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According to the US natural hazard statistics for 2015, extreme 
heat has been the leading weather-related cause of death in 
the United States for the past 30 years. A few examples of 

deadly heat waves worldwide include the 1980 heat wave over the 
US Midwest and Southern Plains1,2 (1,700 fatalities), the 1995 event 
in Chicago, Illinois3 (1,021 fatalities), the 2003 European heat wave4 
(52,452 fatalities), the 2010 Russian event5,6 (55,736 fatalities) and 
the 2011 event over the US Great Plains7 (206 fatalities). Several 
studies identified that the effects of anthropogenic climate change 
(ACC) go beyond simple changes in the mean climate and include 
changes in the frequency and intensity of extremes8–10 and noted that 
the number of heat waves and their severity have increased in recent 
decades11. In addition, there will probably be an increased exposure 
to heat extremes due to population growth12. Despite these findings, 
the impact of ACC on extreme weather, such as heat waves, is still 
not well understood13,14. This is especially true for the summer sea-
son due to the reduced synoptic variability over land15,16; a consen-
sus has not been reached as to the mechanisms that link extreme 
events to ACC17–19. This study reports on the regional dependence 
and occurrence of heat waves over the United States with a focus 
on future projections and physical mechanisms that may accelerate 
or slow down the rate of occurrence of heat extremes under ACC.

The Fifth Assessment Report of the Intergovernmental Panel 
on Climate Change (IPCC) evaluated when the signal of ACC will 
emerge against the background natural variability20 (that is, the time 
of emergence (ToE)) and found that for surface temperature, the 
ToE is regional dependent and occurs earlier for the warm season 
as well as for larger spatial and temporal scales. In contrast, most 
assessments of regional changes on heat waves associated with 
ACC are based purely on statistics, and the physical mechanisms 
that control the ToE for these extreme events are not yet under-
stood fully. For example, the tails of the surface-temperature dis-
tributions appear to be sensitive to regional effects and may exhibit 
non-Gaussian behaviour, which may vary regionally, which sug-
gests a need to verify the accuracy of climate models to simulate the  

distribution tails21. Heat waves are linked to specific weather patterns 
that involve, for example, atmospheric circulation, precipitation 
deficits, soil moisture content and so on. Atmospheric high-ampli-
tude planetary circulation patterns, such as lingering blocking pat-
terns, are also associated with extreme heat wave events22.

To arrive at a more reliable projection of heat waves, it is impor-
tant to describe these extreme events in a physical or phenom-
enological perspective. To do this, we focus on characterizing heat 
waves by clustering their spatial distribution and temporal struc-
tures. This method allows us to obtain the most-dominant spatial 
patters of extremes, whereas more traditional methods, such as 
empirical orthogonal functions cannot guarantee the detection of 
individual dynamical modes due to the non-Gaussian distribution 
of the extremes23. The analysis of ensembles of models results in 
a purely empirical fashion will suffice for projection and attribu-
tion studies, but we have to account for the fact that these extremes 
are present without climate change and natural variability is a key 
component that modulates these extremes even under the most-
pessimistic climate change scenario. Therefore, the identification of 
natural variabilities, how they may evolve and their implication on 
heat waves is essential to assess the risks of heat-related mortality 
given that natural variability is the main source of uncertainty in 
future projections.

