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1. INTRODUCTION

The motions of the oceans span a vast range of length and
time scales, consistent with the broad range of forcing from
small and fast (wind gusts), large and fast (tides, diurnal
cycle) to small and slow (coastal erosion). to large and slow
(Milankovich and tectonic change). However, even forcing
over a narrow band of space and time scales does not result
in a narrow banded response, as nonlinear processes
connect different scales and hydrodynamic instabilities
produce new scales that differ from those of the forcing.
High-resolution models, satellites, and drifter observa-
tions generally agree about the surface signature of the
mean and mesoscale motions of the surface ocean. Even
coarse-resolution models approximate many nonlinear
effects, such as the formation of the advective thermocline.
meridional overturning circulations, and western boundary
currents. However, the instabilities and small-scale pro-
cesses that produce transient mesoscale and smaller
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motions are still not resolved routinely in global scale sim-
ulations, which is likely to be true for a few decades to
come. Continued study of mesoscale processes and their
parameterization will provide increasingly accurate under-
standing and models. This chapter focuses on the present
understanding and remaining questions about the effect
of these processes on the larger, steadier oceanic “general
circulation.”

Precise usage of “general circulation™ is rarely exer-
cised: it usually refers to a circulation governed by steady
or simplified equations or observations that somehow
reduce variability. Before computers. general circulation
usually meant assuming steady, linear, strongly diffusive
equations. Since computers, we refer to “general circulation
models™ or GCMs. that are too coarse 1o resolve some phe-
nomena. Whatever is not resolved, apparently, is not part of
the “general circulation.” Now that we can afford to sim-
ulate all of the globe, GCM is sometimes taken as “global
circulation model” or “global climate model” where
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“circulation” and “climate” apparently are that which is
resolved and everything else is not.

General circulation models have parameterizations to
approximate all phenomena smaller or faster than the model
can resolve directly. Which phenomena need to be param-
eterized depends on the model resolution and an assessment
of the phenomena that dominate that scale. The emphasis
here is on the present global ocean models, which have a
resolution too coarse to directly resolve features that are
a few hundred kilometers in the horizontal or smailler.
Model resolution has increased steadily with computing
power and so the definition of general circulation grows
to include more phenomena but direct solution of the
Navier—Stokes equations for the global ocean is still cen-
turies away, based on current trends. So, parameterizations
of some unresolved ocean phenomena will remain part of
oceanography for the foreseeable future. Mesoscale and
smaller processes transport tracers, momentum, and energy.
and these transports constitute a non-negligible contribution
to the global ocean’s general circulation and stratification.

This chapter reviews principles behind the processes that
dominate the lateral transport of fluid properties: the general
circulation and mesoscale eddies. Away from the surface,
both general circulation and eddies are thought to be nearly
conservative in many properties. The conservation prin-
ciples, and how they are formulated into guiding principles
for the development of parameterizations, constitutes the first
few sections. A brief discussion of the interactions between
the unresolved and resolved processes follows. Later sections
present high-resolution numerical and observational evi-
dence to illustrate some parameterization principles in
present practice and suggest future improvements.

2. THEORY OF MASS, TRACER,
AND VECTOR TRANSPORT

This section contains an introduction to the relevant equa-
tions of fluid motion in the forms most useful for the dis-
cussion of transport processes to come in later sections.
The compressible equations with a generic equation of state
are a useful starting point. They are contrasted against the
“primitive” equations usually simulated in ocean models,
both in depth-coordinate and density-coordinate versions.
Care is taken with the connections between energy and
buoyant restoring force. The importance of the vertical
coordinate, averaging operations, and relevant “eddy” cor-
relations are also discussed in preparation for later sections.

2.1,

The general equations of motion for a rotating, stratified
fluid are the rotating Navier-Stokes equations, combined
with the first and second laws of thermodynamics. With
apprl)priate initial and boundary conditions, density (p),

Fundamental Equations
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absolute pressure (P), three velocity components { u ), spe
cific internal energy (¢), specific entropy (s), salinity (§) anc
passive tracer (¢) in mass fraction units may be determinec
using these equations and standard thermodynamic rela
tions (e.g., Vallis, 2006).

The fundamental continuity and tracer conservatiol
equations for a compressible fluid is used later and so ar
given here:

%—F:+V,-(plu) =0, %Jr Vi(pu,c) = pc.

For consistency with later sections where tensor notatio
is more convenient, Cartesian tensors are used throughou
as also Einstein summation (repeated indices indicat
summation over all coordinates). For example
Vilpu;) =% +2 +2% and 1{,11,~Ezzj1(,5112+\'2+w
The V operator with a subscript denotes partial different
ation in that direction. Griffies (2004) has a thorough dit
cussion on using tensor notation for ocean modeling. Th
dot above ¢ indicates rate of change of concentration du
to non-reversible or non-conservative effects such ¢
sources, sinks, and diffusion. Cartesian coordinates and flu
form equations (where each tendency may be balance
against the divergence of a flux) are used. The flux fon
helps to compare transport among different equation se
to come. The equations can easily be converted to curv
linear or spherical coordinates with the metric tensor fo
malism described in Griffies (2004); some care
required to maintain the flux-conservation principles. Fi
motions that span only a fraction of the earth’s circun
ference, such as a single model grid point where a paran
eterization may apply, these equations are sufficient
accurate to describe the tangent plane to the spherical ear
at that location.

(8.1

2.1.1.  Primitive Equations

Present large-scale ocean models do not solve the Navie
Stokes and thermodynamic equations, which have unwant
complexity, such as a time step limited by the speed of sour
Instead, the Boussinesq, hydrostatic, traditional, and gec
simplification approximations are typical (Griffies a
Adcroft, 2008; Young, 2010; Chapter 20) although exce
tions exist (e.g., McDougall et al.,, 2002; Mahadev:
2006). The hydrostatic approximation V.P = — pg is appi
priate for large-aspect-ratio flow, and the backgrou
pressure (Po— pogz) is hydrostatic, but the hydrosta
approximation will not be made to the vertical momentt
equation so that the symmetries are more apparent.

Vi =0, b=5b(S,0,Py— peg:), (8

oS . e .0
E-*—V,'(H,'S)—S, Ta?-f—v,'(ll,'()—(, 5@+v,’(ll,‘@)—
(8
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d ' l
B—L;J + ’f’u +V,(11) + Vp — bo = 1itj,

jok

(8.4)

where the buoyancy is b=lgl(po—p)/po, the dynamic
pressure is p=(P —Pg)/pa+ &=, and the constant back-
ground values are pq for density and Py(x, v, f) for pressure
variations due to the sea surface height or atmosphere.
When the coordinate names x, v, = appear as indices, for
example, ¢4, only that component in the x (zonal), y
(meridional), or = (vertical) direction is intended. For
example, the vertical velocit~y is w=u.. Tildes denote ther-
modynamic relations (e.g., h(S,0,Py— pog:))2 as opposed
to values (e.g., b). Conservative forces (gravity and cen-
trifugal) are represented by an averaged value of gravita-
tional acceleration (g) and deviations from the local
geoid (z). Nonconservative forces (i), heating, and irre-
versible and diffusive processes (S, @, ¢) are included but
not specified. The traditional approximation reduces the
directionality of the Coriolis force based on the axis of plan-
etary rotation (€2) to the local vertical component f. The
Kronecker 0 and Levi—Civita totally antisymmetric symbol
(¢) are needed to provide the direction of the Coriolis and
buoyancy forces.”

The temperature variable © can be ordinary temper-
ature, potential temperature, or conservative temperature
to have (Equation 8.3) represent seawater thermodynamics
with increasing accuracy (McDougall, 2003; Nycander,
2011; Young, 2010; Chapter 6). Near-surface forcing by
the sun and infrared radiation can be accounted for via
O = ¢/¢%. Latent and sensible heat exchange with the atmo-
sphere, evaporation and precipitation, and turbulent
boundary layer mixing also contribute to the right sides
(, S, ¢, 9). Away from the boundaries, the right sides of
Equation (8.3) are generally very small. Thus, water mass
analysis can detect where waters were “formed” after
decades or centuries of advection and weak diffusion.
The mixing processes that do contribute to nonzero right
sides of Equation (8.3), along with their sources and rates.
are reviewed in Chapter 7.

Boussinesq models have no conversion of internal
energy to mechanical energy, but do allow conversion
between potential and kinetic energy via sinking of dense
water or rising of light water via wh (Young, 2010). The
Boussinesq energy equations are

§. Young (2010) uses a different form that is slightly simpler thermody

namically but asymptotically identical.

2. As noted by Vallis (2006) and Young (2010). Py pog= is the approx-
imation to thermodynamic pressure appropriate for energetically consistent
Boussinesq equations. So this thermodynamic relation gives buoyancy as a
function of salinity, temperature. and pressure.

