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ABSTRACT

This study investigates Atlantic warm pool (AWP) variability in the twentieth century and preindustrial

simulations of coupled GCMs submitted to the Intergovernmental Panel on Climate Change (IPCC) Fourth

Assessment Report (AR4). In the twentieth-century simulations, most coupled models show very weak AWP

variability, represented by an AWP area index, because of the cold SST bias in the AWP. Among the IPCC

models, a higher AWP SST index corresponds to increased net downward shortwave radiation and decreased

low-level cloud fraction during the AWP peak season. This suggests that the cold SST bias in the AWP region

is at least partly caused by an excessive amount of simulated low-level cloud, which blocks shortwave radi-

ation from reaching the sea surface. AWP natural variability is examined in preindustrial simulations.

Spectral analysis reveals that only multidecadal band variability of the AWP is significant in observations. All

models successfully capture the multidecadal band, but they show that interannual and/or decadal variability

is also significant. On the multidecadal time scale, the global SST difference pattern between large AWP years

and small AWP years resembles the geographic pattern of the AMO for most coupled models. Observational

analysis indicates that both positive ENSO phase and negative NAO phase in winter correspond to reduced

trade winds in the AWP region. The westerly anomalies induced by positive ENSO and negative NAO lead to

local heating and warm SST from March to May and February to April, respectively. This behavior as a known

feature of anomalous AWP growth is well captured by only five models.

1. Introduction

The Western Hemisphere warm pool (WHWP), de-

fined as the region with sea surface temperature (SST)

warmer than 28.58C, consists of the eastern North Pacific

west of Central America, the ‘‘IntraAmericas Sea’’ (IAS)

[i.e., the Gulf of Mexico (GoM) and the Caribbean Sea

(CBN)], and the western tropical North Atlantic (TNA)

(Wang and Enfield 2001, 2003). Unlike the Indo-Pacific

warm pool, the WHWP is entirely north of the equator

and is divided by the Central America landmass into two

ocean regions: 1) the eastern North Pacific warm pool

and 2) the Atlantic warm pool (AWP). Wang et al.

(2006) show that the eastern North Pacific warm pool is

more likely to follow El Niño–Southern Oscillation

events since it is close to the ENSO region of maximum

variance and is directly related to ENSO variability.

AWP variability is, however, dominated by both local

processes and remote forcing by climate patterns such as

the Pacific ENSO (Covey and Hastenrath 1978; Nobre

and Shukla 1996; Enfield and Mayer 1997; Lee et al.

2008; Enfield et al. 2006) and the North Atlantic Oscil-

lation (NAO) (Grotzner et al. 1998; Giannini et al. 2001;

Czaja et al. 2002, Enfield et al. 2006). The AWP shows

strong variability on seasonal to multidecadal time scales

(Wang and Enfield 2001, 2003; Wang et al. 2008b). For the
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annual cycle the AWP starts to develop in June while the

earlier-developing warm pool in the eastern North Pa-

cific (ENP) decays. During the four months July–October,

the AWP reaches its maximum and decays quickly after

October (Wang and Enfield 2003). Enfield and Lee (2005)

showed that this seasonal variation is largely forced by

the shortwave radiation, while the latent heat flux plays

a secondary role particularly during the AWP decay phase.

The roles of advection and turbulent mixing in the warm

pool are also important for the AWP seasonal cycle. Lee

et al. (2007) showed that the warm pool in the CBN re-

gion is affected by upwelling and horizontal advective

cooling within and away from the coastal upwelling zone

off northern South America during the onset and peak

phases, thus slowing down the warm pool’s development.

The AWP has substantial interannual fluctuations of

area and intensity (Wang and Enfield 2003). Wang and

Enfield found that the IAS lags Niño-3 by six months

and is more highly and contemporaneously correlated

with the TNA to the east. Years with a warm (cool) TNA

tend to be years when the warm pool is larger (smaller)

and the IAS is warm (cool). The correlations of the warm

pool with the tropical Atlantic meridional gradient mode

(AMM) (Servain 1991; Chang et al. 1997; Xie et al. 1999;

Enfield et al. 1999; Xie and Carton 2004) and the Atlantic

Niño (Zebiak 1993; Carton and Huang 1994; Latif and

Grötzner 2000; Okumura and Xie 2006) are significant

but relatively low, which suggest that the roles of AMM

and the Atlantic Niño in the warm pool are smaller than

those of the Pacific El Niño and TNA. This is consistent

with the observation of Enfield et al. (1999) that the TNA

and tropical South Atlantic are uncorrelated at zero lag

and show different time scales of variability.

Much of the TNA variability is caused by remote

forcing from climate variability outside the tropical At-

lantic. Czaja et al. (2002) showed that almost all TNA SST

extreme events can be related to either ENSO or NAO.

Enfield et al. (2006) came to a similar conclusion to ex-

plain occurrences of large AWPs. Both ENSO and NAO

lead to similar local response of the TNA: changes in

surface winds induce changes of latent heat flux that in

turn generate SST anomalies (e.g., Enfield and Mayer

1997). As the AWP is adjacent to the TNA and, in fact,

includes the western TNA (Fig. 1), the remote forcings

of ENSO and NAO act on the AWP in a similar way as

on the TNA.

The Atlantic multidecadal oscillation (AMO) (Delworth

and Mann 2000; Enfield et al. 2001; Bell and Chelliah

2006) is an oscillatory mode occurring in the North At-

lantic SST primarily on multidecadal time scales. Wang

et al. (2008a) showed that the AWP variability coincides

with the signal of the AMO, that is, that the warm (cool)

phases of the AMO correspond to larger (smaller) AWPs,

and suggested that the multidecadal influence of the AMO

on Atlantic tropical cyclone activity (Goldenberg et al.

