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[1] Current projections of the oceanic response to anthropogenic climate forcings are
uncertain. Two key sources of these uncertainties are (1) structural errors in current Earth
system models and (2) imperfect knowledge of model parameters. Ocean tracer
observations have the potential to reduce these uncertainties. Previous studies typically
consider each tracer separately, neglect potentially important statistical properties of the
system, or use methods that impose rather daunting computational demands. Here we
extend and improve upon a recently developed approach using horizontally averaged
vertical profiles of chlorofluorocarbon (CFC‐11), radiocarbon (D14C), and temperature (T)
observations to reduce model parametric and structural uncertainties. Our method
estimates a joint probability density function, which considers cross‐tracer correlations and
spatial autocorrelations of the errors. We illustrate this method by estimating two model
parameters related to the vertical diffusivity, the background vertical diffusivity, and the
upper Southern Oceanmixing.We show that enhancing the upper Southern Oceanmixing in
the model improves the representations of ocean tracers and improves the hindcasts of the
Atlantic Meridional Overturning Circulation (AMOC). The most probable value of the
background vertical diffusivity in the pelagic pycnocline is between 0.1 and 0.2 cm2 s−1.
According to the statistical method, observations of D14C reduce the uncertainty about the
background vertical diffusivity mostly followed by CFC‐11 and T. Using all three tracers
jointly reduces the model uncertainty by 40%, more than each tracer individually. Given
several important caveats, we illustrate how the reduced model parametric uncertainty
improves probabilistic projections of the AMOC.
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1. Introduction

[2] The North Atlantic Overturning Circulation (AMOC)
is a key component of the climate system [Munk and
Wunsch, 1998]. Past changes in the AMOC intensity are

associated with considerable changes in global scale tem-
perature and precipitation patterns [McManus et al., 2004].
Anthropogenic climate forcings may trigger an AMOC
threshold response, with potentially serious impacts on nat-
ural systems and human welfare [Patwardhan et al., 2007;
Keller et al., 2000]. Current AMOC model predictions are
deeply uncertain [Zickfeld et al., 2007; Meehl et al., 2007].
[3] Tracer observations such as chlorofluorocarbon‐11

(CFC‐11) and radiocarbon (D14C) provide information on
the ventilation rate and advective properties in the ocean on
time scales ranging from decadal to centennial that can be
used for evaluating the skill of climate models in simulating
the ocean circulation [Doney et al., 2004]. A better repre-
sentation of these processes in models can possibly improve
AMOC projections.
[4] A key variable for determining ocean circulation

properties in models is the vertical ocean diffusivity (Kv).
Changing this value in model simulations has a large impact
on oceanic heat storage and transport, uptake of ocean tra-
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cers such as CO2 [Sokolov et al., 1998], and on the work
necessary to lift the abyssal waters through stratification (that
closes the MOC circulation) [Wunsch and Ferrari, 2004].
This variable is highly uncertain [Munk and Wunsch, 1998],
and it is sometimes tuned in models to generate a realistic
AMOC strength [Gao et al., 2003]. In addition, this parameter
value affects the existence of multiple states of the MOC in
model simulations [Schmittner and Weaver, 2001].
[5] Various processes lead to mixing in the ocean such as

shear or buoyancy forced turbulence, interactions of flow
with topography, and double diffusion (differential molec-
ular diffusion of heat and salt). See Smyth and Moum [2001]
and Moum and Smyth [2001] for reviews. Although General
Circulation Models have been increasing their ability of
parameterizing subgrid scale turbulent processes in the
ocean [Bryan and Lewis, 1979; Pacanowski and Philander,
1981; Large et al., 1994; Ferrari et al., 2008], due to the
complexity of the problem and processes involved, most
schemes are still highly simplified and parameterized. In
Earth System Models of Intermediate Complexity (EMICs),
the absence of more complex parameterizations elevates the
importance of the parameters related to Kv in order to fulfill
the model necessity of turbulent mixing in simulating a
realistic AMOC strength.
[6] Several studies [e.g., England, 1993; Gao et al., 2003]

analyze the importance of the magnitude of the diffusivity
strength and parameterization on the MOC structure and
representations of tracers in ocean models. These studies are
typically silent on the question of how much information is
contained in the different types of observations. This is an
important question, for example, to inform the design of
AMOC observation and prediction systems [cf. Baehr et al.,
2008; Keller et al., 2007; Keller and McInerney, 2008].
[7] Schmittner et al. [2009] discusses a relatively simple

but computationally efficient method to estimate the back-
ground ocean diffusivity Kbg from the combination of spa-
tially resolved ocean tracer observations considering both,
observational and model errors. However, Schmittner et al.
[2009] neglects the effects of cross correlation between
different tracers, which limits the number of tracers that can
be combined in a joined probability density function. In
another recent study,Bhat et al. [2009] estimates the posterior
probability distribution for Kbg using D14C and CFC‐11
observations. Their approach uses a Gaussian process emu-
lator for the climate model and estimates the distribution of
Kbg via a Bayesian approach.While their kernel mixing based
approach to constructing the emulator is flexible and effi-
cient, it is conceptually complex and computationally highly
demanding for routine use with more than two ocean tracers.
[8] Here we estimate the probability density function (pdf)