3. The wraditional approximation is best justified when accompanied by the
hydrostatic approximation. It can be relaxed, with some added complica

tions (Sheremet, 2004).
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0 uju; il d .+ 4
5—{%%— Vit (%%—p) —wh = uji;, Eh* + Vuih* +wbh
~1 ~1
Oh™ .. Oh
=—0+——=S5, 8.5
56 %1 35" (8:3)
~ 0
where /1" = l b(S,0,Py— peg=")d=". (8.6)
Jz

The enthalpy (and the Boussinesq dynamic enthalpy ) is
a key thermodynamic variable because it is very nearly con-
served during mixing (Young, 2010; chapter 6). In a stably-
stratified ocean, wb keeps water parcels near a fixed location.
The restoring force for internal waves (where wh<0) is a
good example. A second important role for wh is as the
source of energy for baroclinic instabilities, which convert
mean potential energy to eddy energy by correlating eddy
motions with water buoyancy (thus wh>0 on average).
Likewise, unstable density profiles convect with wb>0.

2.1.2. Minimal-Disturbance Planes and Slopes

In a stratified ocean, arbitrary adiabatic displacement of a
water parcel typically results in a buoyancy anomaly
and force that act to restore or destabilize the parcel.
One direction will generally maximize this effect and
motions in a plane perpendicular to this direction will
minimize it. Potential density or buoyancy b. neuiral
density (McDougall, 1987), and the Boussinesq dynamic
enthalpy, #* in Equation (8.5) above (Young, 2010;
Nycander, 2011) are thermodynamic variables that can
be used to estimate the direction in which displacements
create maximal disturbances of stratification or energy.
The “diapycnal” direction (D), the “dianeutral” direction
(N}), and the “P vector” (P;) are all maximal-disturbance
directions given by

b b
D,‘—V,/), N,‘— (9_@ V,@-i— % V,S,
S,- O,
o o’
77,'— d—@ S—V,-@%— ﬁ O—V,’S,

Each estimates a direction for maximum effect by dis-
placement or mixing. Displacements in the perpendicular
plane result in a minimal disturbance. Large scale oceanic
motions are generally believed to be dominantly oriented
along a minimal-disturbance plane. At different levels of
thermodynamic accuracy, these planes are generally called
“isopycnals” (with potential density implied), “neutral
planes.” or “P planes.” They are not equal or exactly parallel.
and only the simplest, least accurate case D; can be thought
of as determined by a global surface (isopycnals, where
potential density and b are constant). No unique surface or
thermodynamic variable connects all the local neutral planes
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or local P planes into global surfaces. However, a minimal-
disturbance slope can always be calculated locally using
S D /D..S.==N./N., 8 =~P./P., or similar
approximations with corresponding levels of thermodynamic
sophistication. Greek indices, for example, 7, indicate
throughout that the index is to vary only over the horizontal
directions, that is, x and v. Depending on this level of sophis-
tication, different terms are used to describe the fluxes in dif-
ferent  directions:  skew, isopycnal, and  diapycnal
(buoyancy); adiabatic and diabatic (energy): isentropic and
irreversible (entropy); epineutral and dianeutral (neutral
planes). Here. we use minimal-disturbance plane and
maximal-disturbance direction to apply generally.

2.1.3. Density-Coordinate Continuity and
Tracer Equations

Since lateral motions are thought to be oriented along the
minimal-disturbance plane, a density-like variable that
approximates this slope globally—usually potential density
or buoyancy—is often used as a vertical coordinate in
models. If these surfaces are not too steep, then the hydro-
static approximation is valid and the conservation laws for
volume and tracer may be written for this density-coordinate
model as (McDougall and Dewar, 1998; Hallberg, 2000):

@Jrv, hu. = _00_ </ DQ) = S (he) + Vohuc

Ot o Dr Do’ O
OF . Owec
e (8.7)

The change in height with ¢ is h=—pyz,. Note that the
precise meaning of “horizontal™ and “vertical” holds some
complexity in density-coordinate models; Young (2012)
offers much to clarify.

If ¢ is materially conserved, then the entrainment
velocity (w,) vanishes, and these equations are formally
identical to the compressible mass conservation and tracer
equations (Equation 8.1), with “layer thickness” (/1) in place
of fluid density (p). A crucial element of modern eddy
parameterizations results from idealizing their transport
as flowing along 2D compressible, minimal-disturbance
surfaces. They are thus assumed to inhabit only a subset
of the possible motions in the 3D nearly-incompressible
flow governed by the Boussinesq equations. The formal
connection between Equations (8.7) and (8.1) is useful
when considering how to parameterize the effects of eddy
stirring (Dukowicz and Smith, 1997).

2.2. Steady, Conservative Equations

The oceanic “general circulation” is often intended to imply

a purely steady (2. =0) or time-mean (£~ =~ solution to
purely Y Ui o

the primitive equations or approximations thereof. For

Ocean Processes

steady. conservative flow, time-derivatives and the non-
conservative terms on the right side of Equations (8.3)-
(8.5) are neglected. A total specific energy, or Bernoulli
function, can be found by eliminating wh between the equa-
tions in Equation (8.5). These simplifications yield prop-
erties that are conserved in the direction of flow.

;Vi§ =0, 1,V,0=0, Y, (@-f—p - Izi) =0, (8.8)

. QOb  JVOb
u,—V,-Q('z))Eu,Vf([(,_,-UV/\-u, I-Z.Qj] V,t)) = aa—\—aa
(8.9)

In Equation (8.8), gradients of salinity, conservative
temperature, and Bernoulli function must all be perpen-
dicular to the direction of steady motion. The Ertel potential
vorticity Q(+)), based on a materially conserved tracer v,
will itself be materially conserved if the buoyancy is zero
or ¥ and b are functionally related at each depth. In either
case, the right side of Equation (8.9) vanishes. For example,
if Y=0 and § is constant at that level, then O(O) is con-
served. Most often, O(h) is used. as b is a conserved tracer
if the thermodynamic equation of state can be approximated
and combined using Equation (8.8) (e.g., by a local linear-
ization of b).

According to Equation (8.8), conservative, steady flow
proceeds in such a way that salinity, conservative temper-
ature, buoyancy, potential vorticity, and Bernoulli function
are all constant along streamlines. Many successful theories
for steady oceanic flows result (e.g., Sverdrup, 1947;
Charney, 1955:; Welander, 1959; Stommel and Arons,
1960; Stommel and Schott, 1977: Luyten et al., 1983;
Rhines. 1986). These steady solutions are the quantitative
basis of understanding for the oceanic gyres, meridional
overturning circulation, and generally the oceanic conveyor
(Broecker, 1987), as well as air mass analysis (reviewed by
Hoskins et al., 1985), and water mass analysis (e.g., Talley
and McCartney, 1982; Levitus et al., 1993). These conser-
vative, steady methods can often be adapted to weak dif-
fusion (Welander, 1971; Rhines and Young, 1982; Haynes
and Mclntyre, 1987; Samelson and Vallis, 1997) and identi-
fication of related water masses over long distances,
respecting the nonlinear equation of state (McDougall and
Jackett, 2007, McDougall and Klocker, 2010).

Now we turn to another aspect of an understanding of
the general circulation—how the large-scale, time—mean
flow differs from the steady flow, which involves the
averaged effects of mesoscale eddies and other smaller var-
iability on the general circulation.

2.3. Reynolds-Averaged Equations

The ocean is not steady, nor is it adiabatic, isentropic, or
inviscid. The remainder of this chapter focuses on the
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unsteady behavior, in particular the contribution from
unsteady O(100 km, 10 day) mesoscale ocean eddies. Dia-
batic and irreversible effects and mixing are discussed in
Chapter 7. Here, all unsteady mesoscale motions are called
eddies.

The study of eddy effects on the general circulation
began soon after the Mid-Ocean Dynamics Experiment
(MODE) (e.g., Holland and Lin, 1975; McWilliams and
Flierl, 1976) and fundamental understanding soon followed
(Rhines and Holland, 1979; Holland and Rhines, 1980;
Rhines and Young, 1982). Eddies play a leading order role
in the overturning of the Antarctic Circumpolar Current
(Johnson and Bryden, 1989: Henning and Vallis, 2005;
Radko and Marshall, 2006), while others have explained
the effects of eddies on the gyres (Scott and Straub,
1998; Berloff and McWilliams, 1999: Fox-Kemper and
Pedlosky, 2004; Henning and Vallis, 2004: Radko and
Marshall, 2004: Fox-Kemper. 2005; Fox-Kemper and
Ferrari, 2009). At depth, eddy-induced tracer transport
usually exceeds the Eulerian mean transport (Rhines and
Holland, 1979: Lozier. 1997, 2010). In western boundary
currents, two-way interaction is possible between the
time—mean flow and the eddies (Pedlosky, 1984;
Edwards and Pedlosky, 1998: Jochum and Malanotte-
Rizzoli, 2003; Fox-Kemper, 2004; Fox-Kemper and
Ferrari, 2009; Grooms et al., 2011), and the recirculation
gyres nearby (Nurser, 1988; Fox-Kemper and Pedlosky.
2004: Kravtsov et al., 2006 Waterman and Jayne, 2011).
Eddies can connect basins where mean currents cannot
(Gordon et al., 1992; Hallberg and Gnanadesikan, 2006).
Numerical studies of oceanic eddies are numerous, and
recently even coupled climate models have been run with
partially resolved eddies (McClean et al., 2011; Delworth
et al., 2012). However, it is likely that parameterization
of eddy effects will continue for some decades in
centennial-scale climate simulations and high-complexity
(e.g., biogeochemical) models. Analytic studies, in par-
ticular, benefit from good approximations of eddy effects
on the general circulation (Radko and Marshall, 2006:
Fox-Kemper and Ferrari, 2009: Smith and Marshall.
2009: Grooms et al., 2011).