2001) may operate through the mechanism of the AWP-

induced atmospheric changes. Wang et al. (2011) showed

that an eastward expansion of the AWP shifts the hurri-

cane genesis location eastward. A large AWP also induces

barotropic stationary wave patterns (Lee et al. 2009) that

weaken the North Atlantic subtropical high and produce

eastward steering flow anomalies along the eastern sea-

board of the United States. Owing to these two mecha-

nisms, hurricanes more frequently recurve toward the

northeast without making landfall in the United States in

the presence of an extremely large AWP.

FIG. 1. Climatology of ERSST v3 in JASO. The dashed-line box shows the region of the

tropical North Atlantic (TNA) (5.58–23.58N, 57.58–158W). The black box closed by land shows

the region of AWP (58–308N, land–408W) in which the AWP SST index (8C) (AWPTI) is defined.
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Several studies have been conducted to evaluate the

performance of coupled GCMs in the World Climate

Research Program (WCRP) phase 3 of the Coupled

Model Intercomparison Project (CMIP3) multimodel

dataset (e.g., Lin et al. 2006; Saji et al. 2006; Miller et al.

2006; Joseph and Nigam 2006; Chang et al. 2007; Lin

2007; Richter and Xie 2008; de Szoeke and Xie 2008).

Joseph and Nigam (2006), using six CGCMs, showed that,

though the spatial SST pattern of ENSO is well captured,

ENSO evolution is poorly represented and climate models

are still unable to simulate many features of ENSO vari-

ability (Guilyardi et al. 2009) and its circulation and hy-

droclimate teleconnections to North America. Lin (2007)

ascribed the cause of significant cold SST bias in much of

the tropical ocean to the processes of strong trade winds,

excessive latent heat flux, and insufficient shortwave flux.

de Szoeke and Xie (2008) further concluded that both

northeasterly winds across Central America in winter and

meridional winds on the equator need to be improved in

CGCMs for alleviating equatorial SST bias and improving

simulation of ENSO and its teleconnections. The tropical

Atlantic, compared with the other two major ocean basins,

may be the most difficult to simulate in CGCMs. Chang

et al. (2007) and Richter and Xie (2008) suggested that

the warm SST bias of the Atlantic cold tongue region in

CGCMs stems from the atmospheric component, which

simulates too much rain over equatorial Africa and too

little rain over the Amazon. This precipitation pattern

weakens the Atlantic equatorial easterly winds, ham-

pering development of the equatorial cold tongue.

In summary, AWP variability has been shown to affect

precipitation patterns and tropical cyclone variability,

based on observational analysis and AGCM simulations

(Wang et al. 2006, 2008a,b). Therefore, it is necessary to

evaluate how well current CGCMs represent AWP and

its variability to improve coupled climate models for

AWP research. In this study we analyzed 22 state-of-the-

art CGCMs in WCRP CMIP3 multimodel dataset as to

how they replicate observed AWP variability from sea-

sonal to multidecadal time scales as well as the remote

influences of ENSO and the NAO on the AWP.

The remainder of the paper is organized as follows.

The models, validation datasets, and methods used in

this study are described in section 2. AWP variability on

different time scales in CGCMs is studied and compared

with observational analysis in section 3. Section 4 sum-

marizes the conclusions.

2. Data and methods

This study is based on a single run of the 22-CGCM

output data from the climate of the twentieth century

(20C3M) simulations and a single run of 16-CGCM

output data from the preindustrial (PIcntrl) simulations

in WCRP CIMP3 multimodel dataset, which are sub-

mitted to the Intergovernmental Panel on Climate Change

(IPCC) Fourth Assessment Report (AR4). The modeling

center and country, IPCC model ID, designated letter,

abbreviation, and length of PIcntrl simulations for each

model in this study are shown in Table 1. The model data

can be downloaded from the website of Program for Cli-

mate Model Diagnosis and Intercomparison (PCMDI)

(http://www-pcmdi.llnl.gov/). The 20C3M simulations

are spun up and then forced by solar, volcanic, sulfate

aerosol, and greenhouse gas forcings from different

starting years (1850, 1860, 1870, 1890, or 1900) to 1999.

Of the 22 models (Table 1, column 4), 3 models [CGCMt47

and CGCMt63 from the Canadian Centre for Climate

Modeling and Analysis, and the MRI (Japan)] performed

both heat and water flux corrections. One model, the

INMCM (Russia), performed only a freshwater flux ad-

justment. All other CGCMs are coupled freely without

flux correction. The PIcntrl simulations are used for the

reference to the 20C3M experiments and also provide

initial states for the 20C3M simulations. The initial state

of PIcntrl is taken from the final state of a long term

preindustrial spinup, which is a fully coupled time in-

tegration and is long enough to minimize potential cli-

matic drift. The anthropogenic and natural forcing is fixed

in PIcntrl simulationsand thus provides a direct data

source to estimate the natural variability embedded in

CGCMs. Variables of surface heat flux, wind stress, sea

level pressure (SLP), and SST are used.

In this study, the 20C3M simulations are studied for

the AWP climatology of CGCMs and compared with

available observations. We focus on the natural vari-

ability of CGCMs (including AWP spectrum, interannual

and multidecadal variability, and remote connection) of

the PIcntrl simulations because of their long time series

and embedded natural variability without being contam-

inated by the external forcing. Statistical analyses are

used and wavelet software was provided by C. Torrence

and G. Compo (Torrence and Compo 1998).