of Kbg using three tracers simultaneously. Our approach pro-
vides a fast and relatively easy way to implement the meth-
odology, enabling the routine use of information from several
ocean tracers jointly, while still considering spatial autocorre-
lation aswell as cross correlation between residuals of different
tracers. We demonstrate how neglecting cross correlation and/
or simplifying themean function can compromise the accuracy
of the estimation. We improve the treatment of uncertainties
surrounding Kv in the model by considering the structural
uncertainty about the upper Southern Ocean mixing (u_KSO).
We show that an ensemble with enhanced Southern Ocean
mixing is more consistent with the observations.

[9] Furthermore, we advance on previous work by quan-
tifying and ranking the skill of the tracers CFC‐11, D14C
and temperature (T) to constrain the uncertainties in the
model parameter Kbg. We demonstrate the potential utility
of the considered observations to improve model predictions
of the AMOC.

2. Methods

2.1. Earth System Model of Intermediate Complexity

[10] We use the University of Victoria Earth SystemModel
of Intermediate Complexity (UVic 2.8) [Weaver et al., 2001].
This model has been widely used in climate simulations and
models comparisons studies. In the UVic model, we param-
eterize the diapycnal diffusivity as Kv = Ktidal + KSO + Kbg,
which consists of the diffusivity due to local dissipation of
tidal energy and its resulting generation of turbulence and
mixing (Ktidal) [Simmons et al., 2004], a parameterization
for the vigorous mixing (KSO) observed in the Southern
Ocean [e.g., Naveira Garabato et al., 2004], plus a back-
ground diffusivity Kbg that represents all other processes that
lead to mixing, such as nonlocal dissipation of tidal energy,
mesoscale eddy activity, double diffusion, hurricanes,
interaction of flow with topography, and others.
[11] The model accounts for increased mixing over rough

topography based on the tidal mixing scheme of St. Laurent
et al. [2002], and uses the [Gent and McWilliams, 1990]
eddy mixing parameterization. It is likely that Kbg is spa-
tially and temporally variable in nature [Sriver et al., 2010],
but due to a lack of a more explicit representation of the
processes and for simplicity we assume a constant value of
Kbg everywhere. Note that Ktidal decays exponentially (with
an e‐folding depth of 500 m above the seafloor) such that it
is unimportant in the pelagic pycnocline (i.e., away from the
boundaries). However, it is the value of Kbg in the pelagic
pycnocline that is most important in determining the large‐
scale ocean circulation in models [cf.,Marotzke, 1997;Munk
and Wunsch, 1998]. For the Southern Ocean (south of 40S)
parameterization, the vertical mixing is truncated at 1 cm2/s as
a lower bound (Kv > 1 cm2/s). The Southern Ocean is one of
the most tempestuous oceans on Earth, and these transient
effects may produce strong turbulent mixing, specially in the
upper Southern Ocean. In order to include uncertainties
about the upper Southern Ocean mixing, we further divide
the Southern Ocean mixing into upper (u_KSO) and lower
(l_KSO) parts. Therefore, KSO = u_KSO + l_KSO, where
u_KSO is the Southern Ocean mixing in the upper 500 m,
and l_KSO is the Southern Ocean mixing from 500m to the
bottom of the water column.
[12] We create two ensembles to analyze the uncertainty

in two model parameters, the background ocean diffusivity
(Kbg) and the upper Southern Ocean diffusivity (u_KSO).
Each ensemble contains seven members, corresponding to a
grid of the parameter Kbg values of (0.05, 0.1, 0.15, 0.2, 0.3,
0.4, and 0.5) cm2 s−1. The difference between the two
ensembles is that in the first one (ENSEMBLE 1), the
enhanced SO mixing is only applied in the lower part of the
Southern Ocean, so in the upper SO the mixing is equal to the
rest of the pelagic areas of the upper ocean (with indices
u_KSO = 0, l_KSO = 1), whereas the second one (ENSEMBLE
2) uses an enhanced mixing in the entire column of the
Southern Ocean (with indices u_KSO = 1, l_KSO = 1). As we
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are not varying the parameter l_KSO, it is suppressed in the
rest of the manuscript.
[13] The ocean component in UVic is MOM2

[Pacanowski, 1995] with a 1.8° × 3.6° resolution in the
horizontal and 19 depth levels. The atmospheric component
is a one‐layer atmospheric energy‐moisture balance model,
which does not apply flux correction and is forced by pre-
scribed winds from the NCAR/NCEP climatology. Also
included in the model are a thermodynamic sea ice com-
ponent, a terrestrial vegetation (TRIFFID), and an oceanic
biogeochemistry based on the ecosystem model of
Schmittner et al. [2005].
[14] We preformed a total of 47,600 model years. An

EMIC can produce such an ensemble with relative ease. At
first, the model is spun up from observed data fields as
initial conditions for 3000 years (with a coupled carbon cycle
for the last 1000 years) for each parameter value. It is then
integrated from years 1800–2100 using historical and pro-
jected climate forcings (SRES‐A1FI scenario), extended to
the year 2200 following [Zickfeld et al., 2008]. We modify
the model to include non‐CO2 greenhouse gases, volcanic
and sulfate forcings from Sato et al. [1993] and Hansen and
Sato [2004]. Atmospheric sulfates data enter the model as
gridded optical depth [Koch et al., 1999], and follow the
same rate of decrease as the CO2 concentration after 2100.