Early inclusion of eddies took the form of “eddy vis-
cosity,” where the viscosities are increased until non-
conservative terms enter the dominant momentum balance
(e.g., Munk, 1950: Parsons, 1969). Explicit physical, rather
than numerical, discussion of eddy viscosity in coarse-
resolution models are rare (Smith and McWilliams,
2003), although results are sensitive to the viscosity chosen
(Jochum et al.. 2008). Sometimes more complex effects of
eddies can be treated as a viscosity (Johnson and Bryden,
1989; Fox-Kemper and Ferrari. 2009). However, all coarse-
resolution models use either explicit eddy viscosity or
numerical schemes that amount to the same. In eddy resolving
models, choosing diffusivity and viscosity carefully allows

cascades of energy and enstrophy and aids accuracy in
boundary current separation (Smagorinsky. 1963: Leith,
1996; Griffies and Hallberg, 2000; Chassignet and
Garraffo, 2001; Arbic et al., 2007; Bryan et al., 2007; Fox-
Kemper and Menemenlis, 2008).

In modern coarse-resolution models, a combination of
“eddy diffusivity” and “eddy-induced velocity™ is typically
used (Redi. 1982; Gent and McWilliams, 1990). One reason
is that mesoscale eddies—at least baroclinic mesoscale
eddies—appear in the large-scale momentum equation at
lower order through redistribution of buoyancy and potential
vorticity rather than directly through Reynolds stresses
(Andrews and MclIntyre, 1978b; Greatbatch and Lamb,
1990; Gent and McWilliams, 1996; Wardle and Marshall.
2000; Eden, 2010b; Grooms et al., 2011; Marshall et al.,
2012). Further, eddy stresses that are not connected to
buoyancy and potential vorticity transport are more difficult
to parameterize and sometimes result in “negative viscosities”
(e.g., Berloff, 2005), as the steady Bernoulli conservation law
in Equation (8.8) does not result in a local time—mean balance.

Thus, it is the eddy transport of active and passive scalar
tracers that is the primary focus of present coarse-resolution
modeling effort and the remainder of this chapter. The
time—-mean, coarse-resolution equations can be written.
returning to Cartesian coordinates, as

V,-(U,S—Hl;T) =S, V, (17,‘@ +W) =0,

V,— (I-I[Q(/)) +1I§Q(b)’) %O, \7,'(1-!;(_'—!'@) =(_
(8.10)

Here, overbars denote averaging to a coarse-resolution and
slowly-varying in time, and primes denote mesoscale and
submesoscale deviations from that mean.”

The fluxes appear entirely inside a divergence in
Equation (8.10), which has led some authors to treat rotational
eddy fluxes as less important (e.g., Marshall and Shutts. 1981:
Bryan et al., 1999; Eden et al., 2007b). Often, it is suggested
that removing or adjusting a rotational contribution will lead
1o fluxes that are more aligned with their corresponding gra-
dient or more likely to yield positive diffusivities. The rota-
tional change may be chosen broadly, as in a bounded
domain rotational fluxes are not uniquely defined (Fox-
Kemperetal., 2003). However, here eddy fluxes will be diag-
nosed both from drifters using observed trajectory anomalies
from the time-mean flow and from a realistic model trans-
porting passive tracers. These fluxes and diffusivities can
be kinematically related to the theory of diffusion by con-
tinuous movements of Taylor (1921)—if their rotational parts
are leftunchanged. Changing the rotational fluxes violates this
connection to fundamental fluid processes. Here fluxes will be

4. The averaging procedure is_assumed to_have the properiies of a

Reynolds-average, or (-) = (-}. () =0, and (*)(-) =(#) (-} =0.
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related directly to an anisotropic diffusivity, which implies
positive diffusivity nearly everywhere, natural boundary con-
ditions, but at the cost of fluxes that are not necessarily down
their mean gradient.

Even when the non-conservative terms on the right of
Equation (8.10) are negligibly small in comparison to the
advection terms on the left so that the flow is still “conser-
vative,” the eddy correlations on the left may still be as large
as the mean tracer transport. Thus, the unsteady, conser-
vative ocean solutions are potentially quite different from
the steady, conservative oceanic solutions. Approaching
the infinite Péclet limit requires some care, as even weak
non-conservative terms may strongly affect the conser-
vative fluxes (e.g., Jones and Young, 1994; Eden et al..
2007a), but the primary discussion of non-conservative
mixing in this volume is found in Chapter 7.

Averaging the density-coordinate equations (Equation 8.7)
is also useful. Often the averaging will be taken at a fixed
density, which follows the displacement of the density surfaces
and can make fewer explicit eddy correlations appear
(de Szoeke and Bennett, 1993; Young, 2012). Weighting each
average by thickness or treating /i as a unit (thickness-
weighting) in the density-coordinate equations is equivalent
to treating pi; as a unit (Hesselberg or Favre averaging)
in the compressible fluid equations (Greatbatch and
McDougall, 2003).

In the remainder of this chapter, estimates of the eddy
properties, eddy fluxes, and eddy correlations in the
Equation (8.10) will be presented. From data, the Lagrangian
displacements of fluid parcels will be approximated from
surface drifter trajectories. Assuming a scale separation
between the background tracer gradients and the decorre-
lation length and assuming the properties of the fluid parcels
are conserved over the decorrelation time, the tracer fluxes
may be related to the parcel displacements. Some of the
theory of Taylor (1921) is reviewed so that these results
may be understood in relation to eddy diftusivity. Direct
analysis of multiple tracers in high-resolution global ocean
models is also presented. This method has been used before
in simpler contexts to estimate the Lagrangian transports
(Plumb and Mahlman, 1987; Bratseth, 1998). Finally, studies
using satellite and in site data together with turbulence or
hydrodynamic stability theories are also refer to, to show that
different approaches find similar results.

From Figure 8.1 one should expect fair consistency
between the estimates. Shown are the mean and eddy
kinetic energies of the drifters, model, and AVISO multi-
satellite reconstruction. The model used is an improved
version of the Maltrud and McClean (2005) global 0.1°
POP model, with climatological “normal-year” forcing
(Large and Yeager, 2004). Consistent with the conclusions
of McClean et al. (2006), the model agrees with the AVISO
altimetry. However, the drifter eddy kineti¢ energy is quite
a bit larger in the eastern side of the subtjopical and sub-
polar gyres than either the satellite geostrophic velocity

11 Ocean Processes

or model total velocity indicates.” The higher drifter kinetic
energy likely results from smaller mesoscale and subme-
soscale features that are not resolved spatially by either
the satellite or model (Fratantoni, 2001; Capet et al.,
2008: Lévy et al., 2010: Lumpkin and Elipot. 2010; Fox-
Kemper et al., 2011).

2.4. Diffusion by Continuous Movements

Taylor (1921) successfully quantifies the effects of small-
scale discrete and continuous motions of a fluid. A result
of particular interest here is that while the root-mean-square
(rms) of parcel displacements increases on integration over a
time 7 (first linearly. then as the square root), the covariance
of parcel displacements and parcel velocities increases at first
and then saturates after the decorrelation timescale, T, when
the velocity autocorrelation following a parcel displacement
goes to zero. After saturation, Lagrangian displacements Y
and Lagrangian velocities V' obey:

YOV (0) ~ 27T, Y(OV(1) ~ 27T, (8.11)

The constant velocity-displacement covariance can be
interpreted as a form of eddy diffusivity for stationary,
homogeneous turbulent flow.

This general approach can be extended in a stationary,
homogeneous, incompressible, 3D flow (Batchelor, 1949;
Monin et al., 2007, p. 542), by using the fluid parcel dis-
placement covariance:

fo+T plo+T
Dzj/(T)=Y,’(T)Y,’~(r)=[ [ Vi(x, n)Vi(y, n)dndn.