Observational datasets are used to validate the vari-

abilities of CGCM simulations. SST data are the NOAA

Extended Reconstruction Sea Surface Temperature ver-

sion 3 (ERSST v3) (Smith et al. 2008). The temporal cov-

erage is from January 1854 to the present. These data can

be obtained online (http://www.ncdc.noaa.gov/oa/climate/

research/sst/ersstv3.php). Surface fluxes and SLP data are

from NOAA/Cooperative Institute for Research in Envi-

ronmental Sciences (CIRES) Twentieth Century Global

Reanalysis (20CR) version II (Compo et al. 2011). This

atmospheric reanalysis spans the entire twentieth cen-

tury (1871–2008), assimilating only surface observations

of synoptic pressure, monthly SST, and sea ice distribution.
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More information about this dataset is provided online

(http://www.esrl.noaa.gov/psd/data/20thC_Rean/).

The AWP area index (AWPAI) is defined as the area

inside the 28.58C isotherm at the sea surface in the AWP

region. The AWP SST index (AWPTI) is defined as the

box-averaged SST from the American coast to 408W

and from 58 to 308N. The AMO index is defined as the

detrended area-weighted average over the North At-

lantic from 08 to 708N (Enfield et al. 2001). The Niño-3

index is an average of the SST anomalies in the region

58N–58S, 1508–908W. The NAO index is chosen as the

difference of normalized SLP between 398N, 98W (Lisbon,

Portugal) and 658N, 228W (Stykkisholmur/Reykjavik,

Iceland) (Hurrell 1995). All indexes are calculated for

each model and observations.

A Taylor diagram (Taylor 2001) is applied to quantify

how well models simulate an observed climate field. It

relies on three nondimensional statistics: 1) the ratio of

the variances of the two fields (r, which is the standard

deviation of the model divided by standard deviation of

the observations); 2) the correlation between the two

fields (R, which is computed after removing the overall

means); and 3) the rms error between models and obser-

vation (E, which is normalized by the standard deviation

TABLE 1. Sixteen of the 22 models involved in this study and their IPCC ID, Letter denotation, short names used throughout the paper,

and length in years of PIcntl simulations. Letter denotation is used in some figures in paper. Letter A stands for observations; see Fig. 10.

Sponsor, Country IPCC ID, Vintage

Letter

denotation Abbreviation

Preindustrial

control length

used (yr)

Bjerknes Centre for Climate Research,

Norway

BCCR-BCM2.0, 2005 B BCM NA

Canadian Centre for Climate

Modeling and Analysis, Canada

CGCM3.1(T47), 2005 C CGCMt47 300

Canadian Centre for Climate

Modeling and Analysis, Canada

CGCM3.1(T63), 2005 D CGCMt63 300

Météo-France/Centre National de

Recherches Météorologiques,

France

CNRM-CM3, 2004 E CNRM 300

Commonwealth Scientific and

Industrial Research Organization

(CSIRO) Atmospheric Research,

Australia

CSIRO-MK3.0, 2001 F CSIRO30 300

CSIRO-MK3.5 G CSIRO35 NA

NOAA/Geophysical Fluid Dynamics

Laboratory (GFDL), USA

GFDL CM2.0, 2005 H GFDL20 300

GFDL CM2.1, 2005 I GFDL21 300

National Aeronautics and Space

Administration/ Goddard Institute

for Space Studies (GISS),

United States

GISS-AOM, 2004 J GISSaom NA

GISS-ER, 2004 K GISSer 300

National Key Laboratory of Numerical

Modeling for Atmospheric Sciences

and Geophysical Fluid

Dynamics/Institute of Atmospheric

Physics, China

Flexible Global

Ocean–Atmosphere–

Land System Model

gridpoint version 1.0

(FGOALS-g1.0), 2004

L IAP 300

National Institute of Geophysics

and Volcanology, Italy

INGV-ECHAM4 M INGV NA

Institute for Numerical Mathematics,

Russia

INM-CM3.0, 2004 N INMCM 300

Institut Pierre Simon Laplace, France IPSL CM4, 2005 O IPSL 300

Center for Climate System Research

(University of Tokyo), National

Institute for Environmental Studies,

and Frontier Research Center for

Global Change (JAMSTEC), Japan

MIROC3.2(hires), 2004 P Mhires 100

MIROC3.2(medres), 2004 Q Mmedres 300

Max Planck Institute for Meteorology ECHAM5/MPI-OM, 2005 R MPI NA

Meteorological Research Institute, Japan MRI CGCM2.3.2, 2003 S MRI 300

National Center for Atmospheric

Research (NCAR), USA

CCSM3, 2005 T CCSM3 300

PCM, 1998 U Npcm1 NA

Hadley Centre for Climate Prediction

and Research/Met Office, United Kingdom

UKMO HadCM3, 1997 V Uhadcm3 300

UKMO HadGEM1, 2004 W Uhadgem1 240
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of the observed field). This diagram provides a 2D graph

based on the three statistics summarizing how closely

a pattern matches observations.

3. AWP variability

a. Seasonal cycle

The AWPAI is shown in Fig. 2a and Fig. 2b. The AWP

reaches its maximum during July–October and decays

quickly after October (Wang and Enfield 2003). This

seasonal cycle character is clearly seen in ERSST. The

index of 22 models ensemble only has less than one-third

of the ERSST index amplitude during the summer peak,

even though the model spread covers from almost zero

to four times the ensemble mean. Compared with ERSST,

only four models have comparable amplitude (see Table 1,

column 4): CSIRO35, MPI, Npcm1, and Uhadcm3 (in

Fig. 2b). Seven models are able to simulate the seasonal

cycle, but the amplitude is much weaker compared with

ERSST: GFDL21, INGV, INMCM, Mhires, MRI, and

Uhadgem1. For 11 models, the amplitude is too weak.