2.2. Data

[15] We focus on a subset of observations that have pre-
viously been shown to provide constraints on the parame-
terization of Kv in ocean models: (1) temperature (T), (2)
chlorofluorocarbon 11 (CFC‐11), and (3) radiocarbon
(D14C) observations [cf. Schmittner et al., 2009; Bhat et al.,
2009; Toggweiler et al., 1989]. D14C is defined as the
14C/12C ratio of air‐sea fractionation‐corrected data [Stuiver
and Polach, 1977]. Each of the tracers in this subset has a
different behavior and can constrain Kv in different ways.
The temperature observations constrain Kv, because Kv

affects, for example, the shape of the thermocline as well as
the penetration of the anthropogenic heat anomalies
[Gnanadesikan, 1999]. The D14C observations can con-
strain Kv in two main ways, because it has a natural and an
anthropogenic component. The natural component can
provide information of mixing rates (that are, in turn, a
function of Kv) in the order of centuries or millennia. The
anthropogenic component, which greatly increased during
the 1950s and 1960s due to thermonuclear explosions,
provides information on decadal time scale. Here we do not
make distinction between natural and bomb 14C, thus we use
its total concentration. The anthropogenic tracer CFC‐11
also constrains Kv on decadal time scale, because atmo-
spheric emissions started in the 1930s. The solubility of
CFCs in water is dependent on the temperature. Considering
CFC‐11 and D14C jointly can provide new insights into
vertical oceanic mixing because they have very different
forcing histories, air‐sea equilibration time scales and water
solubility [Broecker and Peng, 1987; Ito et al., 2004], and
the observation errors and signal‐to‐noise ratios of the two
tracers are different. We analyze published data products for
these three tracers [Locarnini et al., 2006; Key et al., 2004]
and average the model hindcasts over the time the observa-
tions have been collected, i.e., 1990s for CFC‐11 and D14C,
and 1950–2000 for temperature. We interpolate the observa-

tions to the model grid and the model output is restricted to
the regions where the data products are available. All con-
sidered ocean tracer observations are horizontally averaged
into global mean vertical profiles. Further, the probability
distributions of the model parameters, inferred from the
information of ocean tracers profiles, are compared with the
distribution inferred from the climatological observations of
the AMOC strength at 24°N. For this purpose, we use the
information of the AMOC strength calculated with the
inverse model of Lumpkin and Speer [2003], which is esti-
mated as (17.6 ± 2.7 Sv). The model ensembles are cali-
brated against observations using a Bayesian inference
method. We assume a Gaussian likelihood function and
estimate the posterior probability of Kbg and u_KSO given
the observations through a Markov Chain Monte Carlo
(MCMC) method [Metropolis et al., 1953]. Our method
accounts for autocorrelations of the residuals, as well as
cross correlation between residuals of different tracers. For
this, a separable covariance matrix S is estimated. The
inversion and the numerical implementation of the calibration
procedure are detailed in the next subsection. Readers not
interested in the details of the statistical inversion technique
can skip the next subsection without loss of understanding.

2.3. Bayesian Model Inversion

[16] The goal of Bayesian parameter estimation is to infer
a probability distribution(s) p(� |O) representing the uncer-
tainty in one (or more) climate model parameter �, condi-
tional on a vector of observed data O. Here � are parameters
Kbg and u_KSO, which are related to the vertical ocean dif-
fusivity in UVic. The inferential procedure is based on a
statistical model that relates the model parameters (�) to the
observations (O) by way of the ensemble of model output M
(�). The statistical model used here assumes that the ob-
servations are randomly distributed around the model pre-
diction, according to

O ¼ M �ð Þ þ �; ð1Þ

where the error is a random variable drawn from a multi-
variate normal distribution

� � N �;Sð Þ; ð2Þ

with an unknown mean or bias term m and covariance matrix
S. These distributional parameters are estimated along with
the model parameter �. The error term encompasses all
processes which may cause the observations to deviate from
the model predictions, including model structural error,
unresolved variability in the climate system, and measure-
ment error. We model these errors as random processes,
approximated here by a potentially correlated Gaussian
probability function.
[17] The error mean term m represents model bias, which

is common for each observed variable across ensemble
members. Schmittner et al. [2009] assumed a bias which is
constant with depth. Here we expand upon this form by
using a general linear form that varies with depth (z), m = az +
b. This form improves the model fit as indicated by a
exploratory data analysis in the next section. The covariance
matrix, described later, captures the residual variability that is
unaccounted by the linear bias term.
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[18] The above probability model describing the spread of
observations about the model output defines a likelihood
function L(O|�, m, S) for the data conditional on the model
and covariance parameters