The rareness of extreme events, the short observational record 
and the relative noisiness of mid-latitude atmospheric variability all 
contribute to making the study of heat waves difficult. To address 
this challenge, we use the European Center for Mid-Range Weather 
Forecast twentieth century reanalysis24 (ERA-20C), multiple real-
izations of the Community Earth System Model (CESM1) Large 
Ensemble (LE) simulation25 couple general circulation model and 
the Couple Model Intercomparison Project26 (CMIP5) to examine 
heat waves in the United States, their modulation by internal climate 
variability versus external forcing and their non-stationary statistics 
in a climate change scenario. Supplementary Table 1 gives details on 
the models used.
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Climate projections for the twenty-first century suggest an increase in the occurrence of heat waves. However, the time at 
which externally forced signals of anthropogenic climate change (ACC) emerge against background natural variability (time 
of emergence (ToE)) has been challenging to quantify, which makes future heat-wave projections uncertain. Here we combine 
observations and model simulations under present and future forcing to assess how internal variability and ACC modulate US 
heat waves. We show that ACC dominates heat-wave occurrence over the western United States and Great Lakes regions, with 
ToE that occurred as early as the 2020s and 2030s, respectively. In contrast, internal variability governs heat waves in the 
northern and southern Great Plains, where ToE occurs in the 2050s and 2070s; this later ToE is believed to be a result of a pro-
jected increase in circulation variability, namely the Great Plain low-level jet. Thus, greater mitigation and adaptation efforts 
are needed in the Great Lakes and western United States regions.
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Here we hypothesize that, although internal variability currently 
dominates the occurrence of heat waves in the United States, ACC 
will gradually assume a greater importance as we progress through 
the twenty-first century. However, the attribution of heat extremes 
due to ACC will vary by location. We quantify the time frame as 
to when ACC will dominate the occurrence of heat waves in the 
twenty-first century (that is, the ToE).

typical heat wave clusters over the United States
A hierarchical clustering algorithm (Methods) is applied to the 
daily mean surface temperature from the ERA-20C for the period 
1900–2010. Eight major regional heat wave clusters are identified 
by the hierarchical algorithm (Supplementary Fig. 1). These clusters 
contain temperature anomalies well above 5 °C, which affect large 
population areas. By definition, the clustering of heat waves allows 
us to separate each extreme event from other extremes that are syn-
optically independent and to investigate these clusters into physi-
cally coherent large-scale atmospheric patterns.

Here we focus on the four heat wave clusters that affect the larg-
est portion of the US population; namely, the western United States, 
Northern Plains, Southern Plains and Great Lakes clusters (Table 1).  
The spatial structure of these four clusters is shown in Fig. 1. The 
cluster analysis was also repeated for the twenty-first century 
(Supplementary Fig. 2) using the CMIP5 models to test the robustness 
of these clusters under ACC and also for each of the CMIP5 model 
used (Supplementary Figs. 3–6). There is a positive trend in the daily 
mean summer temperature over each cluster region for the twenty-
first century, consistent with the RCP8.5 scenario (Supplementary 
Fig. 7). There is also an increase in the ratio of warm-to-cold extreme 
temperature events, as shown in Table 1, column 7 (8), for the twenti-
eth (twenty-first) century. These ratio changes are regionally depen-
dent, with warm extremes that become significantly more likely for 
the Great Lakes and western United States cluster regions as com-
pared to the Great Plains cluster regions shown in Table 1 (column 9).  
These changes in the asymmetry of extreme temperature, as well as 
their regional dependence, may have great implications for future 
projections of heat waves. It is, therefore, necessary to account not 
only for changes in the mean, but also for changes in the higher 
statistical moments (for example, variance, skewness and kurtosis) 
when considering the likelihood of heat wave events27.

Natural variability and projection uncertainty
The recent apparent pause in warming of the climate system between 
approximately 1998 and 2014 has led to significant causal debate with 
respect to natural variability versus changes in external forcing28–30,  

or even whether this pause is an artefact of observational biases31. 
Nevertheless, natural variability plays a key role in masking ACC at 
regional scales, because it influences the occurrence of extreme events 
and exacerbates the effects of anthropogenic forcing. It is, there-
fore, necessary to identify the mechanisms that affect the internal  

Table 1 | Statistics of summer 2 m air temperature extremes for the twentieth century (20C) and twenty-first century (21C) 
projections