FIG. 2. (a) Seasonal cycle of the AWP area index (AWPAI). ERSST is shown in dash gray line. Ensemble of 22

models with spread bar is shown in black line; unit is 106 km2. (b) Seasonal cycle of the AWPAI of selected models.

(c) Seasonal cycle of the AWPTI. ERSST is shown in dash gray line. Ensemble of 22 models with spread bar is shown

in black line. Unit is 8C. (d) Seasonal cycle of the AWPTI for selected models. Model data are from 20C3M simulations.
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Three models, namely CCSM3 (shown in Fig. 2b as an

example), BCM, and CNRM cannot capture a reason-

able seasonal cycle. The weak seasonal cycles for the

AWP area in most CGCMs are due to a cold SST bias in

the AWP and TNA regions (Chang et al. 2007; Breugem

et al. 2008; Richter and Xie 2008; Richter et al. 2011).

This can be clearly seen in Fig. 2, wherein the seasonal

cycle of AWPTI in the ensemble and most models is of

comparable amplitude to observations (Fig. 2c), but the

simulated area is much less (Fig. 2a).

The AWPAI is not suitable for interannual and multi-

decadal variability in this study as in some years this index

cannot be computed for a part of the CGCMs due to the

cold SST bias (Misra et al. 2009). Therefore, the AWPTI

is used for this study. For the AWPTI (Figs. 2c,d), all 22

models used in this study capture the overall timing of the

seasonal cycle which peaks in July–October, although some

models lag the observation by about one month. The

ERSST index and 22 model ensemble-mean index with

spread are shown in Fig. 2c. The model spread is consistent

throughout the year within a range of 28–38C. Four models

well reproduce the observed seasonal cycle: CSIRO35,

INGV, MPI, and Uhadcm3 (Fig. 2d). Although Npcm1 has

a realistic AWPAI cycle, it has realistic SST performance

only in the summer simulation, while in winter the cold SST

bias reaches 38C. As shown in Fig. 2d, CSIRO35 is much

improved from CSIRO30. This improvement may be as-

sociated with the change to the surface drag formulation

that accounts for the velocity of the ocean currents relative

to the atmospheric surface velocity, and with the inclusion

of an oceanic horizontal mixing parameterization due to

wind-driven horizontal mixing by the passage of large-

and small-scale atmospheric eddies (Gordon et al. 2010).

GFDL21 is improved especially during summer compared

with GFDL20. The possible causes are the improved sim-

ulations of surface wind stress in CM2.1 and changes in

cloud tuning that act to increase the net surface shortwave

radiation in CM2.1, thereby reducing the cold bias pre-

sented in CM2.0 (Delworth et al. 2006). This is supported

by Fig. 3. The other models are also able to simulate the

seasonal cycle but with lower SST (within 28C less than

ERSST) owing to the cold SST bias in the AWP region.

Wang and Enfield (2001) suggested that the SST

seasonal variations in the AWP region are induced pri-

marily by surface net heat flux with a phase lag of 3–4

months. The net surface heat flux consists of shortwave,

longwave, latent, and sensible heat fluxes. The short-

wave and latent heat fluxes are the two largest terms.

The shortwave flux has maximum value from April to

August, and the latent and sensible heat losses (heat loss

means that ocean loses heat, heat gain means that ocean

gains heat) have their minima around May. This results

in the maximum of net heat flux occurring in late spring

and maximum SST in fall. The relationship between heat

fluxes and AWP SST is well reflected in 20CR (Figs. 3a–

d) and also reflected in most of the 22 models. As al-

ready noted, the AWPTI of CSIRO35 is much improved

compared with CSIRO30. From Fig. 3, the possible di-

rect cause of this improvement is due to the increase of

net surface heat flux. But, it does not hold true among

the IPCC models that the higher net heat flux corre-

sponds to higher AWPTI. Compared with 20CR, IPCC

models have less latent heat loss, less shortwave heat gain,

and more sensible heat loss. The latent heat flux bias of

the models should warm the AWP, thus it is not the cause

of the cold AWP bias in CGCMs. Shortwave radiation is

too weak in CGCMs. The associated cooling compensates

the warming due to latent heat flux bias. Among the IPCC

models, higher AWP SST corresponds to more shortwave

radiation (Fig. 4a) and less low-level cloud fraction (Fig. 4b)

during the AWP peak season. It suggests that the neg-

ative SST bias in the AWP region is connected with an

excessive amount of simulated low-level cloud, which

blocks shortwave radiation from reaching the sea surface.

This positive feedback of colder SST, increased fraction of

low level cloud, and decreased surface shortwave flux

may enhance the cold SST bias. However, it is not clear

whether the excessive simulated clouds in CGCMs caused

or are caused by the SST bias, as it is difficult to determine

if the poor low-level cloud simulations in the CGCMs

result from incorrect cloud or boundary layer parame-

terizations or from fundamentally different SST and

wind distributions (Mansbach and Norris 2007).

The spatial pattern of seasonal SST bias in the tropical

Atlantic is shown in Fig. 5. Figure 5a(1)–(4) show the

SST spatial pattern based on ERSST in four seasons.

The AWP exists in summer and fall. To compare with

ERSST, the SST bias pattern is shown for the 22 member

ensemble mean [Fig. 5b(1)–(4)] and for selected models:

Figs. 5c(1) and 5e(4). The common character as shown

in Fig. 3b(1)–(4) is that southeast Atlantic warm SST

bias including the cold tongue and the Angola–Benguela

coastal regions exists in each model for all four seasons.

