Recent studies by Spiller et al. (2008);
Chin and Mariano (2010) shows that a nonlinear particle smoother would be a good choice for improv-
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ing how model-based estimates and observed particle locations are fused. These and other modeling
improvements will be the subject of future research.
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