Return period (years) of events > 3σ Ratios of events > 3σ

Cluster (population) mean 20C (21C) 20C PDF 21C PDF 20C PDF 
plus mean 
shift

21C PDF with 
no mean 
shift

Ratio of 20C 
warm to 20C 
cold

Ratio of 21C 
warm to 21C 
cold

Ratio 21C to 
warm to 20C 
warm

western United States 
(63,160,900)

23.2 ±  0.7 
(27.5 ±  0.8)

376 ±  3 17 ±  14 60 ±  7 67 ±  6 0.6 ±  0.1 6.4 ±  0.6 2.1 ±  0.1

Northern Plains 
(46,843,000)

21.7 ±  0.4 
(26.3 ±  0.7)

410 ±  3 17 ±  14 55 ±  7 65 ±  6 0.6 ±  0.1 1.7 ±  0.2 1.6 ±  0.1

Southern Plains 
(37,900,200)

23.4 ±  0.4 
(27.4 ±  0.6)

404 ±  3 21 ±  12 68 ±  6 73 ±  6 0.7 ±  0.1 1.7 ±  0.2 1.6 ±  0.1

Great Lakes 
(78,935,400)

16.5 ±  0.4 
(20.6 ±  0.6)

364 ±  3 20 ±  13 61 ±  7 70 ±  6 0.6 ±  0.1 10.2 ±  1.2 2.0 ±  0.1

Return periods are shown for the 20C, 21C, 20C plus mean changes (that is, shape-preserving distribution with no variance or higher moment changes) and 21C with no mean shift PDF (that is, the return 
period due solely to variance and higher moment changes). Uncertainty intervals (± ) correspond to the 99% confidence interval based on all 1,000 realizations of a Markov model. The eight-digit number 
beneath each cluster name indicates the population count affected by the cluster.
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Fig. 1 | Geographic distribution of heat waves. a,b, Twentieth century 2 m 
temperature anomaly (a) and twenty-first century PDF of the SNR of heat 
wave events (b) for the Great Lakes cluster. c–h, Similarly, for the Northern 
Plains (c and d), Southern Plains (e and f) and western United States region 
(g and h) heat wave clusters from the ensemble mean of CMIP5 models. 
The SNR PDF is obtained by randomly selecting eight models (ensembles) 
1,000 times from the CMIP5 (CESM1-LE) simulations. The mean SNR is 
shown in black and 95% confidence interval in red (blue) from the CMIP5 
(CESM-LE). The twentieth century SNR is shown by green diamonds.
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variability of heat waves, which is important for future mitigation 
and planning efforts.

Here we use the ensemble mean from the CMIP5 and CESM1-LE 
models as an estimate of the external forcing influence (signal), 
whereas the ensemble spread quantifies the internal component 
associated with a particular model ensemble member (noise). It 
is important to note that the contribution of internal variability 
to ensemble spread depends on the climate variable, season and 
location32. The number of heat wave days due to external forcing 
increases over the United States for near-future projections (that is, 
2010–2100) when compared to previous periods for all heat wave 
clusters (Supplementary Fig. 10). The signal-to-noise ratio (SNR) of 
heat wave days for the twenty-first century (that is, 2020–2100) is sig-
nificantly smaller for the Great Plains regions (Fig. 1d,f) compared to 
the Great Lakes and western United States regions (Fig. 1b,h), which 
indicates that future projection of heat waves over the Great Plains is 
more uncertain due to the large natural variability there.

The SNR shown in Fig. 1 is related to the ToE, which is depen-
dent on the uncertainty in the climate response to external forcing 
and to the amplitude of the simulated internal variability33. Future 
projections show that external forcing will play a more dominant 
role, especially over the eastern and western thirds of the United 
States; however, the Great Plains region still shows a relatively large 
influence from internal variability. This is consistent with the con-
cept that, at regional scales, internal variability is as important as 
ACC forcing, at least for the next half century32,34.