For the three models: CSIRO35 [Fig. 5c(1)–(4)], MPI,

and Uhadcm3, there is also a warm bias in the North

Atlantic region for all the seasons. For the other 19

models such as CCSM3 [Fig. 5d(1)–(4)], there is always

a cold SST bias in the AWP region for all seasons even

though the cold bias, such as in INGV [Fig. 5e(1)–(4)] is

very small. It is possible that the opposite biases north and

south of the equator are linked through tropical Atlantic

variability (TAV) (Xie and Carton 2004). The warm bias

in the southeast tropical Atlantic may cause the cold bias

north of the equator via the feedback of wind, evapora-

tion, and SST. The seasonal consistency of the SST bias

and the biased spatial pattern need further analysis.
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b. Spectrum analysis

Wavelet and power spectrum analyses of the time

series of monthly AWPTI are shown in Fig. 6. Figure 6a

shows the wavelet power pattern based on ERSST. There

is significant energy at multidecadal periods between

about 20 yr and 32 yr and longer than 32 yr, which is also

shown in Fig. 6b. The spectra of most models in PIcntrl

simulations, however, demonstrate peaks in interannual

band (4–7 yr), decadal band (8–20 yr), and multidecadal

band (20–30, 40–60 yr or longer) all with 95% signifi-

cance as shown in Fig. 6c. The spectrum of the model

ensemble (Fig. 6c) also reflects the four bands. Based on

the global spectral character of the model ensemble, three

FIG. 3. Seasonal cycle of AWP box-averaged (a) net heat flux, (b) latent heat flux, (c) sensible heat flux,

(d) longwave heat flux, and (e) shortwave heat flux; unit is W m22. Ensemble of 19 models is shown in black line with

standard deviation bar. 20CR is shown in dash gray line. For all the heat flux components, positive values mean ocean

gains heat and negative values mean ocean loses heat. Model data are from 20C3M simulations.
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groups of models are categorized as shown in Table 2.

In Category I (as shown in Fig. 6d), four models simulate

the multidecadal band and interannual band: CGCMt63,

GFDL20, GFDL21, and the Institute of Atmospheric

Physics (IAP). In Category II (shown in Fig. 6e), two

models simulate the multidecadal band and decadal band:

INMCM and CCSM3 at the 95% significance level. In

Category III, 10 models—consisting of CGCMt47, CNRM,

CSIRO30, GISSer, IPSL, Mhires, Mmedres, MRI,

Uhadcm3, and Uhadgem1—simulate significant vari-

ability on interannual, decadal, and multidecadal, all

three bands. Obviously, an important question is why

the interannual band and decadal band in ERSST are

not significant compared with the CGCMs. One possible

explanation is that, in the AWP region, local air–sea

interaction is important in determining AWP variability.

Higher SST leads to increased deep convection and the

convection related net heat flux tends to cool down the

AWP (Wu et al. 2006). Therefore, the SST anomalies

are damped and its spectrum is reddened. There is no

pronounced variability, at least on interannual time

scales. Then the source of low frequency variability on

the multidecadal time scale is expected from oceanic

processes (Delworth and Mann 2000). CGCMs, how-

ever, are limited in representing this local air–sea in-

teraction (Wu et al. 2006; Lee et al. 2007) and show

strong intrinsic variability.

In summary, spectral analysis of ERSST reveals that

multidecadal variability is dominant in the AWP region.

The AWP also demonstrates a moderate amplitude of in-

terannual variability though it is not significant in ERSST.

As in other characteristics, the models have varying de-

grees of agreement. In the next two sections, we focus on

interannual and multidecadal variability of the AWP in

its peak season.

c. Interannual variability

The AWP peaks during July–October (JASO). The

ERSST time series of detrended AWPTI in JASO on

interannual time scales (periods , 7 yr) (figure not shown)

demonstrates a moderate amplitude of variations. But the

period for this interannual variability is irregular. Each

model also shows very different variability; when models

are averaged, the amplitude drops due to the lack of co-

herence between models, thus giving a poor representa-

tion of the observed variability.

To look into the interannual variability of the AWP,

we first perform an EOF analysis on the tropical At-

lantic JASO SST from 308S to 308N, as shown in Fig. 7.

The first mode of observations with 30.9% variance [Fig.

7a(1)] is a pantropical Atlantic pattern with heavier

loading in the region of the Atlantic Niño mode (equa-

torial zonal mode), featuring maximum SST anomalies

on the equator and associated changes in the easterly

trade winds (Philander 1986; Zebiak 1993; Carton and

Huang 1994). Between 308S and 308N the SST anomaly

is in the same phase. The second mode is the Atlantic

meridional gradient mode (AMM) with 18.1% variance

[Fig. 7a(2)], which is the dominant mode in spring. The

SST anomaly in the Southern Hemisphere (08–308S) is in

opposite phase to the anomaly in the Northern Hemi-

sphere (08–308N). The two corresponding principal com-

ponents time series show that the periods are irregular

for these modes. AWP interannual variability is primarily

dominated by these two modes though the variance of

these two modes in the AWP region is small. Based on

nine CGCM simulations of 20C3M, Breugem et al. (2006)

pointed out a common model bias: the onset of the AMM

is preceded by the presence of a zonal mode in boreal fall

that extends to the western boundary of the Atlantic basin

and initiates a wind–evaporation–SST feedback. Hence,

there is a spuriously strong interaction between the zonal

and AMM mode. So it is expected that the zonal mode

and AMM mode coexist in the JASO months for the

CGCMs of PIcntrl and the two modes primarily domi-

nate the AWP interannual variability in summer.