L Oj�; �;Sð Þ ¼ 2�ð Þ�N=2 Sj j�1=2exp � 1

2
~rTS�1~r

� �
; ð3Þ

where S is a covariance matrix and ~r = O − M(�) − m are the
bias‐corrected data‐model residuals.
[19] Consider an ensemble M containing p runs of a cli-

mate model, where each run corresponds to a different value
of a climate model parameter, �k, k = 1, …, p. For each
ensemble member we analyze n ocean tracer profiles
defined at d spatial locations (depths). The matrix S is nd ×
nd specifying the covariance between n tracers at d locations
(depths). Assuming separability, S can be approximated by
a Kronecker product of two matrices

S ¼ ST � CS þ SM ; ð4Þ

where ST corresponds to the n × n cross‐covariance matrix
of the tracers, and CS is the d × d spatial correlation matrix
(in depth) respectively. SM is the data measurement error
which we assume to be negligible compared to the other
errors because of the spatial aggregation of the data.
[20] The cross‐covariance matrix ST depends on n(n − 1)/

2 cross‐tracer correlation coefficients rij (since rij = rji), and
on residual standard deviations si of the n individual tracers

ST ¼

�21 �1�2�12 . . . �1�n�1n

�2�1�21 �2
2 . . . �2�n�2n

..

. ..
. . .

. ..
.

�n�1�n1 . . . . . . �2n

2
6666666664

3
7777777775
: ð5Þ

[21] We model the spatial correlation CS using a Gaussian
correlation function, a special case of the Matérn class of
covariance functions (see, for e.g., Stein [1999]). This
function decays with distance between locations di and dj
with a correlation length scale l, assumed to be the same for
all tracers

CSð Þij ¼ exp � di � dj
�� ��2

�2

 !
: ð6Þ

[22] Given the property of the Kronecker product (see, for
example, Lu and Zimmerman [2005]), the multivariate
normal likelihood function L(y, �) becomes

L Oj�; �;ST ;CSð Þ ¼ 2�ð Þ�N=2 STj jd CSj jn
� ��1=2

� exp � 1

2
~rT S�1

T � C�1
S

� �
~r

	 

; ð7Þ

where N = nd is the total number of data points, and ~r = [O1 −
M1 − m1, …, On − Mn − mn]

T is the concatenated vector

containing the misfit between the unbiased model predictions
and the corresponding observations for the considered tra-
cers. The Kronecker structure of equation (4) allows the nd ×
nd matrix S to be efficiently inverted by inverting the two
smaller matrices ST (n × n) and CS (d × d).
[23] Once the probability model has been specified in the

form of a likelihood function, the Bayes’ theorem allows
inference about the posterior distribution of �. The theorem
states that the posterior probability of the unknown para-
meters is proportional to their prior probability distribution,
multiplied by the likelihood of the data, according to

p �; a; b; �; �; �jOð Þ / L Oj�; a; b; �; �; �ð Þp �ð Þp að Þ
� p bð Þp �ð Þp �ð Þp �ð Þ: ð8Þ

We draw 20,000 samples from the above posterior distri-
bution by a Markov chain Monte Carlo (MCMC) algorithm.
The MCMC algorithm jointly estimates the model para-
meters (� = Kbg, u_KSO), 2n bias coefficients (ai and bi), n
standard deviations (si), n(n − 1)/2 cross‐tracer correlations
(rij), and one correlation length (l). This is an improvement
upon the methodology of Schmittner et al. [2009] which
held all parameters but � fixed at optimized values, and did
not consider the uncertainty in the other parameters.
Because the model output is only defined on a discrete grid
of values, the MCMC algorithm proposes discrete jumps for
the parameters � during its random walk through parameter
space, and continuous moves for all other parameters.
[24] We choose a uniform prior p(�) for the model para-

meters Kbg and u_KSO. For the correlation length we apply
the lognormal prior ln l ∼ N(5.5, 0.52), such that the loga-
rithm of l is normally distributed with mean 5.5 and stan-
dard deviation 0.5. This prior locates most of the probability
mass of the distribution between 0 and 600 meters. We use
normal priors for the bias parameters ai and bi, p(ai) = N(0,
(si/l)

2) and p(bi) = N(0,si
2). For the estimate of individual

tracers distributions, where the cross‐correlation matrix is a
scalar (i.e., S = s1

