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ABSTRACT

This study investigates Atlantic warm pool (AWP) variability in the historical run of 19 coupled general cir-

culation models (CGCMs) submitted to phase 5 of the Coupled Model Intercomparison Project (CMIP5). As

with theCGCMs in phase 3 (CMIP3),mostmodels suffer from the cold SSTbias in theAWPregion and also show

veryweakAWPvariability as represented by theAWParea index.However, for the seasonal cycle theAWPSST

bias of model ensemble andmodel sensitivities are decreased compared with CMIP3, indicating that the CGCMs

are improved. The origin of the cold SST bias in the AWP region remains unknown, but among the CGCMs in

CMIP5 excess (insufficient) high-level cloud simulation decreases (enhances) the cold SST bias in the AWP

region through the warming effect of the high-level cloud radiative forcing. Thus, the AWP SST bias in CMIP5 is

moremodulated by an erroneous radiation balance due tomisrepresentation of high-level clouds rather than low-

level clouds as in CMIP3. AWP variability is assessed as in the authors’ previous study in the aspects of spectral

analysis, interannual variability, multidecadal variability, and comparison of the remote connections with ENSO

and the North Atlantic Oscillation (NAO) against observations. In observations the maximum influences of the

NAO and ENSO on the AWP take place in boreal spring. For some CGCMs these influences erroneously last to

late summer. The effect of this overestimated remote forcing can be seen in the variability statistics as shown in the

rotated EOF patterns from the models. It is concluded that the NCAR Community Climate System Model,

version 4 (CCSM4), the Goddard Institute for Space Studies (GISS)Model E, version 2, coupled with theHybrid

Coordinate OceanModel (HYCOM) oceanmodel (GISS-E2H), and theGISSModel E, version 2, coupled with

the Russell ocean model (GISS-E2R) are the best three models of CMIP5 in simulating AWP variability.

1. Introduction

The Atlantic warm pool (AWP), defined as the region

with sea surface temperature (SST) above 28.58C con-

sisting of theGulf ofMexico, the Caribbean Sea, and the

western tropical North Atlantic, undergoes strong varia-

tions on seasonal to multidecadal time scales (Wang and

Enfield 2001, 2003; Wang et al. 2008a,b; Enfield and Cid-

Serrano 2010). The AWP variability has been shown to

play a role in the climate system by affecting precipitation

patterns and tropical cyclone activity (Wang et al. 2006,

2008a,b, 2011), so it is important to evaluate how well

coupled general circulation models (CGCMs) represent

this variability. Liu et al. (2012, hereafter LWLE12) have

studied the AWP variability against observations in 22

CGCMs from phase 3 of the Coupled Model Intercom-

parison Project (CMIP3), concluding that most CMIP3

CGCMs suffer from a marked cold SST bias in the AWP

region but that there is always one group of CGCMs that

is able to represent well each aspect of AWP variability,

although each aspect is reproduced by a different set of

models. This paper extends the AWP variability study in
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the new generation of CGCMs provided by phase 5 of the

Coupled Model Intercomparison Project (CMIP5) and

assesses the model progress as compared with CMIP3.

The AWP develops in June, reaches its maximum

during the four months of July–October (JASO), and

decays quickly after October (Wang and Enfield 2003;

Lee et al. 2007). For this annual cycle, Enfield and Lee

(2005) showed that the AWP variation is largely forced

by shortwave radiation while latent heat flux plays

a secondary role, particularly during the AWP decay

phase. This seasonal cycle in many of the CMIP3models

has a significant cold bias in the AWP region (Chang

et al. 2007, 2008; Richter and Xie 2008; Misra et al. 2009;

Richter et al. 2012; LWLE12). Large and Danabasoglu

(2006) and Chang et al. (2007) both pointed out that the

North Atlantic subtropical high and associated surface

winds are stronger than observed. Grodsky et al. (2012)

further examined the tropical Atlantic SST bias based

on the Community Climate System Model, version 4

(CCSM4), and pointed out that the excess winds in-

duced by erroneously high sea level pressure (SLP)

cause excess surface latent heat loss and cold SST bias in

the tropical North Atlantic (NTA). However, based on

an analysis of observed air–sea fluxes, Misra et al. (2009)

found that surface evaporation in the AWP region is

weakly influenced by both surface winds and air–sea

humidity variations, while in the National Centers for

Environmental Prediction (NCEP) Climate Forecast

System (CFS) the latent heat flux is only strongly mod-

ulated by the air–sea humidity variations. These studies

indicate that, unlike in the NTA, increased winds and

evaporation cannot fully explain the cold SST bias in the

AWP region. Li and Xie (2012) summarized that the

tropical SST bias can be classified into two types: onewith

the same sign across all basins, which is highly correlated

with the tropical mean caused by biases in atmospheric

simulations of cloud cover, and the other with large var-

iability in the cold tongue regions caused by biases of

oceanic thermocline depth. The AWP bias is more re-

lated to radiative flux errors due to local convection and

clouds (LWLE12).

As the AWP is adjacent to the NTA and, in fact, in-

cludes thewesternNTA (theNTA is defined as the region

of 5.58–23.58N, 57.58–158W), climate variability of the

AWP is contemporaneously correlated with variability

in the NTA to the east (Wang and Enfield 2003). Thus

the major modes of the tropical Atlantic variability con-

tribute to the AWP interannual and longer time scales.

The correlations of the AWP with the tropical Atlantic

meridional gradient mode (AMM) (Servain 1991; Chang

et al. 1997, Xie et al. 1999; Enfield et al. 1999; Xie and

Carton 2004) and theAtlantic Ni~no (Zebiak 1993; Carton

and Huang 1994; Latif and Gr€otzner 2000; Okumura and

Xie 2006) are statistically significant but relatively low

compared with the correlations of the AWP with Ni~no-3

(58S–58N, 1508–908W) SST anomalies and NTA SST

anomalies, suggesting that the impacts of the AMM and

the Atlantic Ni~no on the AWP are weaker than those

of the Pacific El Ni~no and NTA (Wang and Enfield

2003). The different correlation of the AWP with AMM

and NTA is consistent with the observation of Enfield

et al. (1999) that the NTA and tropical SouthAtlantic are

uncorrelated at zero lag and show different time scales of

variability. Through rotated empirical orthogonal func-

tion (rEOF) statistical analysis, the southern tropical

Atlantic (STA) pattern, NTA pattern, and subtropical

South Atlantic (SSA) pattern are three major modes

exhibited (Huang and Shukla 2005; Bates 2008). In

CGCMs, however, the STAmode may demonstrate two

separate patterns in the tropical South Atlantic. The

mode with variability in the southern segment of the

Benguela upwelling zone off the coast of Namibia is

subcategorized as the STA-BG mode and the mode of

the equatorial tongue pattern is subcategorized as the

STA-EQ mode (Mu~noz et al. 2012). The separation of

STA-BG and STA-EQ in numerical models, unlike in

the observations, is related to the model systematic bias

of excessive southward shift of the intertropical con-

vergence zone to around 108S in boreal spring (Huang

et al. 2004). An excessive southward shift of the Atlantic

ITCZ in the CMIP3 model and its relation to the weak

bias of the southerlywind along theAfrican coast are also

discussed byRichter andXie (2008), Hu et al. (2008), and

Doi et al. (2010). Tozuka et al. (2011) showed that the

tropical Atlantic bias is highly sensitive to the choices of

deep convection parameterization.

