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g. Surface currents—R. Lumpkin, G. Goni, and K. Dohan 
Ocean surface current changes, transports derived 

from ocean surface currents, and features such as 
rings inferred from surface currents, all play a role 
in ocean climate variations. Surface currents de-
scribed here are obtained from in situ (global array of 
drogued drifters and moorings) and satellite (altim-
etry, wind stress, and SST) observations. Transports 
are derived from a combination of sea level anomalies 
(from altimetry) and climatological hydrography. For 
details of these calculations, see Lumpkin et al. (2011). 
Anomalies are calculated with respect to 1992–2007. 
Annually averaged zonal current anomalies for 2015, 
changes in anomalies from 2014 to 2015 (Fig. 3.19), 
and seasonal average 2015 anomalies (Fig. 3.20) are 
discussed below by individual ocean basin.

The dramatic El Niño of 2015/16 dominated 
annual mean current anomalies in the Pacific ba-
sin (Fig. 3.19a), with annually averaged eastward 
anomalies >20 cm s−1 between 1.5° and 6°N and 
weaker eastward anomalies in the rest of the latitude 
band between 10°S and 10°N. Because 2014 was 
characterized by westward anomalies on the equa-
tor and eastward anomalies in a strengthened North 
Equatorial Countercurrent (NECC) at 5°–6°N, the 
2015 minus 2014 map (Fig. 3.19b) has larger east-
ward anomaly tendencies on the equator and weaker 

tendencies along the NECC 
than the 2015 anomaly map 
(Fig. 3.20).

In contrast to the annual 
mean picture, 2015 began 
with westward anomalies 
between 5°S and 5°N across 
the eastern half of the basin 
(Fig. 3.20a), with peak west-
ward anomalies of ~25 cm s−1 
at 1°N. These anomalies were 
an enhancement of the 
northern branch of the 
westward South Equato-
rial Current (SEC) as seen in 
December 2014 (Dohan et al. 
2015). Immediately north of 
5°N, the eastward NECC was 
only marginally faster than 
its climatological January 
strength. In February, intense 
El Niño–related eastward 
anomalies first appeared in 
the western tropical Pacific as 
anomalies of 20–40 cm s−1 at 
145°–175°E, 2.5°S–4°N.

Throughout boreal spring, the El Niño–related 
anomaly pattern propagated eastward (Fig. 3.20b), 
reaching 160°W by March and 90°W by April. Dur-
ing these months, warm water advected by these 
current anomalies caused the NINO3 and NINO3.4 
SST indices to increase rapidly (see section 4b). In 
April, eastward anomalies of 40–50 cm s−1 were 
present at 95°–130°W, 2.5°S–2.5°N. Throughout 
March and April, equatorial zonal currents in the 
band 120°W–180° were close to their climatologi-
cal average, straddled by the eastward anomalies 
centered at 5°–6°N (the latitude of the NECC) and 
1°–2°S (Fig. 3.20b). In May, the anomalies south of 
the equator diminished to <20 cm s−1, while anoma-
lies of 35–40 cm s−1 persisted in the NECC band. The 
eastward advection of relatively fresh water, combined 
with an El Niño–driven shift in the ITCZ (section 
3e), likely accounts for the development of fresh SSS 
anomalies (section 3d).

Throughout boreal summer (June–August; 
Fig. 3.20c), eastward anomalies persisted across the 
basin, with equatorial eastward anomalies returning 
across the western half of the basin in July and across 
the entire basin in August. Averaged over these three 
months (Fig. 3.20c), eastward anomalies exceeded 
5 cm s−1 from 6°S to 9°N, with peak anomalies of 30–
35 cm s−1 at 4°–6°N. This pattern persisted in boreal 

FIG. 3.17. (a) Global mean sea level (mm) obtained from consecutive satellite 
altimeter missions, with 60-day smoothing and seasonal signals removed (black 
line indicates a rise rate of 3.3 mm yr–1); (b) Detrended GMSL compared with 
the multivariate ENSO index (MEI; obtained from http://sealevel.colorado.
edu); (c) Sea level trends (cm decade–1) 1993–2015; and (d) Sea level trends 
(cm decade–1) 2011–15. Scales differ in (c) and (d).
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autumn (Fig. 3.20d), with another pulse of extremely 
strong (>50 cm s−1) eastward anomalies appearing at 
170°E–150°W, 3°–5°N in August and peaking at >60 
cm s−1 in October; these were the strongest monthly 
averaged broad-scale current anomalies seen in 2015. 
This pattern propagated eastward in November and 
weakened significantly through December. The year 
concluded with eastward anomalies of ~20 cm s−1 

across the basin from 3°N to 6°N, consistent with a 
stronger and wider NECC than in the December cli-
matology. The northern edge of this NECC was close 
to its climatological northern extent but extended 
south to 2°N, compared to 3.5°N in climatology.

The Kuroshio was shifted anomalously northward 
in 2010–14, although this shift diminished during 
2014 (Dohan et al. 2015). During 2015, the Kuroshio 
was close to its climatological latitude, with a maxi-
mum annually averaged speed of 35 cm s−1 at 35°N 
between 140° and 170°E (Fig. 3.19).

Surface current anomalies in the equatorial Pa-
cific typically lead SST anomalies by several months, 
with a magnitude that scales with the SST anomaly 
magnitude. A return to normal current conditions 
is also typically seen before SST returns to normal. 
Thus, current anomalies in this region are a valu-
able predictor of the evolution of SST anomalies and 
their related climate impacts. This leading nature can 
be seen in the first principal empirical orthogonal 
function (EOF) of surface current (SC) anomaly and 
separately of SST anomaly in the tropical Pacific basin 
(Fig. 3.21). For 1993–2015, the maximum correlation 
between SC and SST is 0.70 with SC leading SST 
by 71 days. Both SC and SST EOF amplitudes were 
positive throughout 2015, with the cumulative effect 
of positive SC EOF amplitude resulting in a steadily 
increasing SST EOF amplitude to almost 3 standard 
deviations in November 2015, nearing the November 
1997 value of 3.2.