Jig Wy

(8.12)

The average (overbar) is an ensemble average over many
displaced fluid parcels. For sufficiently long times 1> T,
the covariance becomes linear in time (7):

=
Dy(t) = \Juiu Tyt,

r (v} @ VI 9) + VI s)VIC, s))ds

0
\/u}zu}:
(8.13)

No summation is implied on the repeated indices of D;; and
T,. Note that the Eulerian velocity scales u are used to
estimate the size of the Lagrangian velocity correlations,
consistent with homogeneous, stationary turbulence where
these scales are closely related.

T, =

5. The drifter data is filtered to remove inertial motions (S;day lowpass).
and the timescale of the filtering is similar to that used fol the altimetry
(7 days).
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{(a) log,,(Mean kinetic energy from model (cmzlsz))

(c) log,q(Mean kinetic energy from AVISO 1993-2010 (cmZ/sz)}

(d) log,,(Eddy kinetic energy from AVISO 1993-2010 (cm?/s?))

(e) log,,{Mean kinetic energy from drifters (cmzfsz))

(f) log,,(Eddy kinetic energy from drifters (cmzlsz))

-1 0 1

2 3 B

FIGUREB.1 Mean (a.c.and e} and eddy (b, d. and ) kinetic energy from a global 0.1 model (see text for description). SSALTO/DUACS multi-satellite
Maps of Absolute Dynamic Topography (MADT) product distributed by AVISO (c and d) which is based on weekly data. and from surface drifters (e and f:
Lumpkin and Garraffo. 2005: Lumpkin and Garzoli. 2003). which are filtered to remove variability on timescales less than 5 days. Drifter mean kinetic
energy is the energy in the time averaged flow while eddy kinetic energy is energy in motion with 57 day or longer timescales. Model mean kinetic energy
is the energy of time-averaged flow, while eddy Kinetic energy is the deviation from time-mean.

The proportionality with time of the displacement
covariance for long times (1) may be associated with an
eddy diffusivity tensor, K;:

1 -5 1dD, T
i zE\Hl,'ll]'T,jzs dj‘t( )
o

1 . .
_ JO ; (ViEes)V]ws) + ViTe sV, 5))ds. (8.14)
K,is S)}mmetric by (8.14) and depends solely on the corre-
lations of Lagrangian velocity displacements and velocity

magnitudes in different directions. These velocities are
likely to differ in each direction when symmeiries are
broken, for example by gravity, rotation, or other body
forces. Similarly, the components of the decorrelation time-
scale T, are likely to vary if eddies tend to remain more
coherent in one direction versus another, as is the case in
an “eddy street” or turbulent wake. If a tracer is nearly con-
served ovel| the timescale T);, then every displaced fluid
parcel carries its tracer with it, and the diffusivity K, may
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be used to diffuse the average tracer concentration as
K;Vic~—u';’, or
ac __ .
—a—r—l- Vi)=Y, (K,,V,c') +¢,

where all averages are at a fixed depth (Eulerian).

2.4.1. Diagnosing Eigenvectors, Eigenvalues,
and Principal Axes of Diffusivities

Any symmetric tensor can be fully described by its real
eigenvalues and orthogonal eigenvectors. The equation that
is satisfied by the ith eigenvalue /(i) and ith eigenvector v(/)
of a tensor M is:

M () = 2(Dvi (7).

Thus, for that particular eigenvector v(i), the action of
matrix multiplication by the tensor is the same as multipli-
cation by the scalar eigenvalue 4(i). However, vectors not
aligned with v(i) acted upon by the tensor will nor be likely
to behave as though multiplied by a scalar. A 3 x 3 tensor
has three eigenvectors and eigenvalues, and they are real
for symmetric tensors. For real and symmetric tensors,
the eigenvectors may always be chosen to be an ortho-
normal set, often called the principal axes of the tensor.

The (non-negative) eigenvalues of the diffusivity K|,
represent a typical value of the diffusivity in each of three
different eigenvector directions. In the absence of a back-
ground flow, a tracer is diftused when its gradient is ori-
ented partly along a principal axis. The component of
the gradient will be reduced down-gradient along that
direction alone by the associated eigenvalue (ditfusivity).
Thus, for a tracer whose gradient is oriented along an
eigenvector, the diffusivity is effectively a scalar by
Equation (8.16). However, it is uncommon for an arbitrary
tracer gradient to align with a principal diffusivity axis. In
this case, the tracer is diffused anisorropically, that is, at
different rates along each principal axis simultaneously.
Anisotropic diffusion results from a symmetric K with dis-
tinct eigenvalues.

Only isotropic, homogeneous turbulence with no back-
ground flow is likely to be represented well by a scalar dif-
fusivity for arbitrary tracers (i.e., three equal eigenvalues).
In this case. any gradient direction can be treated as an
eigenvector direction and a scalar diffusivity can be used
in place of K;;. In a typical oceanic flow, the rms velocities
and decorrelation times in Equation (8.14) differ in each-
direction. Even in isotropic, homogeneous turbulence, a
background flow often leads to an anisotropic effective
diffusivity (Taylor, 1953; Ferrari and Nikurashin, 2010).

Much confusion has arisen from apparently negative
components of the diffusivity tensor in a realistic flow.
Frenkiel (1952) shows examples of autocorrelation functions
and the corresponding displacement covariances, and finds
that rarely does the autocorrelation change sign frequently

(8.16)
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and vigorously, so the diagonal elements of D,; are generally
positive and only weakly related to the details of the autocor-
relation shape. To put it another way. the diffusivity eigen-
values are generally likely to be positive. The trace of a
tensor is not affected by rotation, including rotation into
and out of the principal axis orientation. Thus, the sum of
the diagonal elements tends to be positive in all coordinate
systems. Indeed, the displacement covariance is most natu-
rally measured in the principal axis coordinate system if
known, as the tensor will be diagonal in that basis. In other
coordinate systems, the elements may be positive or neg-
ative, which is not necessarily an indication of anti-diffusive
behavior and negative eigenvalues. just an indication that the
coordinate system is not aligned with the principal axes.

Eddy diftusivities must be positive in a sense found
from the tracer variance equation, derived from Equa-
tions (8.3) and (8.10), to be

ac? — —
W-FV; (F,-c"“) +V,~(u§c’2) +2lc' V= (8.17)
The first two terms do not create variance, they just
transport it materially with the mean flow. If the third,
triple-correlation term is neglected (often done but rarely
Justified), then the balance is

24’ Vit m —2(V;6)Ki(Vie) = . (8.18)

For most forms of dissipation (e.g., molecular diffusivity),
¢'¢’ is negative definite. When —K is projected into the
tracer gradient on both of its indices, —(V;¢)K,(V;¢),
the result is negative definite for arbitrary tracer gradients
if the symmetric part of K has all positive eigenvalues. It
is not necessary for all elements of K to be positive.
Relatedly, a numerical model with negative diffusivities
is usually numerically unstable. However, a diffusivity
tensor that has negative elements in a few coordinate
systems but has positive eigenvalues is not a concern.

Attempting to infer eddy diffusivity on scales where the
transport is not diffusive (e.g., r<T};) can be misleading
(e.g., Stommel, 1949). Similarly, attempting to infer a
scalar diffusivity from an anisotropic diffusive process
may be misleading. A 2D example is given by rotating a
diagonal K by an angle 0:

“I(.I
‘,/(.I

de

r\j\\»cos:()+;c\.).sin3() —Kyncoslsinl+ ., cossinl n

- . . , . oc

—Kycoslsinf) + ky, cos Osin @) Ky Cos=0+r,, sin" 0 o
(8.19)

If K> Ky, and _;ji ~ % then a diagnosis of the scalar “dif-
fusivity” & by ¢’ = —k% would y|ield a negative “diffu-
sivity” k for all n/4 <0< 3n/4.
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2.5. Sources of Anisotropy in Oceanic
Diffusion

The best-studied form of anisotropic diffusion results from
diffusion in the presence of a shear flow. The resulting
spreading, or shear dispersion, has a strongly anisotropic
diffusion operator. In Taylor (1953, 1954), there are early
quantifications of this effect, where it is demonstrated that
in laminar pipe flow, the ¢ffective diffusion in the along-
pipe direction (D) greatly exceeds the molecular or eddy
diffusion across the pipe (D). Indeed, the virtual along-pipe
diffusion is inversely proportional to the small-scale
(molecular) diffusion, D.y=D + U a*/(48D), where U
and « are the flow speed and pipe radius (i.e., maximum
eddy scale). In oceanographic application, Okubo (1967)
and Young et al. (1982) describe a related effect from oscil-
latory shear, such as from internal waves, interacting with
small-scale turbulence. Young and Jones (1991); Jones
and Young (1994) review shear dispersion work up to that
date, and extend solutions toward shorter timescales and
anomalous and chaotic ditfusion regimes where Taylor’s
scaling does not apply. The jet-like structures found by
Treguier et al. (2003) and Maximenko et al. (2005) or the
Antarctic Circumpolar Current (Ferrari and Nikurashin,
2010) are examples of flows that should result in strong
shear dispersion. Of particular relevance is Smith (2003).
who develops scalings for passive tracer transport along
and across quasi-geostrophic jets, and shows that the
along-jet scaling is inversely proportional to the isotropic
diffusivity and depends on eddy scale and flow rate much
as in Taylor’s theory.