Compared with the EOF modes of ERSST, the CGCMs

are categorized into four groups as shown in Table 3.

Category I, consisting of CGCMt47, CGCMt63, GISSer,

and Mmedres, Figs. 7b(1)–(3), successfully captures the

FIG. 4. Multimodel scatterplot in JASO of (a) shortwave radia-

tion vs AWPTI and (b) low-level cloud fraction vs AWPTI. Each

point stands for one model. The black line shows the least squares

linear fit to all points. Model data are from 20C3M simulations.
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zonal and meridional modes as the first two modes with

the overall character of ERSST. Category II, consisting

of CSIRO30, GFDL20 [Figs. 7c(1)–(3)], GFDL21, CCSM3,

Uhadcm3, and Uhadgem1, is able to simulate the zonal

mode as the first mode but unable to capture the meridional

mode. For the zonal mode, the SST anomaly on the equator

and cold tongue region is in opposite phase to the anomaly

outside the equatorial region. A possible explanation for

this is that the warm bias in the cold tongue and Benguela

Coast region is involved in the interannual variability of

CGCMs. Four models are only able to simulate correct

meridional modes as the second mode: IAP, IPSL [Figs.

7d(1)–(3)], Mhires, and MRI. Category IV, including

CNRM [Figs. 7e(1)–(3)] and INMCM, is not able to

capture either the zonal mode as the first mode or the

meridional mode as the second mode. For INMCM, the

first mode should be the meridional mode and the sec-

ond mode corresponds to the zonal mode.

d. Multidecadal variability

Based on the time series of detrended 7-yr moving

average AWPTI in JASO (not shown), ERSST displays

FIG. 5. Observational SST and model SST bias in four seasons. Shown are [a(1)–a(4)] ERSST SST averaged in four seasons, [b(1)–b(4)]

the seasonal SST bias of the 22 model ensemble, and [c(1)–c(4), d(1)–d(4), e(1)–e(4)] the seasonal SST bias for selected models. Unit is

8C. Model data are from 20C3M simulations.
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a strong multidecadal variability. Three positive phases

are from 1870 to 1890, 1930 to 1970, and after 1990.

Models display different multidecadal variability. They

are much improved compared with the performance of

interannual variability but, again when models are av-

eraged, the amplitude drops owing to the lack of co-

herence between models.

Based on the AWPTI of ERSST, the pattern of global

SST difference between large AWP years and small

AWP years on the multidecadal time scale is shown in

Fig. 8a. The threshold value of AWPTI to define large

(small) AWP years is 0.18C (20.18C). Figure 8a suggests

that a warm AWP is associated with warming almost

everywhere on the global ocean but lacks the equatorial

FIG. 6. Spectrum analysis of AWPTI. (a) Wavelet power spectrum of ERSST. Power above the 95% confidence

level is plotted using pink contour line. X axis is time; Y axis is the wavelet period in years. (b) Global spectrum of

ERSST. Y axis is power (8C2); X axis is the wavelet period (yr). The dashed line indicates 95% significance level.

(c),(d),(e) As in (b) but for the ensemble of 16 models with each model shown in gray line, Group I and II models

respectively. Model data are from PIcntrl simulations.
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Pacific signature of ENSO. This pattern is identical to

the pattern regressed on AWPAI of JJASO (Wang et al.

2008a), but also has global warming signature included

because the linear detrending cannot remove the entire

global warming signal. The spatial pattern suggests that

the AWP multidecadal variability resembles the AMO,

which is well supported by a close relationship between

the AWP SST index (AWPTI) and Atlantic multidecadal

oscillation (AMO) index. Compared with ERSST, 15

models—CGCMt47, CGCMt63, CNRM, CSIRO30,

GFDL20, GFDL21, GISSer, IAP, INMCM, IPSL,

Mhires, Mmedres, CCSM3, Uhadcm3 (Fig. 8c), and

Uhadgem1—successfully reproduce the major charac-

ters of the observed pattern of global SST difference

between large AWP years and small AWP years. For

individual CGCMs and the ensemble, the threshold

value of the AWPTI to define large (small) AWP years

is also 0.18C (20.18C). Only MRI (Fig. 8d) is not able to

reproduce the observed spatial pattern. For the ensem-

ble of 16 models, the pattern of global SST difference

between large AWP years and small AWP years shown

in Fig. 8b has a realistic representation of the observed

AMO pattern.

e. Remote connection

Next we focus on the interannual variability of the

AWP induced by remote influences. AWP variability

can be remotely influenced by the ENSO and NAO. Czaja

et al. (2002) and Enfield et al. (2006) studied the delayed

influence of the ENSO and NAO on the tropical North

Atlantic region. Here we performed a similar analysis on

the AWP region to show how this remote influence acts on

the AWP in CGCMs. We regress zonally averaged ob-

served variables including surface wind stress, net surface

heat flux, and SST in the AWP region on the Niño-3 SST

index, Fig. 9a(1), and the negative NAO index, Fig. 9a(2),

from January to December. Figure 9a(1) shows that

positive ENSO events correspond to westerly low-level

wind anomalies over the AWP (shown in vectors), which

are largest during JFM. This wind anomaly induces

heating between 58N and 208N over the AWP region at

a rate of 8 W m22 due to a decreased latent heat flux loss

(shown in contour) and leads to a warm SST anomaly

(shown in shading) of 0.28C during February–May

(FMAM). After May the surface wind anomaly is weak-

ened, the anomalous surface heat flux changes sign, and

the warm SST anomaly is dampened. North of 258N

the anomalous westerlies induce cooling at a rate of

28 W m22 and produce a cold SST anomaly of 0.18C

during FMAM. Figure 9a(2) shows a regression pattern

on the negative NAO index similar to Fig. 9a(1). But,

the magnitude of the SST warming anomaly between 58

and 208N is about 0.28C less than the magnitude of ENSO

influence. The anomalous net heat flux also changes sign

after March. As suggested by Czaja et al. (2002) for the

TNA analysis, a similar mechanism determines the forc-

ing of AWP variability in spring by both the ENSO and

NAO. Thus, to some extent, the AWP region can be re-

garded as an extension of the tropical North Atlantic

under the influence of ENSO and the NAO.