2), we use a Jeffreys prior (p(si) / 1/S).
When the multitracer cross‐covariance matrix is estimated,
we specify an inverse Wishart prior distribution ST ∼ IW(S,
n), with a diagonal scale matrix S = I and n = 2n + 1 degrees
of freedom. A diagonal scale matrix reduces spurious cor-
relations by penalizing tracer residuals which are not inde-
pendent of each other. Spurious correlation is not a problem
when the data dimension is large, but when the data are
sparse such a regularization procedure is prudent (see, for
instance, Barnard et al. [2000] or Chapter 19 of Gelman et
al. [2003], and references therein).
[25] Equation (8) provides the joint posterior probability

of both the model parameter and the bias and covariance
parameters. The marginal posterior probability of the model
parameter alone is obtained by integrating the joint posterior
over all other parameters,

p �jOð Þ ¼
Z
p �; a; b; �; �; �jOð Þdadbd�d�d�: ð9Þ

[26] Since the posterior is estimated by MCMC sampling,
this posterior distribution of � is easily obtained by simply
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considering the � samples while ignoring the samples for the
other parameters.

3. Results

3.1. Effect of Ocean Diapynal Diffusivity on the AMOC
Hindcasts and Spatial Fields

[27] In the adopted model the AMOC strength is positively
correlated with the parameters Kbg and u_KSO (Figure 1). Kbg

has a strong influence on the model hindcasts of the maxi-
mum AMOC strength, while the AMOC sensitivity to
u_KSO is weaker. The range of AMOC strength varies from
about 5–23 Sv across all simulations. The inclusion of
enhanced upper Southern Ocean mixing (u_KSO = 1), can
increase the AMOC by a few Sverdrups, with more influence
at lower Kbg. Under the projected climate forcings, the
AMOC strength decreases in most cases, but it is more
sensitive (in absolute values) to the considered forcings for
higher diffusivity values. Due to the strong dependence of
the AMOC structure and behavior on the values of the
parameters Kbg and u_KSO in this model, a reduction in the
parametric uncertainty has the potential to improve AMOC
hindcast and projection in the model.
[28] The different parameter values result in different

hindcasts of ocean tracers such as CFC‐11 (Figure 2) and
D14C (Figure 3), due to the different tracers advection and
diffusion rates in the model. Higher Kbg values result in
stronger vertical water exchange, increased deep water mass
formation, which carries water with higher tracer content
from the surface, and decreased vertical stratification in the
ocean. u_KSO broadly produces the same effects of Kbg.
Nevertheless, u_KSO impacts more heavily the lower Kbg

runs and the Southern Ocean stratification.
[29] Here we analyze the tracers concentrations as vertical

profiles of their averaged concentrations over the globe. We
consider three different observations, CFC‐11, D14C and T
(Figure 4, shown as an example for ENSEMBLE 1). In
general, the observations are contained by the model
ensemble spread, except for T in the deep ocean, which is
too cold in the model.

3.2. Uncertainty of the Statistical Inversion

[30] The inversion method uses the information contained
in the tracers to estimate the model parameter Kbg, taking
into account uncertainties in u_KSO. Key improvements
compared to Schmittner et al. [2009] are (1) the estimation
of the cross‐correlation terms; (2) a more refined represen-
tation of structured biases in the Likelihood function; and
(3) the consideration of the effects of the structural uncer-
tainty (specifically about the implementation of mixing in
the SO). Here we demonstrate how these improvements
affect the joint posterior pdf of the model parameters. We
test the sensitivity of the method to the choice of the sta-
tistical (or nuisance) parameters for the distribution of Kbg.
In this sensitivity test, we do not account for uncertainties in
the parameter u_KSO. Therefore, we only use outputs from
ENSEMBLE 1.
[31] For illustration, we use two tracers, D14C and T, as

input for the statistical inversion. We calculate four inver-
sions, which vary the number of statistical parameters to be
estimated. The structure of the errors differs from each other
by the representation of two main parameters, the bias and

the cross correlation of the residuals between the model and
the observations. The bias term represents our guess of the
mean function of the residuals. We demonstrate the trade‐
off between complexity of the bias‐correction and the
covariance structure of the residuals in this simple sensi-
tivity study.
[32] Specifically, we analyze four different assumptions

about the structural error terms. First, we use a simple case
where the bias is constant and there is no residuals cross
correlation; second, we use a constant bias and estimate the
cross correlation; third we estimate a linear bias but no
residual cross correlation; and fourth, in which linear bias
and cross correlation are both estimated. To summarize the
experiments in the sensitivity study, we have (1) m = b, r =
0, (2) m = b, r = �̂, (3) m = az + b, r = 0, and (4) m = az + b,
r = �̂. Note that the calibration also estimates standard
deviation, correlation length and the model parameter, as
described in section 2.3. Comparing all pdfs (Figure 5) we
see that for the individual pdfs the representation of the bias
term can be essential for the model parameter estimation.
When a more simplified bias (m = b) is applied (Figures 5a
and 5b), the pdfs in this example are displaced toward
higher Kbg values, and centered on 0.3 and 0.4 cm2 s−1. In
contrast, with the linear bias estimations, the mode of Kbg