Shear dispersion results from an interaction of the
steady and isotropic, homogeneous eddying flows.
However, other phenomena are also expected to result in
anisotropic diffusion. Oceanic turbulence is quite heteroge-
neous, as shown in Figure 8.1. Horizontal velocities exceed
vertical ones in the ocean, but it also seems likely that the
two components of horizontal velocity will vary, as well as
their correlations. From Equation (8.14), these effects also
impact the diffusivity. Furthermore, jets and potential vor-
ticity gradients are thought to suppress diffusivity in the
cross-jet and PV-gradient direction (Rogerson et al.,
1999 Ferrari and Nikurashin, 2010). Coherent structures
and vortices have a strongly anisotropic direction of prop-
agation (Griffa et al., 2008; Chelton et al., 2011). Finally,
instabilities are often quite anisotropic; such “noodie” insta-
bilities produce strong anisotropy (Berloff et al., 2009).
Both “noodling” and coherent eddy drift also tend to align
according to potential vorticity gradients—from the flow or
from the planetary beta effect. At present it is unclear which
of these effects are dominant in the ocean. Indeed, even the
degree to which they are distinct from each other is pres-
ently unclear.

Tw+ studies attempting to measure rotational effects
on anisotropy found sensitive dependence on rotational
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fluxes (Eden and Greatbatch. 2009; Eden, 2010a).
However, their method assumes a limited form for K
(the symmetric part has two equal eigenvalues, which is
not anisotropic diffusion in the sense described here). Fur-
thermore, they subtract rotational contributions (Eden
et al., 2007a), rendering their diagnostic framework too
different from the assumptions of Taylor (1921, 1953)
to compare directly. Riha and Eden (2011) find strong
contrast between along- and across-front transports in
agreement with other studies (Berloff et al., 2009;
Ferrari and Nikurashin, 2010).

2.6. The Veronis Effect

Gravity breaks the symmetry of stratified turbulent flow,
leading to anisotropic diffusion. If we assume uncorrelated
velocities in each direction and reduced vertical velocities,
then an anisotropic eddy diffusivity is a natural form to
assume for the result of Equation (8.14):

Kk, 0 0
K, =10 x;, 0 (8.20)
0 0 k

1

This assumed diffusivity tensor is diagonal, so the
eigenvalues are the diagonal elements and the eigenvectors
can be taken to be the v, v, and = directions. The eigenvalues
are chosen such that the diffusion in the x- and y-directions
is the same, while the diffusion in the vertical direction
is smaller.

Suppose that, with great effort, an oceanography cruise
measures the eddy flux of temperature along a section, pro-
viding '@’ ,w'@’, and O(x, z). Delighted, the intrepid crew
inverts to find the 2D eddy diffusivity components,

=i |mn O A o WO
14C) [O l\_vLVJO, 1 (0) “vo k(@)
—w e
= 8.21
v_@ ( )

And since the number of degrees of freedom equals the
number of equations to satisfy, the result exactly satisfies
the observational evidence (assuming VO #£0).

The next year, another cruise measures both salinity and
temperature. The temperature results prove nearly the same,
aside from interannual variability, but the salinity results
are confusing. The salinity fluxes are exactly predicted
by diffusion formulae
—u'§'’ —w'§’

A
but the diffusivities disagree with those diagnosed from @:
Kp(@)Y# Kp(S), K (@)#r(S). How is this possible? Do
salinity and|temperature have different eddy diffusivities?
Not necessarily.

Kp(S)= (8.22)
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If the salinity and temperature gradients do not align.
then they will sample different combinations of diffusivity
eigenvalues, and therefore be diffused differently. But, is
not all that taken into account using the tensor Ki? Yes,
if indeed the correct form for K;; was assumed in
Equation (8.20), different gradient directions would be cor-
rectly treated.® Just as mean flows have preferred direc-
tions, so too eddy fluxes occur fastest along dynamically
selected directions, which may not be horizontal and ver-
tical. The assumed form (Equation 8.20) for K;; does not
allow this to occur.

Consider instead simultaneous equations on salinity and
temperature,

ll;@, = - R,;,Vj@, lI;T-: —Riing' (823)

Now for 2D observations, there are four equations,
but only 2 degrees of freedom can be matched by
Equation (8.20). However, a 2 x 2 matrix for R;; will do
nicely, and indeed we expect it will have a symmetric part
representing diffusion with its eigenvectors aligned and
perpendicular to the principal axis of maximal disturbance,
regardless of whether that direction is exactly vertical or
somewhat tilted.

[t an incorrect form for R is used, it may still be possible
to tune to reproduce the transport for one tracer as it was in
Equation (8.20). However, other tracers will be diffused
incorrectly. One expects largest eigenvectors to fall along
the minimal-disturbance plane, so a mistaken diffusion
ansatz such as Equation (8.20)—even as a numerical
artifact (Griffies et al., 2000)—results in spurious diabatic
or dianeutral mixing of different water masses called the
Veronis effect (Veronis, 1975).

What if there are more than two tracers, or more than
three in three dimensions? Well, since Equation (8.3) is
linear in tracer concentration, the equations for tracer con-
centration and fluxes can be added and subtracted as
desired. If all of the tracers have only a large-scale gradient,
then only three whose gradients are not aligned are needed
to map the diffusivity tensor and any more can be related to
a linear combination of these three. However, most tracers
not only have a large-scale gradient, but also variations on
larger and smaller scales that differ from other tracers. In
this case, a least-squares or otherwise optimized tensor
can average appropriately over variations in the local gra-
dient (Bachman and Fox-Kemper, 2013).

2.7. Streamfunction and Diffusivity

If the experiment measuring temperature and salinity
fluxes were conducted in a region where small-scale

Ocean Processes

mixing in the maximal-disturbance direction was weak
then present theory would predict the result to be nearly
(Griffies, 1998)

== _ | K 0 ~ 5
' = [21\'/15 5’\'/13J Ve, (8.24
The  minimal-disturbance slope appears (S  from

Section 2.1.2), and indeed the eigenvectors are aligned
along it, but the tensor is not symmetric! It is perhaps easie
to contemplate this as the combination of two distinct eddy
effects: diftusion, the symmetric part of this tensor, and
advection, represented by a streamfunction (Redi. 1982:
Gent and McWilliams, 1990; Griffies, 1998: Bachman
and Fox-Kemper, 2013):

A — Ky kS 0 -8 . 5
el = ([’\./,S SIC/,SJ + [IC/IS 0 Ve (8.25)

In the Taylor (1921, 1953) theory, the 3D diffusion
tensor in Equation (8.14) was explicitly symmetric. This
symmetry is a consequence of the fluid having constant
density in that case.” If, instead, displaced parcels are cor-
related with variations in density, then an advection-like
term arises. That is, if\7’—p_’ #0, then mass will tend to move
in the direction the denser parcels tend to go on average,
even if there is no mean velocity V7 =0.

An elegant theory that helps explain this effect is that of
Dukowicz and Smith (1997) (an extension of Monin and
Yaglom, 1971, to compressible cases and stratified flow).
In their theory, they consider stochastic relocation of fluid
parcels, and the evolution of the probability distribution of
the location of those parcels. The probability that a parcel
originally located at x at time ¢ will later be at = at time ¢+ At
is p(z, 1+ Aflx, 1). Two important quantities can be derived
from this distribution, the motion of the center of the parcel
displacement and the evolving correlation of displacements.
These are

1
vi(x, f) = AIIiLnOEJ’d}:(:i —xi)p(z,t+Adx,t),  (8.26)

1.1
Kij(x, )= EAlrlr—n()EJ d*z(z — x;) (zj=x))p(=.1 + Atlx,1).

(8.27)

Comparing the second relation with Equation (8.13), if the
integral over all possible relocations weighted by their
probability can be associated with the average used by
Taylor (1921), then (z; —x;) ~ X! and this K; is the equiv-
alent to K;; in Taylor’s theory.

However, the centroid displacement velocity v in
Equation (8.26) does not have an analog in that theory.
Dukowicz and Smith (1997) show that probability-weighted

6. Although nonlocal. incomplete scale-separation effects might still be an
issue.

7. Boussinesq fluids are not sufficiently constant in density to qualify. for
reasons that will be made clear. ]
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averaging over all relocations of parcels in the 3D com-
pressible equations (Equation 8.1) yields

t_?é
o

C)—p£+ V; (m\'f—-/Z[_)(—‘VJK,J)>=V/‘KJ,'V,'W+R. (8.28)

+V,(pv — VKup) = VK Vi,

ot
In anincompressible fluid, then the simplest way to satisfy the
former is to setif; = v, — V,K};, since incompressibility already
ensures Vi, =0.% This assumption relates the relocation of
the probability center to the Eulerian mean velocity 1, and
recovers (Equation 8.15) from the second equation above.
Note that when Kj; varies spatially, this implies that v; can
be divergent eveninanondivergent flow! This property is gen-
erally true of Lagrangian velocities (Andrews and Mclntyre,
1978a), and here results from the relatively few constraints
placed on the stochastic parcel displacements—only the com-
bination of diffusion and Lagrangian advection is required to
conserve volume, not each independently.