Compared with the above observational analysis,

only five models, identified as Category I in Table 4, are

able to successfully capture the major features for the

remote influence from both ENSO and NAO influences:

CGCMt47, IAP [Figs. 9c(1),(2)], IPSL, Mhires and MRI.

Seven models in Category II are able to capture the major

character of the NAO influence: CGCMt63, CNRM,

GFDL20 GFDL21 [Figs. 9d(1),(2)], GISSer, Mmedres,

Uhadcm3, and Uhadgem1. In these models, the wind–

evaporation–SST mechanism still holds true in explaining

the processes. However, the process of warming and cool-

ing phase between 58 and 208N for the ENSO influence is

not captured. Only one model, INMCM in Category III,

cannot simulate the observed regression patterns for either

the ENSO or NAO. For the ENSO regression in INMCM,

the wind–evaporation–SST mechanism can explain the

warming induced by ENSO, but the warming center is lo-

cated at the equator. Thus, because of the limitations of the

models, most CGCMs are unable to reliably simulate the

remote patterns of influence in the AWP region induced by

ENSO and the NAO. Nevertheless, the ensemble of the 14

analyzed models successfully simulates the observed re-

mote influence pattern in the AWP region induced by both

ENSO, Fig. 9b(1), and the NAO, Fig. 9b(2).

In Fig. 10, a Taylor diagram is constructed using

the regression coefficients of SST onto the Niño-3

TABLE 2. Three groups of models categorized shown in spectrum analysis.

Category Description Models

I Capturing both multidecadal and decadal band with 95%

significance level

CGCMt63, GFDL20, GFDL21, IAP

II Capturing both multidecadal and decadal band with 95%

significance level

INMCM, CCSM3

III Capturing multidecadal, decadal and interannual band with 95%

significance level

CGCMt47, CNRM, CSIRO30, GISSer, IPSL, Mhires,

Mmedres, MRI, Uhadcm3, Uhadgem1
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FIG. 7. EOF analysis of tropical Atlantic SST in JASO months. Unit of spatial function is 1022. Shown are [a(1)] first mode of ERSST,

[a(2)] second mode of ERSST, and [a(3)] PC1 and PC2 of ERSST. [b(1)–(3)] for Mmedres, [c(1)–(3)] for GFDL20, [d(1)–(3)] for IPSL and

[e(1)–(3)] for CNRM represent four categories of CGCMs defined in Table 4, respectively. Model data are from PIcntrl simulations.
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[December–February (DJF)] at all grid points within the

AWP box: that is, the correlation between each model

and observations is calculated between the regression

coefficients at each grid point of model and the regressions

coefficients at same grid points of observation. The stan-

dard deviation for the statistics of each model is divided by

the standard deviation of observations. The reference

point ‘‘A’’ for perfect correspondence of models to ob-

servations is at the (1, 1) point of standard deviation and

correlation coefficient coordinates.

If the point of a model in the diagram is closer to the

reference point, then the model has a better performance

in representing the observed SST field. By this metric

GFDL21 (I) and IPSL (O) are the models that best

replicate the AWP connection to ENSO. Except for IPSL

(O), the other best four models in Table 4—CGCMt47

(C), IAP (L), Mhires (P), and MRI (S)—did not show

good performance in the Taylor diagram. The difference

can be mainly explained as Table 4 is summarized based

on zonal-averaged SST regression on the Niño-3 index.

FIG. 8. Pattern of global SST difference between large AWP years and small AWP years on the decadal time scale

and above. Shown are (a) ERSST, (b) ensemble of 16 models, (c) Uhadcm3 and (d) MRI. Unit is 8C. For ERSST and

CGCMs, the threshold value of AWPTI to define large (small) AWP years is 0.18C (20.18C). Model data are from

PIcntrl simulations.

TABLE 3. Four groups of models categorized based on performance shown in EOF analysis compared with observations.

Category Description Models

I Best performance with capturing zonal mode and meridional mode with

the major characters of ERSST

CGCMt47, CGCMt63, GISSer, Mmedres

II Capturing zonal mode but spatial pattern of zonal mode is not in the same

phase. Unable to capture the meridional mode as the second mode.

CSIRO30, GFDL20, GFDL21, CCSM3,

Uhadcm3, Uhadgem1

III Able to capture the meridional mode as the second mode and no zonal

mode is captured as the first mode

IAP, IPSL, Mhires, MRI

IV Unable to capture both zonal mode as the first mode and meridional mode

as the second mode (INMCM: first mode is meridional mode and second

mode is zonal mode)

CNRM, INMCM
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FIG. 9. Regression map of surface wind stress (vector), net surface heat flux (positive into the ocean with solid

contour line), and SST (shading contour) averaged in longitude onto Niño-3 index (DJF) and onto negative NAO

index (DJFM). Shown are [a(1)] regression map onto Niño-3 index for observations, [a(2)] regression map onto

negative NAO Index for observations, [b(1)] regression map onto Niño-3 index for ensemble of 22 models, [b(2)]

regression map onto negative NAO Index for ensemble, and (c),(d),(e) are as in (b) but for IAP, GFDL21, and

INMCM, respectively. Model data are from PIcntrl simulations.
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The regression does not have a zonal pattern and shows

the time lag characters between the AWP and Niño-3

index; Fig. 10 of the Taylor diagram demonstrates the

SST regression of each grid point in the two dimensional

AWP box on Niño-3 index. The regression reveals the

spatial characters of the AWP of MAM influenced by

ENSO. An interesting point to note is that models such

as MRI (S) successfully capture the physical process as

to how ENSO influences the AWP SST in spring, but the

mean value and phase of regression coefficients across

grid points with the AWP index is quite different from

observations. Then, in the Taylor diagram, it is regarded

as a poorly performing model. Thus, from the perspective

of physical processes, conclusions drawn from Table 4

still hold true in our analysis.