pdf is centered around 0.15 and 0.2 cm2 s−1. For the cases
with linear bias (Cases c and d), the standard deviation of
the residuals of both tracers (Table 1) decrease in compar-
ison to the constant biases cases (Cases a and b). On the
other hand, the standard deviations of the residuals are not
influenced by the addition of cross‐correlation parameters.
[33] The inclusion of the cross‐correlation parameter im-

pacts the position of the joint posterior (black curves), and
its strength is closely related to the representation of the
bias. When the bias has a better representation, which is the
linear bias case here (Figures 5c and 5d), the cross‐corre-
lation term has little influence on the joint pdf. A compar-
ison of the strength of the cross‐correlation parameters
(Cases b and d in Table 1) shows that r = 0.70 when m is
constant, and is much smaller r = 0.40 when m is linear.
Comparing the posteriors of the Cases a and b (Figures 5a
and 5b), r can visibly change the posterior when the mean
function is less structured. Case b shows a counterintuitive
result where the posterior mode is distant from the modes of
the individual components (Figure 5b). This result indicates
that with a relatively poor representation of the mean (bias)
function, considering or neglecting the effects of this
residual cross‐correlation can drastically change the Kbg

posterior estimate. This effect becomes less pronounced, as
the representation of the model bias term improves (e.g.,
Figure 5b versus Figure 5c). As discussed by Cressie [1993]
(pp. 25), “What is one person’s (spatial) covariance structure
may be another person’s mean structure.” In other words,
there is a trade‐off between estimating a mean function for
the tracer residuals to account for structural model errors and
the magnitude of the residual cross correlation across the
considered sources of information.

3.3. Estimating the Uncertainty of Vertical Diffusivity

[34] The analysis so far illustrates how different tracers
observations can be combined to reduce uncertainty about
one mixing parameter (Kbg). This reduction in parametric
uncertainty results, at least in the framework of the adopted
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Figure 1. AMOC strength (Sv), defined as the maximum of the transport stream function, from years 1800
to 2200. Dashed lines are for the ENSEMBLE 1 (u_KSO = 0); solid lines are for the ENSEMBLE 2
(u_KSO = 1).

Figure 2. Zonal averages for the Atlantic Ocean of CFC‐11 concentration in pmol/kg (color bars) and
density anomalies in kg/m3 (contour lines) for the model with diffusivity of (top) Kbg = 0.05 and (middle)
Kbg = 0.5. (left) ENSEMBLE 1 (u_KSO = 0) and (right) ENSEMBLE 2 (u_KSO = 1). (bottom) Observa-
tions from Key et al. [2004] and Locarnini et al. [2006].
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Figure 3. Zonal averages for the Atlantic Ocean ofD14C concentration in permil (color bars) and density
anomalies in kg/m3 (contour lines) for the model with diffusivity of (top) Kbg = 0.05 and (middle) Kbg = 0.5.
(left) ENSEMBLE 1 (u_KSO = 0) and (right) ENSEMBLE 2 (u_KSO = 1). (bottom) Observations from Key
et al. [2004] and Locarnini et al. [2006].

Figure 4. Global averaged profiles of CFC‐11 [Key et al., 2004], D14C [Key et al., 2004], and T
[Locarnini et al., 2006] for the observations (gray dots) and model ENSEMBLE 1 (colored lines). The
legend for the model Kbg values is the same as in Figure 1.
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model, in a reduction of the prediction uncertainty about the
AMOC. Of course, there are several caveats associated with
structural errors and other neglected uncertainties in this
study. We return to this issue in section 4. In this section we
illustrate how this information can potentially be used to
reduce uncertainties in two model parameters and improve
model hindcasts and projections of the AMOC. Here the
inversion uses our best estimate of the model bias term
(linear), and accounts for cross‐tracer correlation. We make
three inversions (Figure 6), one to estimate Kbg for the
ENSEMBLE 1, a second to estimate Kbg for the ENSEM-
BLE 2, and a third inversion which uses information from

both ensembles to generate probability distributions for Kbg

and u_KSO in a Bayesian model average fashion.
[35] Information from the three considered tracers, CFC‐

11, T and D14C, is introduced in the statistical inversion for
the estimation of uncertainties in the model parameters. For
comparison, we also show in Figure 6 the Kbg pdf obtained
using the climatological AMOC observations. The Kbg pdf
is derived from estimate of the climatological AMOC
strength of Lumpkin and Speer [2003] by assimilating a
single data point assuming a normally distributed error. In
principle, the model could be calibrated with both the ocean
tracers and AMOC strength data by using the derived

Figure 5. Sensitivity of the model parameter estimation to different treatments of structural model errors.
Shown are the posterior probability density function of D14C (line with crosses) and T (line with circles),
and the joint posterior using both observations (line with squares). The frames are for the cases discussed
in the text: (a) [m = b, r = 0], (b) [m = b, r = �̂], (c) [m = az + b, r = 0], and (d) [m = az + b, r = �̂].