Heat wave response to ACC
Future projections of heat waves are affected not only by changes 
in the mean temperature but also by changes in the extremes.  
It is, therefore, critical to quantify whether and to what extent 
non-stationary statistics affect these future projections. To address 
these issues, a stochastic generated skewed27 (SGS) probability 
density function (PDF) of the summertime 2 m air temperature 
is quantified for each heat wave cluster depicted in Fig. 1 for the 
ERA-20C reanalysis, the CESM1-20C and CESM1-21C LE simu-
lations (Methods). The summers include days from 1 June to 
31 August, that is, a 92-day summer). The daily mean tempera-
ture and a 95th percentile threshold are used in the definition of 
heat waves (Methods). Figure 2 shows the SGS for each heat wave 
region. The CESM1-20C model reproduces the temperature distri-
bution, including the negative skewness, of the ERA-20C reanaly-
sis within all possibilities due to random error and uncertainty 
due to internal variability (Supplementary Fig. 8), which provides  
confidence in the model. ACC has no significant effect on the 
asymmetry of the SGS distribution for the Northern (Fig. 2a) and 
Southern (Fig. 2d) Plains regions. In contrast, the SGS distribution 
becomes significantly more positively skewed for the heat wave 
clusters over the Great Lakes (Fig. 2b) and western United States 
(Fig. 2c) regions, which suggests an increase in warm extremes. 
That is, the frequency of warm extremes is larger for the twenty-
first century and significantly different (green shading) with respect 
to the twentieth century for the western United States and Great 
Lakes clusters.

The contrasting response of temperature anomalies over these 
heat wave regions is further investigated by analysing 1,000 real-
izations of a Markov model for the twentieth and twenty-first cen-
tury CESM1 simulations (Methods). The increase in the number 
of warm extremes over the western United States and Great Lakes 
regions (that is, the ratio of 21C to 20C warm extremes of 2.1 and 
2.0 respectively (Table 1)) is mostly due to a non-linear (asymmet-
ric) response to changes in the mean and are influenced by anthro-
pogenic forcing. In contrast, the modest increase in warm extremes 
over the two Great Plains regions (that is, the ratio of 21C to 20C 
warm extremes of 1.6 (Table 1)) is dominated by enhanced vari-
ability rather than by asymmetric changes (Supplementary Fig. 9). 

These results demonstrate the need for caution in assessing and 
attributing heat waves due to changes in the mean climate related 
to ACC forcing as internal variability is large and also impacted by 
ACC, more notably over the Great Plains.

Extreme event attribution, internal variability and ACC
Previous sections indicate the regional dependence of the relative 
role of internal variability and ACC on the modulation of heat 
extremes. This motivates the following question: if and/or when 
does ACC become significant with respect to heat extremes? To 
assess this, we quantify the probability of necessary causality (PN) 
for all heat extreme events in the twenty-first century projection 
(Methods). The PN of each extreme event is drawn from the gen-
eralized Pareto (GP) distribution of summer temperature for each 
heat wave cluster (Fig. 3). The GP distribution for the twenty-first 
century is significantly distinct from that of the twentieth century 
for the western United States and Great Lakes heat wave clusters, 
and the uncertainty due to random error is greatly reduced in the 
twenty-first century. In contrast, the twentieth and twenty-first 
century GP distributions for the Great Plains heat waves (Fig. 3a,d) 
are not statistically well separated for high-threshold extremes (for 
example, a T >  3.5 standard deviation).