Another issue related to model performance and as-

sessment is the extent to which themodels reproduce the

observed manner in which climate modes appear to force

changes in the AWP.Much more of the NTA variability

is caused by remote forcing from climate variability

outside the tropical Atlantic than by the intrinsic self-

sustained modes of the tropical Atlantic variability (Xie

and Carton 2004). Czaja et al. (2002) showed that almost

all NTA SST extreme events can be related to either

ENSO or the NAO, consistent with Enfield et al. (2006).

Analysis based on the National Oceanic and Atmo-

spheric Administration (NOAA) Cooperative Institute

for Research in Environmental Sciences (CIRES)

Twentieth Century Global Reanalysis (20CR) indicates

that both positive ENSO phase and the negative NAO

phase in winter correspond to reduced trade winds in the

AWP region (LWLE12). The westerly anomalies in-

duced by positive ENSO and the negative NAO, asso-

ciated also with increased sea level pressure and

subsidence in the NTA, lead to local heating through
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reduced latent heat loss, ultimately leading to a warm

SST during March–May (ENSO) and February–April

(NAO). This behavior is a known feature of anomalous

AWP growth and is well captured by only 5 models out

of 22 CGCMs in CMIP3 (LWLE12).

The Atlantic multidecadal oscillation (AMO) (Delworth

and Mann 2000; Enfield et al. 2001; Bell and Chelliah

2006) is an oscillatory mode occurring in the North At-

lantic SST primarily on multidecadal time scales. Wang

et al. (2008a) showed that the AWP variability coincides

with the signal of the AMO—‘‘the warm (cool) phases

of theAMOcorrespond tomore large (small) AWPs’’—

and suggested that the multidecadal influence of the

AMO on Atlantic tropical cyclone activity (Goldenberg

et al. 2001) may operate through the mechanism of the

AWP-induced atmospheric changes. In CMIP3, the

global SST difference pattern between large AWP years

and small AWP years on the multidecadal time scale

resembles the geographic pattern of the AMO for most

coupled models (LWLE12).

Many studies have been conducted to evaluate the

performance of CGCMs in theWorld Climate Research

Program (WCRP) CMIP3 multimodel dataset (e.g., Saji

et al. 2006; Joseph and Nigam 2006; Chang et al. 2007;

Richter and Xie 2008; de Szoeke and Xie 2008; Wang

et al. 2009). As the CMIP5 model dataset is now

available, it is of interest to evaluate how well the new

generation of CGCMs represents AWP variability in

order to improve and apply coupled climate models for

AWP research. In this study we analyzed 19 state-of-

the-art CGCMs in the WCRP CMIP5 multimodel da-

taset as to how they replicate AWP variability from

seasonal to multidecadal time scales as well as the AWP

teleconnection with ENSO and the NAO. The remain-

der of the paper is organized as follows. The models,

validation datasets, and methods used in this study are

described in section 2. The AWP seasonal cycle and

bias analysis are included in section 3. The AWP vari-

ability of interannual and longer time scales in CGCMs

is studied and compared with observations and CMIP3

simulations in section 4. Section 5 summarizes the

conclusions.

2. Data and methods

This study is based on output from historical simula-

tions of 19 CGCMs in the WCRP CMIP5 multimodel

dataset. The modeling center and country, CMIP5model

abbreviation and designated letter, and length of his-

torical simulations for each model in this study are

TABLE 1. The 19 models of CMIP5 involved in this study and their development institutions, letter denotations, short names used

throughout the paper, and time periods of historical simulations. CMIP3 models are also listed by institutions for reference. (The letter A

denotes observations.)

Institution Letter denotation Abbreviation Historical run

CMIP3 model names

defined in LWLE12

Canadian Centre for ClimateModeling andAnalysis

(CCCma), Canada

B CanESM2 1850–2005 CGCMt47, CGCMt63

National Center for Atmospheric Research (NCAR),

United States

C NCAR CCSM4 1850–2005 CCSM3, Npcm1

Commonwealth Scientific and Industrial Research

Organization (CSIRO), Australia, and Bureau of

Meteorology (BOM), Australia

D CSIRO Mk 3.6.0 1850–2005 CSIRO30, CSIRO35

Geophysical Fluid Dynamics Laboratory (GFDL),

United States

E GFDL CM3 1860–2005 GFDL20, GFDL21

F GFDL-ESM2G 1861–2005

G GFDL-ESM2M 1861–2005

National Aeronautics and Space Administration

(NASA), Goddard Institute for Space Studies

(GISS), United States

H GISS-E2H 1850–2005 GISSaom, GISSer

I GISS-E2R 1850–2005

Met Office Hadley Centre, United Kingdom J HadCM3 1859–2005 Uhadcm3, Uhadgem1

K HadGEM2-CC 1859–2005

L HadGEM2-ES 1859–2005

Institute for Numerical Mathematics (INM), Russia M INM-CM4 1850–2005 INMCM3

Institut Pierre Simon Laplace (IPSL), France N IPSL-CM5A-LR 1850–2005 IPSL

O IPSL-CM5A-MR 1850–2005

P IPSL-CM5B-LR 1850–2005

Max Planck Institute for Meteorology (MPI-M),

Germany

Q MPI-ESM-LR 1850–2005 MPI

R MPI-ESM-P 1850–2005

Meteorological Research Institute (MRI), Japan S MRI-CGCM3 1850–2005 MRI

Norwegian Climate Centre, Norway T NorESM1-M 1850–2005
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shown in Table 1. CMIP3 model abbreviations are also

included for references in the table grouped bymodeling

center. The model data can be downloaded from the

website of Program for Climate Model Diagnosis and

Intercomparison (PCMDI; http://www-pcmdi.llnl.gov/).

The historical simulations are spun up and then forced

by solar, volcanic, sulfate aerosol, and greenhouse gas

forcings (Meehl et al. 2007) from different starting years

(1850, 1859, 1860, and 1861) to 2005.

Observational datasets are used to validate the variabil-

ities of CGCM simulations. SST data are the NOAA Ex-

tended Reconstruction Sea Surface Temperature version 3

(ERSST) (Smith et al. 2008). The temporal coverage is from

January1854 to thepresent. (Thesedatacanbeobtained from

FIG. 1. Climatology of (a) AWPAI, (b) AWPTI (AWP box averaged), (c) net surface heat flux of 20CR, (d) net

surface heat flux of CMIP5 minus CMIP3, (e) net surface heat flux of CMIP5 minus 20CR, and (f) net surface heat

flux of CMIP3 minus 20CR. Positive value of heat fluxes mean ocean gains heat. AWP box is defined within 58–308N,

land–408W. Black line with circle is for ERSST in (a). Blue line is ensemble of CMIP5 CGCMs. Gray dashed line is

the ensemble of CMIP3 models. Model spreads are represented by vertical bars. Black dashed lines in (d)–(f) stand

for AWPTI 3 10 (8C).
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http://www.ncdc.noaa.gov/oa/climate/research/sst/ersstv3.)

php. Surface fluxes and SLP data are from NOAA–

CIRES 20CR version II (Compo et al. 2011). This at-

mospheric reanalysis spans the entire twentieth century

(1871–2008), assimilating only surface observations of

synoptic pressure, monthly SST, and sea ice distribution.