Figure 11 is the same as Fig. 10 except that the sta-

tistics are defined as regression coefficients of SST onto

the NAO (DJFM) index at all grid points within the AWP

box. Mmedres (Q) and GISSer (K) are the best two models

compared with the reference point for observations. The

models, CGCMt47 (C), IAP (L), IPSL (O), Mhires (P),

and MRI (S) of Category I in Table 4, also show good

performances in this Taylor diagram. Comparison be-

tween Fig. 10 and Fig. 11 indicates that the selected 16

IPCC models demonstrate a better performance in sim-

ulating a remote influence pattern in the AWP region

induced by the NAO than the performance in simulating

the influence induced by ENSO. This conclusion is also

reflected in the regression patterns of the model ensem-

ble mean in Fig. 9b(1) and Fig. 9b(2).

4. Summary and discussion

In this paper we explore AWP variability in 22 CGCMs

from the IPCC AR4 database and validate them against

TABLE 4. Three groups of models categorized based on performance shown in AWP remote connection analysis with ENSO and NAO.

(Note only 14 models are included because of data availability).

Category Description Models

I Best performance with capturing the major characters for both ENSO

and NAO influences

CGCMt47, IAP, IPSL, Mhires, MRI

II Only able to capture the major character of NAO influence CGCMt63, CNRM, GFDL20, GFDL21,

GISSer, Mmedres, Uhadcm3, Uhadgem1

III Unable to capture correct regression patterns for both ENSO and NAO INMCM

FIG. 10. A Taylor diagram of statistics describing the SST

(MAM) regression coefficient at each grid point within AWP

box on Niño-3 (DJF) index for the observation and 16 IPCC

models. On this diagram, the radial coordinate gives the mag-

nitude of total standard deviation of regression coefficients

within AWP box for each model normalized by the standard

deviation of observation, and the angular coordinate gives the

correlation of the regression coefficients of each model with

the regression coefficients of observation. The distance between

the reference point ‘‘A’’ of observation and any model’s point

(B to W defined in Table 1) is proportional to the rms error

shown by the green dashed lines. Model data are from PIcntrl

simulations.

FIG. 11. As in Fig. 10 but for pattern statistics describing the SST

(MAM) regression coefficient at each grid point within theAWP

box on the NAO (DJFM) index for the observation and 16 IPCC

models. Model data are from PIcntrl simulations.
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observations over the twentieth century at seasonal, in-

terannual, and multidecadal time scales, as well as for

the remote connections with the ENSO and NAO. Both

the AWP area index and AWP SST index are defined to

study the seasonal cycle. Three models, CSIRO35, MPI,

and Uhadcm3, have the best performance in simulating

the AWP seasonal cycle based on both indexes. The

AWPAI is almost zero for some models in most years

due to the cold SST bias found in the northern tropics

for most models. Thus, we have chosen a SST index as

a more effective but equivalent proxy for AWP vari-

ability. Analysis of the AWP remote connection with

the ENSO and NAO shows that CGCMt47, IAP, IPSL,

Mhires, and MRI are the best group of models in sim-

ulating the processes by which ENSO and NAO influence

the AWP region through wind–evaporation–SST in-

teractions. Fifteen models included in multidecadal vari-

ability evaluation, Table 5, successfully capture the spatial

characters of global SST between large AWP years and

small AWP years. All of the best models in each evalua-

tion aspect are summarized in Table 5. No single model is

able to simulate AWP variability of observations in all

respects. An encouraging point is that at least there is

always one group of CGCMs in IPCC AR4 that are able

to represent well at least one aspect of AWP variability.

Based on Table 5, CGCMt47 particularly shows very good

performance in AWP variability, overall. As physics and

configurations for every CGCM are different, the results

presented in this study provide a useful reference in im-

proving CGCM simulation of the AWP.

As discussed with respect to the AWP seasonal cycle,

the cold SST bias in the AWP region appears in 19 of the

22 CGCMs. The warm SST bias in the cold tongue and

Benguela Coast region exists in all 22 models. A recent

paper (Richter et al. 2011) based on the GFDL CM2.1

simulation suggests that a significant portion of the

equatorial SST biases in the model is due to weaker

than observed equatorial easterlies during boreal spring,

which reduces the tilt of the equatorial thermocline with

deepening in the east and prevents cold tongue forma-

tion there in the following season. In Fig. 5, however, the

warm SST bias in the cold tongue region is consistent, to

some extent, in all four seasons. For the majority of 19

models, the southeast tropical Atlantic warm SST bias

coincides with a cold SST bias in the AWP region, sug-

gesting that the two regions may be linked through the

Atlantic meridional gradient mode (WES feedback).

Hence, the causes of Atlantic SST bias require further

study. As the performance in simulating AWP variability

through CGCMs is still poor, it is expected that the ability

to simulate AWP impacts on the climate, such as pre-

cipitation and moisture transportation processes, is quite

limited.
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