Figure 4 shows the distribution of PN values for the twenty-first 
century projection of heat extremes over each cluster. In general, 
PN is projected to increase in the future, consistent with the RCP8.5 
scenario. More importantly, each cluster has a distinctive evolu-
tion of PN. For instance, ACC will be a necessary condition for at 
least half of the extreme events in the Northern Plains after the 
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Fig. 2 | SGS PDF of summertime 2 m temperature anomalies. a–d, 
Northern Plains (a) Great Lakes (b), western United States (c) and 
Southern Plains (d) regions. The ERA-20C reanalysis for the 1920–2000 
period is shown by black lines, the CESM1-20C (1920–2000) is shown as 
blue lines and the CESM1-21C (2020–2100) is depicted by the red lines. 
The spread depicted by the lighter colours represents the 99% confidence 
interval using all 1,000 realizations of the Markov model, which provides 
uncertainty due to random error. The green shading indicates statistically 
significant differences between the 20C and 21C PDFs at a 99% confidence 
level. Obs, observed.
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year 2056 ±  2 (Fig. 4a), the Great Lakes after 2037 ±  1 (Fig. 4b), the 
Western region after 2028 ±  1 (Fig. 4c) and the Southern Plains not 
until 2074 ±  4 (Fig. 4d). These results show that heat extreme attri-
bution to ACC is more certain for the western United States and 
Great Lakes regions. It also demonstrates that internal variability 
will be the dominant component of the Great Plains heat extreme 
occurrences well past the half-century mark. In fact, it is not until 
the late twenty-first century that increased heat waves due to ACC 
under the RCP8.5 scenario dominate internal variability over the 
Great Plains. This region also shows a smaller forced-to-internal 
ratio in the 50-year surface temperature trend35.

The attribution or necessary causation analysis shows that in the 
present climate, the fraction of heat extremes for which ACC plays a 
dominant role (that is, PN >  0.5) is still small for all regions. However, 
the influence of ACC is projected to increase significantly, and 
PN >  0.1 is already emerging (yellow regions in Fig. 4). For the west-
ern United States region (Fig. 4c), only 27 ±  2% of the heat extremes 
in the twenty-first century are projected to be entirely due to internal 
variability, whereas 23 ±  2% are projected to be caused predominantly 
by ACC. This is in contrast with heat extremes over the Southern 
Plains (Fig. 4d), where 62 ±  4% of extreme heat events are projected 
to be due to internal variability and only 8 ±  4% due to ACC, with a 
mix of both influences accounting for the remaining 30%.

Sources of internal variability and uncertainty
Identifying the physical mechanisms that influence the internal 
variability of heat waves is necessary to improve projections, which 
leads to more-oriented mitigation and adaptation efforts. The atmo-
spheric conditions associated with each heat wave cluster show a 
stationary anticyclone pattern located over the extreme warm tem-
perature anomaly (Supplementary Fig. 11). Although all four clus-
ters present negative precipitation anomaly patterns, only the two 

Great Plains clusters depict coherent and large-amplitude drier con-
ditions over the actual heat wave region.

There are two potential mechanisms by which changes in the mean 
climate can modulate the occurrence of extreme temperature events 
and heat waves. (1) Changes in atmospheric circulation as a result 
of the so-called Arctic amplification36,37. (2) Future changes in soil 
moisture, which influences surface temperature through the land–
atmosphere feedback38,39. For instance, atmospheric transient eddies 
(storminess) are strongly negatively correlated with surface tem-
perature over the western and northeastern United States (Fig. 5a),  
which suggests that less storminess is linked to warmer surface tem-
peratures. In addition, storm activities over these same regions are pro-
jected to decrease significantly for the twenty-first century (Fig. 5b)  
due to meridionally asymmetric warming40. In contrast, the Great 
Plains is in a transitional hydrological regime in which soil moisture 
is a limiting constraint on evapotranspiration and latent heating, 
which influences climate variability through coupling and feed-
backs with the atmosphere41,42. Here, more precipitation leads to 
more soil moisture, which decreases surface air temperature. Also, 
due to the strong coupling and feedbacks between air temperature 
and soil moisture, an enhanced variability in precipitation and soil 
moisture will lead to an enhanced variability in surface temperature 
through latent heating, which adds uncertainty to future projections 
of heat extremes.