[More information about this dataset is provided at http://

www.esrl.noaa.gov/psd/data/20thC_Rean/. Latent heat flux

and surface winds from L’Institut Français de Recherche

pour l’Exploitation de la Mer (IFREMER) are pro-

vided from ftp://ftp.ifremer.fr/ifremer/cersat/products/

gridded/flux-merged (Bentamy et al. 2008).] This en-

tire 16-yr (1992–2007) surface turbulent flux dataset es-

timated from satellite observations is improved from the

previous version in assessing the surface winds from

European Remote Sensing Satellites 1 and 2 (ERS-1 and

FIG. 2. AWP box averaged net surface heat flux bias (W m22) andAWPTI bias (8C) for selectedmodels: (a) GISS-E2R

(CMIP5), (b) GISS-ER (CMIP3), (c) CCSM4 (CMIP5), (d) CCSM3 (CMIP3), (e) GFDL CM3 (CMIP5), (f) GFDL

CM2 (CMIP3), and (g) CSIRO Mk 3.6 (CMIP5).
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ERS-2) and QuikSCAT scatterometers and using the

new NOAA sea surface temperature estimates.

The AWP area index (AWPAI) is defined as the area

inside the 28.58C isotherm at the sea surface in the AWP

region. Because of the cold SST bias in CGCMs the

AWPAI cannot be defined for all the models and in

certain years. So theAWPSST index (AWPTI) is defined

in this study as the box-averaged SST from 58 to 308N and

the coast to 408W. The Atlantic multidecadal oscillation

(AMO) index is defined as the detrended area weighted

average of the SST anomalies over the North Atlantic

from 08 to 708N (Enfield et al. 2001). The Ni~no-3 index is

an average of the SST anomalies in the region 58N–58S,

1508–908W. The NAO index is chosen as the difference

of normalized SLPbetween 398N, 98W(Lisbon, Portugal)

and 658N, 228W (Stykkisholmur/Reykjavik, Iceland)

(Hurrell 1995). All indices are calculated for eachmodel

and observations. The clouds are classified by cloud-top

height. The high-level clouds are 400 hPa or over, the

middle-level clouds 400–600 hPa, and the low-level

clouds 600 hPa or less as a rough standard. The cloud

factions of the model outputs are integrated over these

three layers separately to represent the low-level, middle-

level, and high-level cloud amount.

Wavelet software for spectrum analysis was provided

by C. Torrence and G. Compo (Torrence and Compo

FIG. 3. Observational SST andmodel SST bias (8C) in four seasons: (a1)–(a4) ERSST averaged in four seasons, (b1)–(b4) the seasonal SST

bias of the 19 model ensemble, and (c1)–(c4), (d1)–(d4), and (e1)–(e4) the seasonal SST bias for selected models.
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1998) for spectrum analysis. The Taylor diagram (Taylor

2001) is applied to quantify how well models simulate an

observed climate field. It relies on three nondimensional

statistics: 1) the ratio of the variances of the two fields

(r, which is the standard deviation of themodel divided by

standard deviation of the observations); 2) the correlation

between the two fields (R, which is computed after re-

moving the overall means); and 3) the root-mean-square

error between models and observation (E, which is nor-

malized by the standard deviation of the observed field).

This diagram provides a 2D graph based on the three

statistics summarizing how closely a pattern matches

observations.

3. AWP climatology

a. Seasonal cycle

The AWPAI of the 19-model ensemble [note that in

this study models (CGCMs) indicate the models from

CMIP5 or general meaning unless CMIP3 follows] is

slightly increased during July–September (JAS) compared

with the ensemble of AWPAI in CMIP3 (Fig. 1a). Al-

though the seasonal cycle ofAWPAI ensemblewith peaks

in JASO is well simulated, it is still much underestimated

compared with ERSST due to the cold SST bias in the

AWP region (Misra et al. 2009; LWLE12). The bias of

APWAI reaches24.23 106 km2 in summer, but almost

no bias exists in January as there is no AWP in winter

based on the definition. The spread of the models’

AWPAI contracts in contrast with the spread of CMIP3.

The AWPAI of 10 models is less than 20% of ERSST

AWPAI in summer and for some certain years AWPAI

of a part of CGCMs cannot be computed to study their

interannual and multidecadal variability due to the cold

SST bias. Therefore, the AWPTI is used for this study.

Figure 1b shows the AWPTI of the model ensemble

mean successfully representing the seasonal cycle of

ERSST, which peaks in JASO. However, there is cold

bias throughout the year with a minimum cold bias of

FIG. 4. Climatology of SLP (hPa) and model ensemble bias. (a1)–(a4) Climatology of SLP. Shading stands for model

ensemble. Contour lines stand for 20CR. (b1)–(b4) Model ensemble bias for four seasons compared with 20CR.

1 AUGUST 2013 L IU ET AL . 5321



0.898C in January and maximum cold bias over 1.28C in

May–July (MJJ). The spread is consistent for all months

with a range of 1.98–2.28C. Compared with CMIP3, the

ensemble mean of AWPTI increases about 0.38C all year

round (Fig. 1d), and the spread of models also contracts

about 18C. To some extent the performance of CMIP5 in

simulating AWP seasonal cycle is improved from the

view of themodel ensemble. The improvement ofmodel

ensemble mean may be explained by the slight increase

of net surface heat flux in CMIP5 (Fig. 1d). Compared

with CMIP3, the ensemble mean of net surface heat flux

increases within a range of 1.5–3.4 W m22 during June–

October (JJASO). This increase accounts for ;0.18C
temperature change if we roughly estimate the mixed

layer depth at about 25 m in the AWP region. For each

component of surface heat fluxes, the ensemble mean of

CMIP5 has more latent heat loss (heat loss means that

ocean loses heat; heat gainmeans that ocean gains heat),

more longwave radiation loss, less sensible heat loss, and

more net shortwave radiation gain (Fig. 1d) compared

with CMIP3. However, the ensemble mean in both

CMIP3 (Fig. 1f) and CMIP5 (Fig. 1e) possesses the same

sign of bias for each component of surface heat fluxes

except net shortwave radiation given the reference of

20CR. Wang and Enfield (2001) suggested that the SST

seasonal variations in the AWP region are induced pri-

marily by surface net heat flux with a phase lag of 3–4

months. The shortwave and latent heat fluxes are the

two largest terms. The shortwave flux has a maximum

value from April to August, and the latent and sensible

heat losses have their minima around May owing to

lower winds speeds associated with the seasonal south–

north movement of the ITCZ. Minimum longwave ra-

diation occurs from July to September because greater

cloud cover results in an increase in the downward

longwave radiation from cloud ceilings. This results in

FIG. 5. Climatology of surface winds (m s21) and model ensemble bias. (a1)–(a4) Climatology of surface winds.