If the fluid is compressible, then Equation (8.28) can
still be reduced, and Dukowicz and Smith (1997) argue that
the same assumption for v is the simplest. Then,

- dpe [
5+ Vilpi) = Vi[KiVip], -+ Vi [” e EK"JVJP]
= Vi(KsV;pc) + pc. (8.29)

The effect of compressibility is therefore advective
(bracketed) and diffusive (right side). Note that the right
side is guaranteed to be diffusive, as Kj; is symmetric. Com-
bining together the advective parts into U yields

op Jdpc

E'FV;[[)U,’] =0, —at—+V,-[ch,-]

— 1 _
= V,» (KUVJP—() + pc, U,' =i — EKUVJ/)

Dukowicz and Smith (1997) also exploit the similarity of
the compressible equations (Equation 8.1) to the density-
coordinate equations (Equation 8.7). Considering stochastic
eddy displacements within the ¢ surfaces results in

ot of o | ~0 det
7+V1 |:h~ <ll1‘ _EEKHVIJ”‘H :—E—Q—, (830)
onc* — | ~
%—*‘ V. [hc‘ (EQ—FKI,,V,;hg)}
—y  —p Oec* 3F_f’
=V, [KapVghe"] +2,¢ ——%-%TQ—. (8.31)

Here, it has been assumed that the entrainment velocity
and the stochastic along-g displacements are statistically

8. Different choices have also been explored (Dukowicz and Smith. 1997:
Dukowicj and Greatbatch, 1999; Smith, 1999).
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independent. The form of Equations (8.30) and (8.31)
can be applied directly in density-coordinate models.

The additional velocity 1} = —F'.KMV/;I?", is sometimes
called the eddy-induced velocity, and is closely related to
the quasi-Stokes and bolus velocities (McDougall and
McIntosh, 2001). It is aresult of the fact that as the tracer anom-
alies flow along the minimal layer, they may correlate with a
bolus of excess water or a thinning of the layer. Just as the
Stokes drift results from a correlation of larger velocities when
a wave crest is present, the quasi-Stokes velocity results from a
correlation between tracer anomaly and bolus presence.

The net effect of the stochastic process in Equations (8.30)
and (8.31) is to move thickness /1 along the g surfaces, hor-
izontally and potentially anisotropically in the two horizontal
directions. The eddy-induced velocity ] alone is required in
the thickness Equation (8.30), and both i} and diftusion
appear in the tracer Equation (8.31). It is incorrect to call
any of the terms in Equation (8.30) a diffusion (Gent,
2011), even though the diffusivity K, appears in 17},

Note that only one (four-component) diffusivity K,
appears (in contrast to frequent modeling practice), which
is related via Equation (8.27) to the likely correlations of
displacements within the ¢ layer. just as the generalization
of Taylor (1921) in Equation (8.14) relates diffusivity to the
displacements of fluid parcels. These kinematic relations do
not depend directly on whether ¢ is active or passive, or if
there is more than one tracer, which one is presently under
consideration. Only the assumption of stochastic displace-
ments that conserve n and c¢h during their displacement
is required. To contrast against Eden et al. (2007a) and
others who find different diffusivities for different tracers
(e.g., Lee et al.,, 1997; Smith and Marshall, 2009), two
crucial differences should be considered: (1) Was the diag-
nosed diffusivity sufficiently general to capture heteroge-
neity or anisotropy in the flow? and (2) Were the
different tracers similar in their rate of non-conservative
properties? Bachman and Fox-Kemper (2013) demonstrate
that even when non-conservative processes are much
smaller than conservative eddy transports, changing the
non-conservative rates may affect the conservative rate
estimates.

Transforming Equation (8.30) to depth-coordinates
yields the continuity equation for the eddy-induced velocity,

\Vp (l—l-,'+ll:-‘) =0, V,i; =0 —"V,'ll? =0. (832)
The * velocity as found by Dukowicz and Smith (1997)
is similar, but not identical to, that utilized or diagnosed else-
where (Andrews and Mclntyre, 1978a; Plumb, 1979;
Plumb and Mahlman, 1987, Gent and McWilliams,
1990; McDougall and Meclntosh, 1996, 2001; Eden
et al., 2007a; Eden and Greatbatch, 2009; Eden, 2010a;
Bachman and Fox-Kemper, 2013). The Dukowicz and
Smith  (19p7) velocity is distinguished by its
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incompressibility in three dimensions and its association
to the stochastic minimal-disturbance displacements of
thickness and tracer. To ensure incompressibility is satisfied.
often a vector streamfunction is used to generate 1*. Thus,

(,'/'/\VI(IIZ=HF. (833)

For small slopes the streamfunction generates the
horizontal component of the eddy-induced velocity via

ll;=K1/{v:$/;=(1,‘Lqu/Z. (8.34)
In component form,

llt. = —V; ll’; = K,\v/;V;S/;, 11; = V_— (P:, = K_‘-/{V;Sﬂ,
=V, ‘I’; -V, ¥,

For arbitrary spatial variations in K, determining the
streamfunction ¥* from «* or K and S involves solving the
two differential equations in z. Gent and McWilliams
{1990) and Smith and Gent (2004) propose a slightly different
form, which is identical if the K, ; are not a function of =:

= (K. Sy) = TP = -
=V (KySp), uf" =V V" =V (KySp), 1"
= VPV, (KypSy).

(8.35)

This form does not require solving any differential equa-
tions, except perhaps in implementing boundaries (Ferrari
et al., 2010).

Another way of considering the effects of the stream-
function is as a “skew” flux of tracers along minimum-
disturbance planes. To make this clear, note that the
divergence of the cross-product of ¥'* with the tracer gradient
is the same as the divergence of advection of the tracer by 1*,

V,' (lP;E,'j'Avk(') = V,’((‘C,'j/\ Vj‘PZ) = V,’(('ll}k) . (8.36)

The relation (8.36) depends only on the symmetry of the
derivatives and the antisymmetry of €, so it applies to
PE as well,

P& has special properties if the tracer being advected is
buoyancy,

Vi(buf) = Vo (=K. Vph) + V- [(V.h)Kop (V)]
(8.37)

Thus, the action of the P*” has two parts: a horizontal dif-
fusion by the K, and the final term is an upward buoyancy
transport if K, has positive eigenvalues. This vertical flux
ensures consistent extraction of potential energy from the
mean in Equation (8.5) by Wb >0.

Some authors have suggested that potential vorticity
conservation is more fundamental (Killworth, 1997;
Dukowicz and Greatbatch, 1999; Treguier, 1999). In
practice, these differences amount to relatively small cor-
rections compared to other assumptions, if the typical dis-
placement distance is less than a subsfantial range of
latitude (Smith, 1999; Zhao and Vallis, 2008; Fox-
Kemper and Ferrari, 2009; Grooms et al., 2011).
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Griffies (1998) uses a tensor form to make the relation-
ships above clear upon transformation to = coordinates. For
an arbitrary ¥#, from Equation (8.34) or Equation (8.35),
the divergence of tracer flux is

0 0 v
Vil =~V 0 0 -,
.__(ll‘ l]l\ O
8.3
Ko Ko Ko, (8.38)
+1 Ky Ky K,.,S, v,c.

K.\ZSZ K\zsz SszliS/l l/

If the Gent and McWilliams (1990) form (Equation 8.35)
for W= is used, this simplifies to

R K\\ K\\ 0
Ve = =V, K, K., 0 Ve

2K\1Sz 2K\182 SZKZ fS/f i

(8.39)

Now, comparing Equation (8.39) with Equations (8.24) and
(8.25) connnects this theory to the hypothetical cruise data
(Equation 8.24).