Throughout most of 2015, Indian Ocean mon-
soon-driven currents were much closer to climatol-
ogy than the dramatic anomalies seen in the Pacific 
(Fig. 3.19a). This normality is in contrast to the strong 
eastward anomalies seen across the basin in 2013–14 
(Lumpkin et al. 2014; Dohan et al. 2015). Those 
eastward anomalies dominate the 2015 minus 2014 

FIG. 3.18. (a) Annual maximum sea level (cm) during 
2015 computed from the mean of the 2% highest daily 
values relative to the 2015 annual mean, measured 
at tide gauges (http://uhslc.soest.hawaii.edu); (b) The 
2015 annual maximum from (a) divided by the time-
averaged annual maximum measured at each station 
with at least 20 years of data.

FIG. 3.19. Annually averaged geostrophic zonal cur-
rent anomalies (cm s–1) for (a) 2015 and (b) 2015 minus 
2014 derived from a synthesis of drifters, altimetry, 
and winds. Positive (red) values denote anomalously 
eastward velocity.
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zonal current tendencies in the Indian Ocean basin 
(Fig. 3.19b). In 2015, the strongest anomalies with 
respect to monthly climatology were seen in October 
and November, with an unusually early development 
of the North Monsoon Current (e.g., Beal et al. 2013) 
associated with westward anomalies of ~30 cm s−1 at 
3°S–2°N, 60°–80°E during these months (Fig. 3.20d). 
Large-scale current anomalies returned to near-
climatological December values by the end of 2015.

The Agulhas Current transport is a key indicator 
of Indian–Atlantic Ocean interbasin water exchanges. 
The annual mean transport of the Agulhas Current 
has been decreasing from a high set in 2013, with 
values of 56 Sv in 2013 (1 Sv  106 m3 s−1), 53 Sv in 
2014, and 50 Sv in 2015. The 2015 transport of 50 Sv 
is equal to the Agulhas’ long-term (1993–2015) mean.

Annual mean anomalies in the Atlantic Ocean 
(Fig. 3.19a) indicate a 5–7 cm s−1 strengthening of the 
eastward NECC at 4.5°–6.5°N, 30°–50°W, and condi-
tions close to climatology along the equator. However, 
the annual average hides a pattern of reversing equa-
torial anomalies between boreal winter and spring 
(Fig. 3.20). The year began with eastward anomalies 
of 20 cm s−1 from 3°S to 2°N across much of the basin, 
which weakened through February and were present 
only at 25°–35°W in March/April. In May, westward 
anomalies of 10–15 cm s−1 developed across the basin 
from 2°S to 2°N. These anomalies weakened consider-
ably through June and were no longer present in July. 
No significant basinwide equatorial anomalies were 
seen in the remainder of 2015.

The Gulf Stream in 2015 
remained close to its cli-
matological position with 
l it t le change from 2014 
(Fig. 3.19).

The North Brazil Cur-
rent, which sheds rings 
that carry waters from the 
Southern Hemisphere into 
the North Atlantic and has 
important ecosystem im-
pacts downstream (Kelly 
et al. 2000), exhibited an 
annual transport smaller 
than its long-term (1993–
2015) value. As in 2014, it 
shed eight rings in 2015, a 
larger-than-average value. 
Sea level anomalies in the 
region, which have gener-
ally increased since 2001 

(apart from lows in 2003 and 2008), remained higher 
than average in 2015.

In the southwest Atlantic Ocean, the Brazil Cur-
rent carries waters from subtropical to subpolar re-
gions, mainly in the form of large anticyclonic rings 
(Lentini et al. 2006). The separation of the Brazil Cur-
rent front from the continental shelf break continued 
to exhibit a seasonal cycle, which is mainly driven by 
wind stress curl variations and the transport of this 
current. During 1993–98, the annual mean separa-
tion of the front shifted southward in response to a 
long-term warming in South Atlantic temperatures 
(cf. Lumpkin and Garzoli 2010; Goni et al. 2011). In 
2015, the Brazil Current front and its separation from 
the continental shelf break persisted south of its mean 
position, unchanged from 2014.

h. Meridional overturning circulation observations in 
the North Atlantic Ocean—M. O. Baringer, M. Lankhorst,  
D. Volkov, S. Garzoli, S. Dong, U. Send, and C. S. Meinen
This section describes the Atlantic meridional 

overturning circulation (AMOC) and the Atlantic 
meridional heat transport (AMHT), determined by 
the large-scale ocean circulation wherein northward 
moving upper layer waters are transformed into deep 
waters that return southward, redistributing heat, 
freshwater, carbon, and nutrients. Previous State of 
the Climate reports (e.g., Baringer et al. 2013) and 
reviews (e.g., Srokosz and Bryden 2015; Perez et al. 
2015; Carton et al. 2014; Srokosz et al. 2012) discuss 
the AMOC’s impact on climate variability and ecosys-
tems. The AMOC is computed as the maximum of the 

FIG. 3.20. Seasonally averaged zonal geostrophic anomalies (cm s–1) with re-
spect to seasonal climatology, for (a) Dec 2014–Feb 2015, (b) Mar–May 2015, 
(c) Jun–Aug 2015, and (d) Sep–Nov 2015. 
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