Shading stands for wind speed of model ensemble. Vectors stand for wind vectors of model ensemble. Contour lines

stand for wind speed of IFREMERdata. (b1)–(b4)Model ensemble bias for four seasons compared with IFREMER

data. Shading stands for wind speed bias and vectors stand for wind vector bias.
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the maximum of net heat flux occurring in late spring and

maximum SST in fall. These relationships between heat

fluxes andAWP SST are well reflected in the 20CR (Fig.

1c), CMIP3, and CMIP5 ensemble mean.

We categorize the CMIP5models into different groups

based on their development institutions. For the group of

GISS models (see the appendix for a complete list of the

institutional models), both GISS-E2H and GISS-E2R

have better performance in simulating theAWP seasonal

cycle compared with previous generation of GISS-AOM

and -ER. The AWPTI bias of GISS-E2R (Fig. 2a) is

much smaller than the GISS-ER (Fig. 2b). Compared

with GISS-ER, the latent heat flux bias decreases most

in GISS-E2R. However, this decreased positive latent

heat flux bias is not able to explain the decreased neg-

ative AWPTI bias. For the NCAR group, CCSM4 (Fig.

2c) is much improved from CCSM3 (Fig. 2d) for the

seasonal AWPTI simulation. Compared with CCSM3 for

each component bias of surface heat fluxes, the shortwave

heat flux bias changes themost in CCSM4. This increased

shortwave heat flux inCCSM4may explain the decreased

negative AWPTI bias. Both GISS-E2R and CCSM4 im-

prove the simulation of AWPTI from the corresponding

last generation CGCMs, but the heat flux component

bias analysis cannot give a consistent conclusion why the

simulations are improved.

For the GFDL group, GFDL CM3 (Fig. 2e), GFDL-

ESM2G, and GFDL-ESM2M (not shown) of CMIP5

have no better performance in simulating the AWP

seasonal cycle compared with GFDL CM2 (Fig. 2f) of

CMIP3. The CM3 has a notable difference in seasonal

cycle of surface heat fluxes compared with the other

GFDL models. In summer, CM3 has less sensible heat

loss, less longwave radiation loss, and shortwave radia-

tion gain, with the net heat flux peaking onemonth earlier

than the other GFDL models (Figs. 2e,f).

For the CSIRO group, the CSIROMk 3.6 (Fig. 2g) of

CMIP5 has larger AWPTI negative bias but also has

FIG. 6. Climatology of latent heat flux (W m22) andmodel ensemble bias. (a1)–(a4) Climatology of latent heat flux.

Shading stands formodel ensemble. Contour lines stand for IFREMERdata. (b1)–(b4)Model ensemble bias for four

seasons compared with IFREMER data.
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larger positive net heat flux compared with CSIRO Mk

3.5 of CMIP3 (not shown). The larger net heat flux of

CSIRO Mk 3.6 is not able to explain the weaker am-

plitude of AWPTI compared with Mk 3.5, which may

indicate that oceanic processes play a role.

For the other groups of CGCMs, detailed discussions

are not included. In general there are no unanimous con-

clusions as to how the surface fluxes components affect

the AWPTI bias. But, for some models, such as the

GFDLCM3 (Fig. 2e) and CM2 (Fig. 2f) and CSIROMk

3.6 (Fig. 2g), the seasonal cycle of longwave radiation

bias is highly correlated with AWPTI bias; also, for some

models, such asGISS-ER (Fig. 2b) and CCSM3 (Fig. 2d),

the seasonal cycle of shortwave radiation bias is corre-

lated with AWPTI bias. Thus AWP SST bias in the

CGCMspossibly relates to different physicalmechanisms

associated with shortwave and longwave radiation.

In summary, theAWP(AWPAI andAWPTI) seasonal

cycles of NCAR CCSM4, CSIRO Mk 3.6.0, GISS-E2H,

GISS-E2R, HadCM3, MPI-ESM-LR, and MPI-ESM-P

have amplitudes comparable to those of ERSST. Al-

though each individual model has changed or made no

progress in simulating the AWP seasonal cycle compared

with its corresponding previous generation model, the

ensemble mean of AWP climatology in CMIP5models is

somewhat improved overall, and the model ensemble

spread has decreased. However, the state-of-the-art

CGCMs in CMIP5 still suffer from a significant cold bias

in the AWP region.

b. Bias analysis

The AWP peaks in summer and fall. To compare with

ERSST, the SST bias pattern is shown for the 19-member

ensemblemean of CMIP5 (Figs. 3b1–b4) and for selected

models (Figs. 3c–e). The ensemble mean character simi-

lar with CMIP3 (LWLE12) as shown in Figs. 3b1–b4 is

that, in addition to the cold bias north of the equator, the

southeast Atlantic warm SST bias including the cold

FIG. 7. Climatology of pressure vertical velocity (Pa s21) and model ensemble bias. (a1)–(a4) Climatology of

pressure vertical velocity. Shading stands for model ensemble. Contour lines stand for 20CR. (b1)–(b4) Model en-

semble bias for four seasons compared with 20CR. The sign of pressure vertical velocity is reversed and subsidence

corresponds to negative pressure velocity.
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tongue and the Angola–Benguela coastal regions exists

in all the models except CSIRO Mk 3.6 (Figs. 3d1–d4)

for all four seasons. It is possible that the positive

feedback of wind, evaporation, and SST (WES), which

causes the tropical Atlantic variability (Xie and Carton

2004), may generate these opposite biases across the

equator. The process is that the warm bias in the

southeast tropical Atlantic induces stronger northeast

trade winds in the tropical North Atlantic (NTA), and

then leads to more latent heat loss; therefore, a cold SST

bias of the NTA can be formed, which in turn decreases

the southeast trade winds and enhances the warm bias in

the southeast tropical Atlantic due to less latent heat loss.

IPSL-CM5B-LR (Figs. 3e1–e4), similar to IPSL-CM5A-

LR, IPSL-CM5A-MR, and MRI-CGCM3 (not shown),

has a cold bias with maxima across the tropical North

Atlantic, which resembles a strip and is located near

158N. This character is different from the cold SST bias

pattern of the NTA in the other CGCMs, which indicates

that different mechanisms lead to the cold bias in the

CGCMs.

Grodsky et al. (2012) found that the atmospheric com-

ponent of CCSM4 has abnormally intense surface sub-

tropical high pressure systems, which cause the northeast

trade winds to be too strong and lead to an excessively

large latent heat loss in the NTA region. Before we

examine this process here for the CMIP5 CGCMs, it

should be noted that the cold SST bias enhances the SLP

by raising the air density above it. In fact, the positive

(negative) SLP bias (right panels in Figs. 4b1–b4) is

largely collocated with the cold (warm) SST bias (Figs.