Table 1. Properties of the Statistical Distributions of the Sensitivity Test for the Best Kbg
a

Experiment

Mode
(cm2 s−1) Bias (a,b) s

Cross
Correlation
at Best Kbg

Mode of
PosteriorD14C T D14C T D14C T

Case a 0.3 0.4 (−14.0,0) (0.45,0) 12.5 0.6 – 0.3
Case b 0.3 0.4 (−14.0,0) (0.45,0) 12.5 0.6 0.70 0.2
Case c 0.15 0.2 (−16.1,9e‐3) (0.22,3.3e‐4) 7.7 0.28 – 0.15
Case d 0.15 0.2 (−16.1,9e‐3) (0.22,3.2e‐4) 7.7 0.28 0.40 0.15

aMode, bias (m = az + b), standard deviation, and cross‐correlation of residuals for D14C and T and mode of the posterior (joint distribution considering
all tracers information).
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AMOC pdf as a prior for Kbg. However, this would neglect
potential correlations between ocean tracer and AMOC
strength residual errors. As a proper treatment of AMOC/
tracer correlations is beyond the scope of this work, we
present the AMOC‐derived pdf just for comparison, without
assimilating it in the joint posterior pdf.
[36] The tracers distributions of both ensembles show sim-

ilar behavior. Nevertheless, the ENSEMBLE 1 (Figure 6a) has
in general higher Kbg modes in comparison to ENSEMBLE 2
(Figure 6b). This result shows that the additional mixing over
the upper Southern Ocean increases the overall magnitude
of Kv, without changingKbg, and tends to intensify the AMOC.
The posterior pdf for Kbg, obtained by assimilating observa-
tions of the AMOC strength only (lines with triangles), is
also displaced to lower values in ENSEMBLE 2, because
ENSEMBLE 2 has stronger AMOC values for the same Kbg

(Figure 1).
[37] When information from both ensembles are combined

(Figures 6c and 6d), the ENSEMBLE 2 dominates
the Markov chain for D14C and T, with probabilities of
100% and 65% for ENSEMBLE 2, respectively. Con-
versely, CFC‐11 has 80% probability of happening
ENSEMBLE 1 (Figure 6d). The joint posterior of all tracers

encompassing the two ensembles (Figure 6c) is entirely
described by ENSEMBLE 2; therefore, the posteriors in
Figures 6b and 6c are practically identical.
[38] When all the two model parameters are assimilated

jointly (Figure 6c), the considered sources of information
have rather different skill in improving Kbg estimates and
AMOC predictions (see Table 2 for the properties of the
statistical distributions). D14C has the highest information
content with respect to improving Kbg estimates, its poste-
rior 95% credible interval (CI) is the tightest (0.21 cm2 s−1)
in comparison to the other tracers. CFC‐11 comes in second,
with a 95% CI of 0.24 cm2 s−1, and T comes last with the
largest CI of 0.26 cm2 s−1.
[39] Combining the information of the three considered

tracers (line with squares in Figure 6c), favors Kbg values in
the lower part of the considered range, from 0.1 to 0.2 cm2 s−1.
Note that the joined probability density function is narrower
than each individual pdf indicating an advantage of using
multiple tracer observations in reducing the parameter
uncertainty.
[40] As discussed in previous studies [e.g., Schmittner et al.

2009], the Kbg value in a coarse resolution ocean model
represents the effects of background diffusivity combined

Figure 6. Posterior probability density function of the model parameters for all considered sources of
information, the joint posterior using all available information from observations ( line with squares).
The climatological AMOC estimate of Lumpkin and Speer [2003] is plotted for comparison ( line with
triangles). The Kbg estimates are for (a) ENSEMBLE 1, (b) ENSEMBLE 2, (c) ENSEMBLE 1 and
ENSEMBLE 2, and (d) the u_KSO estimate is for ENSEMBLE 1 and ENSEMBLE 2.
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with subgridscale diffusivity (i.e., a model shortcoming).
Another shortcoming for coarse z coordinate ocean models is
the numerical diffusivity (Veronis effect), which can generate
spurious diapycnal diffusion, especially in long climate si-
mulations, in western boundary regions and regions where
the isoneutral slope is large [Griffies et al., 1998, 2000].
Hence, even if our model‐based estimate does not represent
directly the observational estimate of pelagic diffusivity of
0.1 cm2 s−1 [Ledwell et al., 1993], they appear to be more
consistent when we improve on the parameterization of
regional mixing in the model.

3.4. AMOC Projections

[41] The joint posterior Kbg and u_KSO estimates
(Figures 6c and 6d) can be used to derive model projections of
the AMOC in 2100 and 2200 (Figure 7). The model hindcast
for the maximum AMOC strength in 2000 is about 15–
15.5 Sv. In 2100, the expected strength for the AMOC in
this model is about 11 Sv. In 2200 the AMOC shows a
slight strengthening relative to the 2100 conditions with an
expected value of roughly 12 Sv.
[42] The Kbg and u_KSO estimates suggest an AMOC

hindcast for the year 2000 (Figure 7) that is about 2 Sv
weaker than the climatological AMOC estimates of Lumpkin
and Speer [2003]. The inclusion of the parameter u_KSO in
the analysis reduces significantly the discrepancy of the
AMOC estimates relative to the Kbg (Figure 6c). Other sys-
tematic model bias(es), such as too weak buoyancy forcing
(e.g., from errors in the simulation of the atmospheric hydro-
logical cycle and surface freshwater fluxes) can compromise
the estimates of the current and projected AMOC strength
for the Uvic model. Further discussion and implications are
described in section 4.