Eden and colleagues (Eden et al., 2007a; Eden and
Greatbatch, 2008; Eden, 2010a) allow the possibility of a dif-
ferent eddy transport for every tracer. By doing so, they are
able to simplify each tracer variance Equation (8.17), so that
eddy diffusivity occurs only when non-conservative effects
are present as in Equation (8.18). Their treatment is best-
suited to problems where different tracers have radically dif-
ferent rates of variance dissipation ¢’¢’. Their diagnosis is
limited in the number of degrees of freedom it can measure:
expressing Equation (8.2) from both Eden et al. (2007a) and
Eden et al. (2007b) in terms of R from (Equation 8.14) yields

VA 2 I
wh' =—K;7V,b

Kya —B: B_\- B
=—1| B. Kua —B.| V;b+rotational flux,
_B,\' By Ky

if

(8.40)
which applies throughout the nearly adiabatic ocean
interior. The authors are able. by choosing specialized rota-
tional fluxes, to reduce the number of free parameters from
the four here (Kgj., B,. By, B.) to three that can be deter-
mined by the buoyancy flux. However, the tensor in
Equation (8.38) potentially has 9 degrees of freedom, and
at least 6 of them are distinct measures of turbulence sta-
tistics representing the symmetric tensor (Equation 8.14).
Many of the Transformed Eulerian Mean papers propose
similar diagnoses of specialized forms of R based on
buoyancy fluxes alone (e.g., Andrews and Mclntyre,
1976; Ferrari and Plumb, 2003). However, there are many
more degrees of freedom in R than can be presdribed by the
three components of a single flux, which is the root cause of
the appearance of the uncertain parameters in those
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analyses. It is also the reason why the diagnoses below can
proceed and find reasonable diffusivities and eddy-induced
advection without recourse to rotational flux manipulations.

3. OBSERVATIONS AND MODELS OF
SPATIAL VARIATIONS OF EDDY STATISTICS

The isoneutral diffusivity tensor K should vary in space as
the rms velocities certainly vary from location to location,
as does the decorrelation timescale tensor:

K.y 2:% u'.fu'/fl T,p= %%ﬁ(r)
Further, shear dispersion effects (Taylor, 1953; Smith, 2005)
and potential vorticity barrier effects (Ferrari and Nikurashin,
2010) will vary spatially as the mean flow and potential vor-
ticity gradients vary. Measurements of the components of the
K tensor are rare, even at the surface. In this section, we
compare 2D measurements from surface drifters of K, 3 with
a model estimate, and then describe the variations with depth
and 3D structure of the model estimate.

To begin with, consider the global distribution of hori-
zontal eddy kinetic energy, closely related to the trace of the
K tensor. Figure 8.1 shows the logarithm of the mean and
eddy kinetic energy, as estimated from a high-resolution
model (Grooms et al., 201 |; Fox-Kemper et al., 2013), from
surface drifters, and from SSALTO/DUACS multi-satellite
altimetry (SSALTO/DUACS Team, 2013). Note that the
products are in rough agreement, despite slightly different
averaging procedures and the fact that the altimetry pro-
vides only the geostrophic velocity.” Eddy kinetic energy
is largest surrounding the regions where the mean kinetic
energy is largest, such as western boundary currents, in
the tropical jets, and in the core of the Antarctic Circum-
polar Current. Regions of high eddy energy are broader than
the tightly concentrated mean kinetic energy, which is con-
sistent with the formation and dispersal of eddies from
instabilities of the energetic mean features and asymptotics
(Grooms et al., 2011).

The mean kinetic energy is highly anisotropic, with
narrow features that extend for thousands of kilometers in

(8.41)

9. Inthe model. a mean velocity over 6 years was used as the mean, and all
perturbations from that mean were taken as eddies. The figure shows two
degree averages ol mean KE and eddy KE. Drifter KE was calculated from
drogued surface drifter trajectories. First. the trajectories were binned into
trajectories originating in one degree boxes, and the mean velocity in each
bin was removed. Then variability on timescales faster than 5 days was
removed by lowpass filtering (Lumpkin and Garraffo. 2005: http://www.
aoml.noaa.gov/phod/dac/drifter_climatology.htmi). The remaining vari-
ability is associated with eddy velocities «'. Horizontal MKE and EKE
were then calculated for each one degree bin. The 7-day SSALTO/DUACS
absolute geostrophic velocity fields were broken down into the time-mean
over 1993-1999 and the perturbation KE (SSALTO/DUACS Team. 2013).
Thus. all vtxriability faster than 7 days was reduced in the averaging process
as was done deliberately for the drifters. The ME and EKE from the satel-
lites is shown on the grid of this analysis. In all datasets, the eddy kinetic
energy varies by more than 2 orders of magnitude in the horizonal.
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many cases. It seems unlikely that this structure would lead
to eddies with isotropic decorrelation timescales and
isotropic kinetic energy. The eddy kinetic energy is more
isotropic (not shown), with typically less than a factor
of 2 difference between the zonal and meridional rms
velocities—much less than the ratio of the diffusion eigen-
values. These conditions suggest shear dispersion is
expected to be an important source of anisotropy.

In the analysis of drifter data, it is commonly the goal to
climinate the effects of shear dispersion and measure the
cross-stream diffusivity. Following Davis (1991), the first
stage of calculating a diffusivity from drifter observations
is correlating the displacements with the drifter velocity,
after removing a time—mean velocity for each analysis
location.

KZ/;(x, f) = —<V;(f0 x,tO)X'/;(to - f]x.f())>,

where V/ (1|, 1y) represents the value of the « component of
V" at time ¢ that passes through location x at time 7. In
practice, this quantity is calculated for lag r— 1, along the
trajectories of the drifters, and then averaged into spatial
bins to approximate an Eulerian field of K. Comparing
Equation (8.42) to Equations (8.14) and (8.27) shows the
close relationship of this diffusivity estimate to the pre-
ceding ones, apart from the specific averaging operator.
One of the major concerns when mapping diffusivities
and time scales from drifter or float data is this use of finite
bins rather than fixed positions, which makes shear dis-
persion magnify the resulting diffusivity (c.f., Bauer
et al., 1998). In simulation experiments with isotropic eddy
energy in a flow with mean shear, Oh and Zhurbas (2000)
showed that shear dispersion can be minimized by eigen-
analysis of the diftusivity tensor (Equation 8.41) and taking
the smaller eigenvalue to represent an approximate iso-
tropic lateral diffusivity. Smith (2005) arrives at a similar
result in an idealized model. The effect of shear dispersion
is then reflected almost entirely in the larger horizontal
eigenvalue. Yet, in terms of parameterizations for coarse-
resolution ocean models, the goal is ot to eliminate shear
dispersion, but to predict and include it correctly.

The Oh and Zhurbas (2000) approach was exploited to
map diffusivities in the Pacific and Atlantic Oceans from
drifter data through 1999 (Zhurbas et al., 2003; Zhurbas and
Oh, 2004). The global distribution of the minor eigenvalue
of K in Figure 8.2c and ratio of minor to major eigenvalue
is shown in Figure 8.3, calculated from drifter data through
2010. The values were calculated using lag times of 5, 10,
15, and 20 days. The figure depicts the average of the 10,
15,and 20 day values, since these lag times exceed the integral
timescale and so estimate the diffusive limit of Taylor (1921).
Thus, this figure updates the results of Zhurbas and Oh (2004)
and extends them into the Indian Ocean.

Anisotropic diffusion should be included in coarse-
resolution njodel parameterizations so that the modeled
general circulation matches (Equation 8.10). For this
reason, both large and small drifter eigenvalues are shown

(8.42)
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LIGURE 8.3 (a) Log of the major to minor diffusivity tensor eigenvalues
from drifters. (b) Drifter integral inverse timescale (days Y.

in Figure 8.2. A complementary diagnostic approach is used
(Fox-Kemper et al., 2013) to produce model estimates of
K,y and of the right side of Equation (8.38). Nine passive
tracers (the tracers are oriented in three directions—
vertical, zonal, meridional—and restored to this initial dis-
tribution with three different timescales—no restoring,
1 year restoring, and 3 year restoring) are simulated in
the model already described. A least-square method
(Bratseth, 1998; Bachman and Fox-Kemper, 2013) is used
to invert the relationship

e’ = —R;V;E+E. (8.43)

and solve for the components of R and reduce the mag-
nitude of the scatter ¢. By Equation (8.38), we expect R
to be closely related to ¥ and K. The larger eigenvalues
of the R tensor for the surface model gridpoint. which are
associated with nearly horizontal transport, are what is
shown in Figure 8.2. The inversion for R becomes indeter-
mindte if one of the tracer gradients vanishes. Figure 8.2
shows many regions where evaluating this tensor is
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compromised by the small vertical gradients in the mixed
layer. However, direct comparison with the surface drifters
requires the surface value (diagnosed diffusivities quickly
decrease with depth). Both the minor and major eigenvalues
agree between the drifters and model where the model diag-
noses are not contaminated by the weak vertical tracer gra-
dients. Despite the different methods. assumptions, models
and measurement biases. and despite difficulties with excep-
tionally long integral timescales for the major eigenvalue,
the pattern and magnitude of the eigenvalues typically agree
within a factor of 2. Bachman and Fox-Kemper (2013)
estimate R to within a few percent. but only in an idealized
simulation.