3b1–b4), which seems to support a strong effect (or

feedback) of the SST bias on the SLP. Except for GISS-

E2H, GISS-E2R, and HadCM3, the SLP bias pattern of

FIG. 8. Multimodel scatterplot in JASO of (a) net longwave radiation vs AWPTI,

(b) downward longwave radiation vs AWPTI, and (c) high-level cloud fraction vs AWPTI. Each

point stands for one model. The black line shows the least squares linear fit to all points.
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16 of the CGCMs shares the similarity with the ensemble

as shown in Fig. 4. The CGCMs can capture the major

characters of SLP climatology (Figs. 4a1–a4), but in

most of the NTA region the CGCMs overestimate SLP

by 2 hPa (Figs. 4b1–b4). In the northeast trade winds

region of the CGCM ensemble (Figs. 5a1–a4), there is

always a positive wind speed bias throughout all four

seasons (Figs. 5b1–b4). The latent heat loss maximum

centered to the south of the Gulf Stream is mainly lo-

cated in the AWP region (Figs. 6a1–a4). The latent heat

loss bias in the AWP region is positive instead of nega-

tive as shown in the NTA region for the CGCM en-

semble (Fig. 6b). It suggests that for most models, the

NTA cold SST bias can be traced to excessive evapora-

tion due to erroneously high SLP and strong northeast

trade winds. However, in the AWP region this mecha-

nism is not able to explain the cold SST bias.

The pressure vertical velocity at 500 mb of the CGCM

ensemble (Figs. 7a1–a4) shows the location of the ITCZ

and its seasonal cycle. Comparedwith 20CR, the CGCMs

have subsidence bias in the AWP region all year round.

This subsidence bias may be induced by overturning

through the uplift process in the ITCZ of the east Pacific

(Figs. 7b1–b4) since convection over the Amazonian

region is also much weakened in CGCMs. The sub-

sidence bias tends to suppress high-level cloud forma-

tion and increase low-level cloud formation. LWLE12

found that the negative SST bias of CMIP3 in the AWP

region is connected with an excessive amount of simu-

lated low-level cloud, which blocks shortwave radiation

from reaching the sea surface. This positive feedback of

colder SST, increased fraction of low level cloud, and

decreased surface shortwave flux (Fig. 9) may enhance

the cold SST bias. However, it is uncertain to what extent

the excessive simulated low-level clouds in CMIP3

CGCMs cause, or are caused by, the SST bias. The same

analysis was performed on the output from CMIP5

CGCMs.We do not find the relationship of higher AWP

SST corresponding tomore shortwave radiation and less

low-level cloud fraction during the AWP peak season.

Higher AWP SST in August–October (ASO), however,

corresponds to less net longwave heat loss (Fig. 8a), due

to an increase in the downward longwave heat flux (Fig.

8b) and to more high-level cloud fraction among the

CMIP5 CGCMs. This relationship suggests that, al-

though there is still subsidence bias for the CMIP5

CGCMs in the AWP region, excessive high-level clouds

are simulated (Jiang et al. 2012) and the warming effect

of the high-level clouds radiative forcing (Su et al. 2008),

as shown in Fig. 9, dominates the modulation of AWP

SST bias (the warming effect of the high-level clouds

means that high-level clouds tend to reflect more long-

wave radiation back to the earth’s surface and have less

impact on downward shortwave radiation and, there-

fore, have a warming effect on sea surface). Thus, more

(less) high-level cloud simulation may decrease (en-

hance) the cold AWP SST bias.

Why are excessive high-level clouds simulated com-

pared with CMIP3? Significant improvement in both

deep and shallow convection schemes have been made

in CMIP5. For example, GFDL AM3, the atmospheric

component of CM3 (Donner et al. 2011), includes new

treatment of deep and shallow cumulus convection,

cloud droplet activation by aerosols, subgrid variability

of stratiform vertical velocities for droplet activation,

and atmospheric chemistry driven by emissions with

advective, convective, and turbulent transport. The

other possible reason is that the mean state of AWP

SST of CGCMs increases in CMIP5 although the cold

SST bias still exists. In general, lower SST tends to form

more shallow convection and leads to more convection-

related low-level clouds. Higher SST tends to induce

more deep convection and then more high level clouds

can be formed. The increases of mean AWP SST in

CMIP5 may also mitigate the excess low-level cloud

formation and explain why low-level clouds andAWPTI

are not correlated in CMIP5. Again the ultimate origin

of the cold bias remains unknown.

4. AWP variability

a. Spectrum analysis

Power spectrum analyses of the time series of monthly

AWPTI are shown in Fig. 10. There is significant energy

at multidecadal periods between about 20 and 32 yr and

longer than 32 yr in ERSST (Fig. 10a). The spectrums

FIG. 9. Diagram of different radiative properties of low- and

high-level clouds and their associated feedback with SST in the

AWP region.
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of most CGCMs, however, demonstrate peaks in the

interannual band (3–7 yr), the decadal band (8–20 yr),

and the multidecadal band (20–30 yr, 40–60 yr, or lon-

ger), all with 95% significance as shown in Fig. 10b. The

ensemble spectra of the CGCMs also reflect the three

bands. Based on the spectral character of the model en-

semble, four groups ofmodels are categorized as shown in

Table 2. In category I (as shown in Fig. 10c), four models

simulate the significant multidecadal bands: GFDLCM3,

HadGEM2-CC, MPI-ESM-LR, and MRI-CGCM3. In

category II (shown in Fig. 10d), three models simulate

the interannual band and multidecadal bands: GFDL-

ESM2G, GFDL-ESM2M, and HadCM3 at the 95%

significance level. In category III six models (Fig. 10e),

consisting of GISS-E2H, GISS-E2R, INM-CM4, IPSL-

CM5A-MR, MPI-ESM-P, and NorESM1-M, simulate

significant variability for the decadal and multidecadal

bands. In category IV six models simulate significant

FIG. 10. Spectrum analysis of AWPTI. (a) Spectrum of ERSST. The y axis is power and the x axis is the wavelet

period in years. The dashed line indicates 95% significance level. (b)–(e) As in (a), but for the ensemble of 19 models

with each model shown as a gray line, for Group I, II, III, and VI models, respectively.
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variability for the interannual, decadal, and multidecadal

bands (Fig. 10f): CanESM2, NCAR CCSM4, CSIRO

Mk 3.6.0, HadGEM2-ES, IPSL-CM5A-MR, and IPSL-

CM5B-LR. Because a higher SST anomaly leads to

increase deep convection and the convection-related

net heat flux tends to cool the AWP (Wu et al. 2006),

this local air–sea interaction tends to damp AWP SST

anomalies and decrease their interannual variability,

although the AWP still demonstrates substantial in-

terannual variations through nonconvection-related

processes such as advection. However, no significant

periods are shown for the AWP interannual variability

of the observations. The CGCMs are limited in their

representation of the local air–sea interaction as dis-

cussed in Wu et al. (2006) and also show strong AWP

internal variability with significant periods on the inter-

annual band (LWLE12). The source of low-frequency

variability on the multidecadal time scale is possibly

from oceanic processes (Delworth and Mann 2000).