The question of why the Great Plains events appear to be less sen-
sitive to ACC than those from the western United States and Great 
Lakes clusters is addressed in Fig. 5. The June–July–August (JJA) 
climatological near-surface (925 hPa) wind shown in Fig. 5c for the 
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Fig. 4 | PN of heat waves. a–d, Northern Plains (a), Great Lakes (b), western 
United States (c) and Southern Plains (d) regions. PN values are binned into: 
PN ≤  0.1 (blue region, for example, ACC is not a necessary condition for heat 
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(red, ACC is a necessary condition for heat waves). The intersection of 
the dashed lines denotes when ACC becomes a major contributor to heat 
extremes (that is, a measure of the ToE). The percentage values indicate 
the fraction of heat extremes attributed to each category. The ±  value and 
the grey shading indicates a 95% confidence interval by randomly selecting 
20 ensemble members 500 times.
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twentieth century CMIP5 ensemble mean depicts a strong southerly 
flow from the Gulf of Mexico towards the Great Plains, known as the 
Great Plains low level jet (GPLLJ). The GPLLJ is responsible for about 
one-third of the total moisture transport into the Great Plains, and 
affects precipitation43–46. The strength of the GPLLJ is positively cor-
related to the moisture transport in the Great Plains (Supplementary 
Fig. 12) and leads to more precipitation in the Great Plains. In these 
regions, precipitation is strongly coupled to soil moisture41, and 
therefore changes in precipitation associated with the GPLLJ should 
impact soil moisture and thus surface temperature.

There is currently a positive trend in the precipitation over the 
Great Plains for the spring and summer47,48, caused by the strength-
ening of the GPLLJ49. In the CMIP5 models, the GPLLJ is also pro-
jected to increase (Fig. 5e), as previously found in another study50, 
caused by differential heating between land and the adjacent 
ocean51. We also found a strong negative correlation between pro-
jected changes in the GPLLJ amplitude and projected changes in the 
number of heat wave days among CMIP5 models (Supplementary 
Fig. 13). This suggests that an enhanced GPLLJ can lead to fewer 
heat extremes. On the other hand, the presence of a heat wave in the 
Great Plains can weaken the GPLLJ due to circulation anomalies, 
as shown in Fig. 5d, but this is beyond the scope of this study. The 
variability of the GPLLJ is also projected to increase (Fig. 5f), which 

suggests an enhanced uncertainty in future projections of soil mois-
ture and thus surface temperature. Also, an increase in the GPLLJ 
amplitude should enhance the land–atmosphere feedback as this is a 
region in which soil moisture is a limiting factor for latent heat flux.

In all, the enhanced GPLLJ and moisture transport due to ACC 
serves to attenuate the anomalous negative (northerly) wind often 
present during heat wave events and which depletes soil moisture. 
The strong land–atmosphere feedback over the Great Plains along 
with the projected enhanced variability of the GPLLJ suggests that 
the future projection of heat extremes in the Great Plains is more 
uncertain and masked by a large internal variability (Supplementary 
Fig. 14). It can be said that an enhanced GPLLJ could help alleviate 
some of the effects of temperature increase due to ACC. This is not 
the case for the western United States and Great Lakes heat wave 
clusters, where the projected significant reduction of atmospheric 
transient eddies ensures a robust increase in warm-temperature 
extremes on top of the mean climate shift, as shown by the relatively 
earlier ToE in those regions. Therefore, attributions of heat extremes 
to ACC in these regions is more certain, as shown by the attribution 
analysis (Fig. 4). These results hint at the need for caution in attrib-
uting heat extremes to changes in the mean, given that the relation-
ship of mean climate shifts and their modulation on the higher 
statistical moments are non-linear and regional in nature. Our study 
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Fig. 5 | Great Plains low-level jet and heat waves. a, Regression of JJA transient eddies and 2 m temperature (hPa2 °C–1). b, Projected changes of JJA 
transient eddies (hPa2). c, CMIP5 ensemble mean JJA 925 hPa wind (vector) and meridional wind (colour) from the historical period. d, Same as c, but for 
the composite during Northern and Southern Great Plains heat waves from the historical period. e, Same as c, but twenty-first minus twentieth century JJA 
925 hPa winds. f, Variance ratio of twenty-first to twentieth century JJA 925 hPa meridional wind. The stipples in a–d and f indicate the 95% level based on 
a student-t test and an F-test, respectively.
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emphasizes that the consequences of increased heat wave amplitude 
and frequency in the Great Lakes and western United States could 
be further exacerbated by the large population and rapid population 
increase in these regions, which highlights the regions where miti-
gation and adaptation efforts are most required.

methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41558-018-0116-y.
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methods
Models and observational data sets. The ERA-20C reanalysis is used as an 
estimate of historical heat wave occurrence over the United States and to assess 
the fidelity of the CESM1-LE and the CMIP5 models in reproducing the spatial 
patterns of heat waves. A multi-century pre-industrial run from CESM1-LE is 
used to quantify heat wave statistics in the absence of anthropogenic forcing. 
CESM1-LE and CMIP5 model simulations under twentieth century and the 
Representative Carbon Path 8.5 (RCP8.5) future scenario are analysed for heat 
waves under external forcing. The CESM1-LE simulation provides a LE size from 
a single model; consequently, the ensemble spread is solely due to internal climate 
variability25, whereas the CMIP5 simulations provide a multi-model ensemble 
approach aimed to reduce model errors by ensemble averaging. We analysed a 
1,000-year pre-industrial simulation (CESM1-PI) with constant 1850 forcing as 
the basis for the internal variability of the heat waves, a 30-member ensemble 
simulation (CESM1-LE) for the period 1920–2100 and multiple CMIP5 models for 
the period 1920–2100. Each model simulation has a distinct climate trajectory due 
to differences in the atmospheric initial conditions. All the models have the same 
specified external forcing, with historical forcing from 1920 to 2005 and RCP8.5 
forcing52,53 from 2006 to 2100 following the CMIP5 design protocol.

Heat wave cluster. The definition of heat wave proposed here is based on 
clustering of the daily mean temperature that covers each summer from 1 June to 
30 August54. For a temperature extreme to qualify as a heat wave, it must satisfy the 
following three constraints:

Threshold anomaly. For each day and grid point, a temperature anomaly with respect 
to the daily mean climatology is defined. The daily mean climatology is smoothed 
with a 20-day running average. The 20-day smoothing of the daily climatology is 
performed to account for the synoptic variability of typical extreme heat anomalies. 
Extremes are defined as anomalies larger than the 95th percentile threshold.

Spatial smoothing. A spatial filter is applied to the threshold anomalies to eliminate 
the influence of small-scale extremes (that is, hot grid points). Each grid point 
is used as the centre of a square of size L. A sliding scan is performed, and only 
those points for which the fraction of threshold anomalies exceeds some ratio 
α are retained. The number of grid points (that is, stations) within the L2 region 
depends on the resolution of the temperature data. L was chosen so that the sliding 
scan has a horizontal resolution of about 4° in latitude and longitude. We tested 
the sensitivity of this parameter from 2° <  L <  6° without much change in the 
distribution of the clusters nor in the dissimilarity index.

Temporal smoothing. The criteria for items (1) and (2) must be met for a 
minimum of three consecutive days to exclude short-duration events, which are 
uncharacteristic of synoptic and planetary scale heat waves. Propagating events are 
accounted for by merging events with overlapping areas of more than 40% during 
the three-day window.

Events that satisfied the above three constraints were considered to be 
heat wave events. These events were clustered using a hierarchical clustering 
algorithm54–56, which was previously applied to European heat waves54.  
The clustering algorithm comprises the following three steps (1)–(3):

(1)  For each event map, temperature anomalies that do not satisfy the previous 
three constraints are set to zero, and those that do satisfy the three 
constraints are retained. In the case of heat waves, all the anomalies are 
positive by definition.

(2)  All maps that belong to a specific event are merged into a single event.  
That is, a single heat wave event includes several daily temperature-anomaly 
maps that are averaged into a single heat wave. Therefore, each heat wave 
event is an independent cluster.