4. Caveats

[43] Our results are subject to many caveats. These caveats
point to potentially fruitful research directions. In the statis-
tical part, we consider only highly aggregated data. Basin-
wide zonal averages could, for example, provide potentially
useful information on where the model performs better. In
the projection part, other model parameters, such as those
affecting the response of the ocean‐atmosphere coupled
system, for example, the hydrological cycle [Saenko and

Weaver, 2004], climate sensitivity or sensitivity of climate
to aerosol concentrations, [cf. Tomassini et al., 2007; Forest
et al., 2002], are also highly uncertain, and can impact
(probably widen) probabilistic AMOC projections and
should be considered. In addition, the atmospheric model in
UVic is rather simplified, and neglects important ocean‐
atmosphere feedbacks.
[44] UVic does not use flux correction. Freshwater flux

correction is known to improve the salinity and stratification
in ocean models [Sorensen et al., 2001], and can be used to
improve projections and hindcasts.
[45] In the hindcasts part, other parameters linked to both

diapycnal and isopycnal mixing may affect the structure of
the AMOC. Nevertheless, according to Jayne [2009], tidal
mixing parameters in the [St. Laurent et al., 2002] param-
eterization have relatively low impact on the strength of the
AMOC, and that upper‐ocean wind‐driven mixing may
have a much stronger impact.
[46] We show how including regional aspects of vertical

mixing can improve the representation of the AMOC. The
model parameters uncertainties need to be estimated
together as performed here, since addition of new para-
meters can change the structure of the other calibrations.
Jayne [2009] describes, “this is the typical conundrum: it is
difficult to assess whether any of the given parameteriza-
tions improve the model since comparing to observational
metrics may obscure compensating errors in different para-
meterizations.”

5. Conclusion

[47] We develop and apply a computationally efficient
and statistically sound method to rank and quantify the skill
of different sources of information to reduce the uncertainty
about ocean model parameters and the resulting climate
predictions. We improve on previous work by (1) refining
the estimation of errors in the model structure, (2) including
several ocean tracers and two model parameters at once in a
computationally efficient fashion, and (3) quantifying and
ranking the skill of different sources of information to

Figure 7. Joint posterior probability density function of
model projections of the maximum AMOC strength in the
years 2000, 2100, and 2200 using information from the
D14C, CFC‐11, and T observations. The climatological
AMOC estimate of Lumpkin and Speer [2003] is added
for comparison (line with triangles).

Table 2. Properties of the Statistical Distributions ofKbg (Figure 6c)
for Each Considered Sources of Information, the Posterior (Joint
Distribution Considering All Tracers Information), and the Climato-
logical AMOC Estimatea

Observation Mode Mean 95% CI

Cross Correlation
at Best Kbg

D14C CFC‐11 T

D14C 0.15 0.15 0.22 1 0.06 0.38
CFC‐11 0.20 0.23 0.26 – 1 0.02
T 0.15 0.18 0.26 – – 1
Posterior 0.15 0.16 0.17 – – –
Climatological AMOC 0.20 0.20 0.42 – – –

aMode, mean, and 95% credible interval (CI, in cm2 s−1). Climatological
AMOC estimate from Lumpkin and Speer [2003]. Also shown are the
cross‐tracer correlation at the best Kbg value estimated in the joint posterior.
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reduce the uncertainty about a model parameter. Subject to
the aforementioned caveats, we show how D14C, CFC‐11,
and T together sharpen the estimates of Kbg by 40% and
improve AMOC projections in the UVic model.
[48] The Kbg derived from individual observations (i.e.,

D14C, CFC‐11, T) are broadly consistent, but show slight
discrepancies that we attribute predominantly to structural
model errors. Of the considered observations, D14C has the
highest skill in reducing uncertainties in AMOC projections,
but it is also the most distant from the pdf observational
derived AMOC estimates. D14C is followed (in decreasing
skill of being able to reduce Kbg uncertainty) by CFC‐11
and T. The second parameter analyzed in this work, u_KSO

improved the representations of C14 and T in the model, and
improves the representation of the AMOC strength.
[49] AMOC projections show a reduction of the maxi-

mum of the joint posterior in 2100 by roughly 25% (3.5 Sv).
Perhaps both surprisingly and encouraging, the pdfs of Kbg

estimated in this study are quite similar among the consid-
ered ocean tracers and the two ensembles analyzed, which
have different representations of the upper Southern Ocean
mixing and AMOC. This convergence ofKbg estimates based
on different sources of information and parameterizations
suggest that Kbg can be robustly estimated from the oceanic
tracers studied here.
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