In summary, spectrum analysis of ERSST reveals that

multidecadal variability is dominant in the AWP region. It

suggests that there is no significant period for interannual

variability. It does not mean that the interannual variation

is weak. On the contrary, the standard deviation of

AWPTI on the interannual band for both observation

and CGCMs is larger than the deviation on the longer

time scales (Fig. 11). Eleven out of 19 CGCMs have

larger standard deviation of AWPTI compared with

observations. In the next two sections, we focus on the

interannual and multidecadal variability of the AWP in

its peak season.

b. Interannual variability

We perform rEOF analysis on the tropical Atlantic

ASOSST from 308S to 308N, as shown in Fig. 10. The first

mode of observations with 17.0% variance (Fig. 12a1) is

an STA-EQmode featuring maximum SST anomalies on

the equator and associated changes in the easterly trade

winds (Philander 1986; Zebiak 1993; Carton and Huang

1994). The second mode is the NTA mode with 13.0%

variance (Fig. 12a2). The SST anomalies are centered

near the African coast in the northern tropical Atlantic

Ocean. The third mode is the STA-BQ mode with

10.3% variance, characterized by SST fluctuations cen-

tered along the Benguela coast. The fourth mode is SSA

mode with 10.2% variance, featuring maximum SST

anomalies in the open ocean of the subtropical Atlantic.

AWP interannual variability is primarily dominated by

these four modes although the variance of these modes

in the AWP region is small.

The rEOF modes of CGCMs are listed in Table 2.

Compared with the rEOFmodes of ERSST, the CGCMs

are categorized into three groups. Category I, consist-

ing of NCAR CCSM4 (Figs. 12b1–b4) and GISS-E2H

(Figs. 12c1–c4), successfully captures all of the first

four modes of observations with the overall charac-

ter of each mode. Category II, consisting of CanESM2,

CSIROMk 3.6.0, GISS-E2R, HadGEM2-ES, INM-CM4,

TABLE 2. First four rEOFmodes of ERSST and CGCMswith their variances. Abbreviations are STA: southern tropical Atlantic mode;

NTA: northern tropical Atlantic mode; SSA: subtropical South Atlantic mode; STA-EQ: equatorial component of southern tropical

Atlantic mode; STA-BG: Benguela component of southern tropical Atlantic mode; and NTA II: the second mode of NTA caused by

model bias. (Models marked with an asterisk are identified as the category I group in the text.)

Observations and models rEOF1 rEOF2 rEOF3 rEOF4

ERSST STA-EQ: 17.0 NTA: 13.0 STA-BG: 10.3 SSA: 10.2

CanESM2 SSA: 20.0 NTA: 14.1 STA: 13.3 NTAII: 9.7

NCAR CCSM4* STA-EQ: 24.4 SSA: 12.4 STA-BG: 10.1 NTA: 10.0

CSIRO Mk 3.6.0 NTAII: 21.3 NTA: 15.3 SSA: 13.5 STA: 11.0

GFDL CM3 STA: 34.4 NTA: 10.7 —: 9.0 —: 8.5

GFDL-ESM2G STA: 20.6 NTA: 13.6 NTAII: 10.1 —: 10.1

GFDL-ESM2M STA-EQ: 35.4 —: 13.0 NTA: 9.6 STA-BG: 6.7

GISS-E2H* STA-BG: 20.6 NTA: 15.6 STA-EQ: 13.9 SSA: 8.6

GISS-E2R STA-BG: 20.0 NTAII: 12.4 NTA: 11.2 SSA: 10.9

HadCM3 NTA: 15.9 —: 14.3 NTAII: 13.2 STA: 12.1

HadGEM2-CC NTA: 19.3 STA: 19.2 —: 8.6 —: 7.5

HadGEM2-ES NTA: 20.6 STA: 18.4 —: 8.1 SSA: 4.9

INM-CM4 STA: 15.4 NTA: 11.2 SSA: 8.8 —: 7.4

IPSL-CM5A-LR NTA: 22.4 STA: 20.5 NTAII: 13.7 SSA: 12.3

IPSL-CM5A-MR NTA: 24.2 STA: 17.0 SSA: 13.3 NTAII: 10.3

IPSL-CM5B-LR NTA: 41.8 NTAII: 9.9 STA: 9.2 SSA: 5.7

MPI-ESM-LR STA: 17.4 —: 17.3 NTA: 13.0 NTAII: 7.9

MPI-ESM-P STA: 19.4 NTA: 11.7 —: 10.8 NTAII: 6.9

MRI-CGCM3 NTAII: 15.9 STA: 13.5 NTA: 10.7 SSA: 6.8

NorESM1-M STA-EQ: 27.5 —: 14.9 STA-BG: 10.2 NTAII: 8.5
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IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-CM5B-LR,

and MRI-CGCM3 (Figs. 12d1–d4), is able to simulate the

SSA, NTA, and STA in their first four modes. In this

group the CGCMs, however, cannot separate STA-EQ

and STA-BG modes. A different type of NTA mode

across the basin, as shown in Fig. 12d1, is captured by

many CMIP5 CGCMs, and we defined it as the NTA II

mode. Huang et al. (2004) pointed out that this mode is

likely stronger in boreal summer in the tropical Atlantic

and seems to be associated with the tropical extension

of midlatitude SST anomalies as the ‘‘North Atlantic

horseshoe’’ pattern. This pattern also resembles the re-

mote forced pattern in NTA by ENSO and the NAO

(Czaja and Marshall 2001). As the remote connection is

discussed in section 4d, we find that for some CGCMs the

influences of the NAOand/or ENSO can last from boreal

spring to summer (as shown in Figs. 14e1 and 14e2). This

overestimated remote forced pattern in summer can be

embedded in tropical Atlantic variability, and here we

ascribe remote forcing to the cause of the NTA II mode

of CGCMs. Category III, consisting of GFDL CM3,

GFDL-ESM2G, GFDL-ESM2M,HadCM3, HadGEM2,

MPI-ESM-LR, MPI-ESM-P, and NorESM1-M, can only

capture two modes of the first four ERSST modes. The

patterns that cannot be defined as any one of the four

modes of ERSST are not discussed but are listed in

Table 2. Those patterns may be related with model bias.

c. Multidecadal variability

Based on the AWPTI of ERSST, the pattern of global

SST difference between large AWP years and small

AWP years on the multidecadal time scale is shown in

Fig. 13a. The threshold value of AWPTI to define large

(small) AWP years is 0.18C (20.18C). As discussed by

LWLE12, this pattern is identical to the pattern re-

gressed onAWPAIof JJASO (Wang et al. 2008a) but also

FIG. 11. AWPTI standard deviation of observations and CGCMs: interannual (black bar)

decadal and longer time scale (gray bar).
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has a global warming signature included because the

linear detrending cannot remove the entire global warming

signal. The spatial pattern suggests that the AWP multi-

decadal variability resembles the AMO, which is well

supported by a close relationship between the AWPTI

and AMO index. For the ensemble of 19 models, the

pattern of global SST difference between large AWP

years and small AWP years shown in Fig. 13b has a real-

istic representation of the observed AMO pattern. Com-

pared with ERSST, 14 models—CanESM2, CSIRO Mk

3.6.0,GFDLCM3 (Fig. 13d),GFDL-ESM2G,GISS-E2H,

GISS-E2R, HadGEM2-CC, INM-CM4, IPSL-CM5A-

LR, IPSL-CM5A-MR, IPSL-CM5B-LR, MPI-ESM-LR,

MPI-ESM-P, and NorESM1—successfully reproduce the

major characteristics of the observed pattern of global SST

difference between large AWP years and small AWP

years. NCAR CCSM4 (Fig. 13c), GFDL-ESM2M, and

MRI-CGCM3 show a global warming signature with

out-of-phase cooling to the south of Greenland Island.