(3)  The agglomerative hierarchical clustering algorithm is applied to the 
clusters defined in step (5). The algorithm quantifies the intercluster 
distance between two clusters M and N using equation (1). The two closest 
clusters are merged into a single new cluster. This procedure is repeated 
until a stop criterion is met, which sets the final number of clusters:
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  Here, r(M, N) is the spatial correlation of clusters M and N over all grid 
points I and J. The intercluster distance is taken as the average distance 
between all the members of clusters M and N. The dissimilarity index, 
equation (1), provided the optimum number of clusters, which was found to 
be eight clusters.

SGS PDF. For each heat wave cluster, we assess changes in the PDF of summer 
temperature extremes by modelling the PDF as a SGS distribution27. The SGS of a 

variable X is defined in equation (2), where E, g, b and N are parameters obtained 
from the statistical moments of X:

= + + +− + ∕ −
















X

N
EX g b

g
E b

EX g
b

SGS( ) 1 [( ) ] exp
2

tan (2)
E2 2 [1 (1 )]

2
1

2

A Markov model27 for the variable Xi is defined in equation (3) using the  
same parameters as for the SGS distribution. The model is damped and forced  
by cumulative additive (bη1 +  gη2) and multiplicative (EXi)η2 noise, where  
η1 and η2 are random Gaussian variables with a zero mean and unit variance. 
Equation (3) is integrated forward using a fourth-order Runge–Kutta method,  
with a time step (dt =  1 hour) and decorrelation time scale (λ =  4 days) to produce 
81 summers of 92-day length. This process is repeated 1,000 times for a total of 
1,000 time series of 7,452-day length, which is the same length of the 1920–2000 
and 2020–2100 summer periods for the twentieth and twenty-first centuries  
used here:
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This approach allows us to quantify the non-Gaussian aspect of the 
meteorological fields (for example, surface temperature for our purpose). The 
modelling of 2 m temperatures using the SGS approach brings several main 
benefits. First, it provides a means to quantify the influence of climate shifts under 
Gaussian and non-Gaussian assumptions. Second, it enables us to investigate how 
changes in climate influence the statistical moments of summer temperature and 
its PDF. Finally, the parameters of the SGS distribution can be used to define the 
shape and scale parameters of the extreme value GP distribution27. The Markov 
model is also used to assess confidence interval for the GP distribution due to 
random errors.

PN. Here, PN is the fraction of extreme events attributed to ACC, defined as:
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where P0 is the probability of an event occurring in the counterfactual world (that 
is, without ACC) and P1 is the probability of that same event occurring in the 
factual world (that is, including ACC). PN ranges from zero to one and indicates 
whether ACC is a necessary condition for the extreme event to occur. That is, the 
extreme event would not occur in the absence of ACC. The probabilities P0 and P1 
are obtained from a GP distribution of the pre-industrial and twenty-first century 
summer temperatures, respectively.

Given that extreme events are by definition rare, PN is quantified using all 
heat extremes in all 30 ensembles of the twenty-first century run. Then, for 
each decade, all PN values are binned into three groups: PN ≤  0.1 (ACC is not a 
necessary condition for most heat extremes), 0.1 <  PN ≤  0.5 and PN >  0.5 (ACC 
is a necessary condition for more than half of the temperature extremes). For 
example, a distribution of PN that spans the summers of 2010–2019 and all 
30 ensembles for a total of 300 summers is quantified. This is repeated for all 
decades, which allows for a representative sample size of heat extremes. The 
results are presented in Fig. 4 as a probability plot of PN values for each decade 
and bin. This allows us to make assessments of heat extreme attribution to ACC 
into the future.

Transient eddies (storminess) definition. Transient eddies are defined as the 
square of the departure from the monthly mean of daily mean geopotential height 
at 500 hPa.

Data availability. The data that support the findings of this study are available 
from the corresponding author upon request.
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