HadCM3 and HadGEM2-ES have a significant cooling

pattern in theNorth Pacific instead of the warming shown

in most CGCMs.

d. Remote connection

Next we focus on interannual variability of the AWP

induced by remote influences. AWP variability can be

remotely influenced by ENSO and the NAO. Czaja et al.

(2002) and Enfield et al. (2006) studied the delayed in-

fluence of ENSO and the NAO on the tropical North

Atlantic region. Here we performed the same analysis as

LWLE12 on the AWP region to show how this remote

influence acts on theAWP inCGCMs.We regress zonally

averaged observed variables including surface wind

stress, net surface heat flux, and SST in theAWP region on

the Ni~no-3 SST index (Fig. 14a1) and the negative NAO

index (Fig. 14a2) from January to December. Figure 14a1

FIG. 12. The rEOF analysis of tropical Atlantic SST in ASO months: (a1) first, (a2) second, (a3) third, and (a4) fourth modes of ERSST.

(b)–(d) As in (a), but for (b1)–(b4) NCAR CCSM4, (c1)–(c4) GISS-E2H, and (d1)–(d4) MRI-CGCM3.
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shows that positive ENSO events correspond to westerly

low-level wind anomalies over the AWP (shown in

vectors), which are largest during January–March. This

wind anomaly induces heating between 58N and 208N
over the AWP region at a rate of 8 W m22 due to a de-

creased latent heat loss (shown in contour) and leads to

a warm SST anomaly (shown in shading) of 0.28C during

February–May (FMAM). Figure 14a2 shows a regression

pattern on the negative NAO index similar to Fig. 14a1,

but the magnitude of the SSTwarming anomaly between

58 and 208N is about 0.28C less than the magnitude of

ENSO influence. The anomalous net heat flux also

switches sign after March. The same results have been

addressed in detail in LWLE12. The mechanism de-

termining the forcing ofAWP variability in spring by both

ENSO and the NAO is similar to the mechanism sug-

gested by Czaja et al. (2002) for the NTA.

Compared with the above observational analysis, the

ensemble of the 19 analyzed models successfully simu-

lates the observed remote influence pattern in the AWP

region induced by both ENSO (Fig. 14b1) and the NAO

(Fig. 14b2). Only four models, identified as category I,

are able to successfully capture the major features

for the remote influence from both ENSO and NAO

influences: NCAR CCSM4 (Figs. 14c1–c2), GISS-E2H,

GISS-E2R, andNorESM1-M. Fourmodels in category II

are able to capture the major character of the NAO in-

fluence: HadGEM2-CC (Fig. 14d1–d2), HadGEM2-ES,

INM-CM4, and IPSL-CM5A-MR. In these models, the

wind–evaporation–SST mechanism still holds valid in ex-

plaining the processes. However, the process of warming

in FMAM between 58 and 208N induced by ENSO is

not captured—or captured but lasts to ASO. Category III,

consisting of CanESM2, CSIRO Mk 3.6.0, GFDL CM3,

GFDL-ESM2G,GFDL-ESM2M,HadCM3, IPSL-CM5A-

LR, IPSL-CM5B-LR, MPI-ESM-LR, MPI-ESM-P,

and MRI-CGCM3 (Fig. 14e2), is not able to success-

fully simulate the observed regression patterns for both

ENSO and the NAO. These models either simulated

a delayed warming in the ASO pattern (Fig. 14e2) or are

not able to capture the warming phase between 58 and
208N compared with observations.

In Fig. 15a, a Taylor diagram is constructed using the

regression coefficients of ENSO influence shown in

Fig. 14 to quantify performance of the CGCMs. The

correlation between each model and observations is

calculated between the regression coefficient at each

grid point of model and the regression coefficient at

the same grid points of observation as shown in the

domain of Fig. 14a1. The standard deviation for the

statistics of each model is divided by the standard de-

viation of observations. The reference point ‘‘A’’ for

FIG. 13. Pattern of global SST difference (8C) between large AWP years and small AWP years on the decadal time

scale and above. Shown are (a) ERSST, (b) ensemble of 19 models, (c) NCAR CCSM4, and (d) GFDL CM3. The

threshold value of AWPTI to define large (small) AWP years is 0.18C (20.18C).
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perfect correspondence of models to observations is at

the (1, 1) point of standard deviation and correlation

coefficient coordinates. If the point of a model in the

diagram is closer to the reference point, then the model

has a better performance in representing the observed

pattern.

By this metric NCAR CCSM4 (C), INM-CM4 (M),

GISS-E2H (H), and NorESM1-M (T) are the models

FIG. 14. Regression maps of surface wind stress (vector, N m22), net surface heat flux (positive into the ocean with

solid contour line, W m22), and SST (shading contour, 8C) averaged in longitude onto Ni~no-3 Index (DJF) and onto

negative NAO index (DJFM): (a1) regression map onto Ni~no-3 Index for observations, (a2) regression map onto

negative NAO Index for observations, (b1) regression map onto Ni~no-3 Index for ensemble of 19 models, and (b2)

regression map onto negative NAO Index for ensemble. (c)–(e) As in (b), but for selected models.
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that best replicate theAWP connection toENSO. Except

INM-CM4, all of the other three models are categorized

as the best models in earlier discussion in simulat-

ing ENSO influence on the AWP based on subjective

judgment. For INM-CM4, the regression pattern ofENSO

has a notable erroneous warming close to the equator,

except the warming between 58 and 208N in spring as in

observations. Sowe regard thismodel as unable to simulate

the ENSO influence successfully. In general, the Taylor

diagram has proved to be a successful tool to quantitatively

evaluate the performance of CGCMs.

Figure 15b is the same as Fig. 15a except that the sta-

tistics are defined as regression coefficients of SST onto the

NAO [December–March (DJFM)] index at all grid points

within the domain as shown in Fig. 14a2. GISS-E2H (H)

and MPI-ESM-P (Q) are the best two models compared

with the reference point for observations. MPI-ESM-P,

however, has a delayed NAO influence until ASO, so it

is not included as one of the best models in simulating

the NAO influence in earlier discussion. Comparison

between Figs. 15a and 15b indicates that the selected

19 CMIP5 CGCMs, unlike the CGCMs in CMIP3, dem-

onstrate comparable performance in simulating the re-

mote influence pattern in the AWP region induced by the

NAO with the performance in simulating the influence

induced by ENSO. This conclusion is also reflected in

the regression patterns of the model ensemble mean in

Fig. 14b1 and 14b2.

5. Summary and discussion

In this paper we exploreAWPvariability in 19 CGCMs

from the CMIP5 database and validate them against

observations over the twentieth century at the seasonal,

interannual, and multidecadal time scales, as well as for

the remote connections with ENSO and the NAO. Both

the AWPAI and AWPTI are defined to study the sea-

sonal cycle. Seven models—NCAR CCSM4, CSIRO

Mk 3.6.0, GISS-E2H, GISS-E2R, HadCM3, MPI-ESM-

LR, and MPI-ESM-P—have the best performance in

simulating the AWP seasonal cycle based on both in-

dexes. The AWPAI is almost zero for some models in

most years due to cold SST bias found in the northern

tropics for most models. Thus, we have chosen an SST

index as a more effective but equivalent proxy for AWP

variability. Only NCAR CCSM4 and GISS-E2H are

able to capture all the first four modes of ERSST rEOF.

Analysis of the AWP remote connection with ENSO and

the NAO shows that NCAR CCSM4, GISS-E2H, GISS-

E2R, and NorESM1-M are the best group of models in

simulating the processes by which ENSO and NAO in-

fluence the AWP region through wind–evaporation–

SST interactions. Fourteen models listed in Table 3 suc-

cessfully capture the spatial characters of global SST

between large AWP years and small AWP years. All the

best models in each evaluation aspect are summarized in

Table 3. NCARCCSM4, GISS-E2H, andGISS-E2R are

FIG. 15. (a) A Taylor diagram of statistics describing the remote influenced patterns of ENSO onAWP in CGCMs as shown in Fig. 14a1.

On this diagram, the radial coordinate gives themagnitude of total standard deviation of lag regression coefficients in the domain of Fig. 14a1

for each model normalized by the standard deviation of observation, and the angular coordinate gives the correlation of the regression

coefficients of each model with the regression coefficients of observation. The distance between the reference point ‘‘A’’ of observation and

anymodel’s point (models B–T are defined in Table 1) is proportional to the root-mean-square error shown by the green dashed lines. (b) As

in (a), but the statistics of Taylor diagram describing the remote influenced patterns of NAO on AWP in CGCMs as shown in Fig. 14a2.
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the best models in simulating the AWP variability based

on this study. The previous generation of models devel-

oped at NCARandGISS (CCSM3,GISS-ER, andGISS-

AOM) are quite limited in AWP simulation (LWLE12)

and hence are much improved in their CMIP5 reincar-

nation.As the physics and configuration for everyCGCM

are improved and more complex compared with CMIP3

CGCMs, the results presented in this study provide a

useful reference in continuing to improve CGCM sim-

ulations of the AWP.

As discussed with respect to the AWP seasonal cycle,

the cold SST bias in the AWP region still exists in most

CMIP5 CGCMs. The pattern of the warm SST bias in

the cold tongue and Angola–Namibia region and cold

bias in the NTA is a ubiquitous feature of most CGCMs

from both CMIP3 andCMIP5. The analysis of NTASST

bias in the study ofGrodsky et al. (2012) showed that the

atmospheric components of CCSM3 and CCSM4 have

abnormally intense subtropical high pressure systems

and abnormally weak subpolar low pressure systems,

and these SLP biases cause excessively strong surface

winds and result in too large latent heat loss and cold

SST bias throughout the NTA basin. We examine this

process among 19 CGCMs of CMIP5 and we find that

excessively strong subtropical highs are able to explain

the cold SST bias in the NTA region for most CGCMs.

However, a positive bias in the North Atlantic sub-

tropical high (NASH) is unable to explain the cold SST

bias in the AWP region because the excess latent heat

loss is much smaller compared with observations possi-

bly due to weaker sea surface specific humidity gradient.

We adopt the same latent heat flux dataset (IFREMER)

used inGrodsky et al. (2012) as an observation reference

instead of the latent heat flux data from 20CR for con-

sistency. However, if we use the latent heat flux data of

20CR and NCEP reanalysis datasets as reference, the

excess latent heat loss is also much smaller in the AWP

region (not shown) and our conclusion is consistency

among these different datasets.

We find that among the CGCMs of CMIP5, SST is

positively correlated with high-level cloud fraction and

downward longwave radiation in the AWP region. It

indicates that lower (higher) AWP SST contributes to

less (more) high-level cloud fraction and thus leads to less

(more) reflected downward longwave radiation. The de-

creased (increased) longwave radiation can further de-

crease (warm) the AWP SST. This positive feedback may

erroneously alleviate the AWP SST cold bias when ex-

cessively high-level clouds are simulated. The origin of the

cold bias in the AWP is still uncertain. A recently pub-

lished paper of Fasullo and Trenberth (2012) suggests that

the present models with low climate sensitivity perform

more inadequately in replicating climate teleconnections

between the tropics and subtropics, and are identifiably

biased. They pointed out that the relative contributions of

various cloud types to the overall cloud feedback and the

sources of biases in the vertical relative humidity and cloud

distributions in models are two of major questions to be

solved for correctly simulating climate sensitivity. These

two questions may also be of fundamental importance to

trace the origin of the topical SST bias in models.
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APPENDIX

List of Institutional Model Acronyms and Names

CanESM2 Canadian Earth SystemModel, version 2

CCSM3 NCAR Community Climate System

Model version 3

TABLE 3. Summary of best performance models in each aspect of variability evaluation.

Criterion Best performance models

Seasonal cycle NCAR CCSM4, CSIRO Mk 3.6.0, GISS-E2H, GISS-E2R, HadCM3, MPI-ESM-LR,

MPI-ESM-P

rEOF analysis NCAR CCSM4, GISS-E2H

Multidecadal variability (roughly estimated) CanESM2, CSIRO Mk 3.6.0, GFDL CM3, GFDL-ESM2G, GISS-E2H, GISS-E2R,

HadGEM2-CC, INM-CM4, IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-CM5B-LR,

MPI-ESM-LR, MPI-ESM-P, NorESM1-M

Remote connection with ENSO and NAO NCAR CCSM4, GISS-E2H, GISS-E2R, NorESM1-M
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CCSM4 NCAR Community Climate System

Model version 4

CSIRO

Mk3.6

Commonwealth Scientific and Industrial

Research Organisation Mark version 3.6

GFDL CM2 Geophysical Fluid Dynamics Laboratory

(GFDL) Climate Model version 2.0

GFDL CM3 GFDL Climate Model version 3.0

GFDL-

ESM2G

GFDL Earth Science Model 2G

GFDL-

ESM2M

GFDL Earth Science Model 2M

GISS-AOM Goddard Institute for Space Studies (GISS)

Atmosphere–Ocean Model

GISS-E2H GISS Model E, version 2, coupled with

the Hybrid Coordinate Ocean Model

(HYCOM) ocean model

GISS-E2R GISS model E, version 2, coupled with

the Russell ocean model

HadCM3 Third climate configuration of the Met

Office Unified Model

HadGEM2-

CC

Hadley Centre Global Environmental

Model 2, Carbon Cycle

HadGEM2-

ES

Hadley Centre Global Environmental

Model 2, Earth System

INM-CM4 Institute of Numerical Mathematics

Coupled Model, version 4.0

IPSL CM4 L’Institut Pierre-Simon Laplace (IPSL)

Coupled Model, version 4

IPSL-

CM5A-

LR

IPSL Coupled Model, version 5, coupled

with NEMO, low-resolution

IPSL-

CM5A-

MR

IPSL Coupled Model, version 5, coupled

with NEMO, medium-resolution

IPSL-

CM5B-

LR

IPSL Coupled Model, version 5

MPI-ESM-

LR

Max Planck Institute (MPI) Earth System

Model, low resolution

MPI-ESM-

P

MPI Earth System Model

MRI-

CGCM3

MeteorologicalResearch InstituteCoupled

General Circulation Model, version 3

NorESM1-

M

Norwegian Earth System Model, inter-

mediate resolution
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