The bottom two panels show the direction of the eigen-
vectors, that is. if the large horizontal eigenvalue is asso-
ciated with zonal diffusion, this value is zero. While the
agreement is far from perfect, away from the coastlines
and boundary currents, the dominant eigenvector tends to
be zonal. At the equator, this is expected from shear dis-
persion. It is presently unclear whether shear dispersion
or additional eddy anisotropy is required to produce this
effect in other regions. Figure 8.3a shows the ratio of the
minor eigenvalue to major eigenvalue in the drifter data.
In the regions of strong shear, such as the ACC and western
boundary currents, these eigenvalues are separated by a
factor of ten or more. In the gyre interior, these ratios
decrease to between one and two, with the larger eigenvalue
being nearly zonal.

The Lagrangian integral time and length scales are esti-
mated by

M_ (m?ls) at z=-318m

XY
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where K is the minor horizontal eigenvalue of K,z and ur; 1s
the minor eigenvalue of the Lagrangian velocity covariance
matrix (Zhurbas et al., 2003). The global distribution of
these scales is shown in Figure 8.3b. These values are qual-
itatively in agreement with earlier regional drifter-based
studies (c.f., Krauss and Boning, 1987; Poulain and
Niiler, 1989; Swenson and Niiler, 1996; Lumpkin et al.,
2002). This result is consistent with Lumpkin et al.
(2002), who showed that Lagrangian time scales calculated
by four different methods—integrating to the first zero
crossing. integrating the squared autocorrelation function
to a large fixed lag (Richman et al.. 1977: Lumpkin
et al., 2002, use 120 days), fitting a “yardstick” to derive
the integral length scale (Rupolo et al., 1996) and a para-
metric approach (Griffa et al., 1995)—all give qualitatively
the same distribution of time scales in the North Atlantic.

The surface drifters and the model agree at the surtace,
but at depth the only information available is from the
model. Figure 8.4 shows all components of the R tensor
from the model at 318 m depth. Below the mixed layer,
the tracer gradients tend not to vanish, so the model
inversion is more robust. The horizontal components of
the tensor (indicated by K and related to the isoneutral dif-
fusivity) are dominantly symmetric, consistent with the
Taylor (1921) and Dukowicz and Smith (1997) theory
and the results of Eden (2010a). The outer row and column
of R should be reduced by a factor of S, and indeed they are

(8.44)
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FIGURE 8.4 Components of the R tensor at 318 m depth. with the K, part in the upper left four panels.



about 1000 times smaller than the K, ; components. The R.-
component is smaller by another factor of 1000, consistent
with the squared slope in Equations (8.38) and (8.39).
The outer row and column of the R tensor are not sym-
metric. Instead, these portions of the tensor combine the
antisymmetric part related to the streamfunction and the
symmetric part related to the projection of the minimal-
disturbance diffusion of tracers into the vertical direction
in Equation (8.38). Indeed., if the K, for these two different
processes is identical and the Gent and McWilliams (1990)
parameterization is correct, then as in Equation (8.39) the
R.- and R,. elements of R should be zero. They are not
exactly zero, but they are a great deal smaller than R-,
and R... If the estimated uncertainty in the tracer gradient
inversion above. along with uncertainty due to limited sim-
ulation length and other diagnostic issues, is taken into
account, then the R - and R, - elements are indistinguishable
from zero in most locations (Fox-Kemper et al., 2013).
Bachman and Fox-Kemper (2013) show close agreement
with Equation (8.39) in an idealized model. Thus, the hor-
izontal mixing K, that generates the symmetric and anti-
symmetric parts of R in the Dukowicz and Smith (1997)
theory should be the same, that is, the same K,; in the
Gent and McWilliams (1990) parameterization as in the
Redi (1982) parameterization. [t is possible that small,
but nonzero R - and R, . elements arise from the distinction
between ¥*, which is diagnosed in R, and P*" which
cancels exactly in Equation (8.39). Unfortunately, the decay
with depth in these fields is too weak and uncertainty too

: E
2 % 24
:
4 75 !'.
E &
£ 60 <
g s
4 30 9
g,- |15 g
w w
E 4 E
2 2
T (v}
t Tl
&
] 4000 E]
= )
: 2000
E t
b 10 g
3 1 ]
=
ER 3
& s00 T k
€ § EE
2 s
. w7
L 4
8 4000 8§
2 | )
E oo E
3 0 g
3 x0 o
& | &
H g
Hh A, £

FIGURE 8.5 Eigenanalysis of the R tensor. (Top) Eigenvector direction of symmetric part of R, (R, + R ;)/2, as angle in degrees of deviation from expec-
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great to distinguish between ¥°
and ¥* from Equation (8.34).

Figure 8.5 shows the eigenvectors and eigenvalues of the
R tensor. As R is not symmetric, these eigenvalues can be
imaginary, but typically they are not. Instead, the eigen-
values remain diffusion-like with positive eigenvalues, but
the eigenvectors are not orthogonal (as they are for a sym-
metric tensor). The first eigenvalue is quite similar to the
R, zonal component. and the associated eigenvectors are
typically zonal. Thus, the horizontal direction of typical
rapid diffusion along the neutral plane is the zonal direction.
The second eigenvalue is weaker, and is often related to the
R, meridional component of the R tensor. The third eigen-
value is much smaller and is related to the vertical eddy
transport, the R_. component of the Redi tensor. The hori-
zontal components of the R tensor are nearly symmetric,
as it should be to be consistent with the Taylor displacement
correlation tensor (in agreement with the lack of such anti-
symmetry found by Eden, 2010a).

Fox-Kemper et al. (2013) go further in evaluating the
eigenvector directions and consider their projection onto
the horizontal gradient of potential vorticity. Generally,
the largest direction of diffusion is perpendicular to the
potential vorticity gradient, while the second largest dif-
fusion is in the potential vorticity gradient direction, as in
Ferrari and Nikurashin (2010). Where the eigenvectors
are not aligned with the zonal and meridional directions
is precisely where there are strong currents, consistent with
both shear dispersion and transport barriers. However, it is

from Equation (8.35)

=~318m

Eigvec #3 angle (") at z:

imag Eigval #3 (m®/s) at z=-318m  Real Eigval #3 (m?/s) at z=-318m

—6000

-15

tation. Largest magnitude eigenvalue direction versus zonal direction {top. left). middle magnitude eigenvalue direction versus meridional direction (top.
cerfter). smallest magnitude eigenvalue direction versus vertical direction (top. right). Real (middle) and imaginary (bottom) parts of the largest eigenvalue
(tetr). second eigenvalue (center), and smallest eigenvalue (right) of R. All values shown are at 318 m depth.
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unclear if the zonal transport preference is a result of shear
dispersion in zonal jets, a preference for zonal propagation
of coherent eddies, or a feature of typical instabilities.

Other realistic diagnostic studies (Jayne and Marotzke,
2002; Ferreira et al., 2005; Marshall et al., 2006;
Abernathey et al.. 2010; Griesel et al., 2010) generally agree
with the magnitude and pattern of diffusivities here.
However, these studies all use a scalar diffusivity and a
limited number of tracers or single tracer for diagnosis,
and thus are prone to fail when the tracer gradient is not
aligned with a principal diffusion axis. The Nakamura
(1996) diagnosis method also reveals only a single scalar
diffusivity, which is a complicated average of eigenvalues
depending on contour shape. Figure 8.5 indicates that the
principal axis direction is not trivially predicted, especially
in the region of strong currents. Other authors have
attempted to use uncertain gauge choices or other diag-
nostic techniques such as rotational-divergent flux decom-
positions to increase the ability of a scalar diffusivity to
represent the data (Eden et al., 2007a; Griesel et al.,
2010). However, such approaches typically rely on unmea-
surable assumptions (Fox-Kemper et al., 2003). The resuits
here indicate that the Kj; tensor is likely too anisotropic for
such approaches to work well, in agreement with surface
drifter analysis (Zhurbas and Oh, 2004).

4. MESOSCALE ISONEUTRAL DIFFUSIVITY
VARIATION PARAMETERIZATIONS

Many studies have shown that the methods of parameterizing
lateral transport by mesoscale and smaller features affect
the general circulation (Veronis, 1975; Danabasoglu and
McWilliams, 1995; Gent et al.,, 1995; McDougall et al.,
1996; Hirst and McDougall, 1998, etc.). Increasing reso-
lution to finer than 0.1° continues to affect the general
circulation (Oschlies, 2002; Lévy et al., 2010) due to subme-
soscale processes (Fox-Kemper et al., 201 1).

The majority of current eddy parameterization schemes
are based on the work of Redi (1982) and Gent and
McWilliams (1990). As described above, Griffies (1998)
shows how these two important papers provide the basic
flux-gradient relationship needed to represent a Dukowicz
and Smith (1997) closure in a z-coordinate model. Density-
coordinate models require a different form of closure Equa-
tions (8.30) and (8.31). However, all of these approaches
require a prediction of the isoneutral diffusivity Kz, which
is spatio-temporally variable and anisotropic as shown above.
Cleverly, Gent and McWilliams (1990) note that this tensor
needs prediction, but decline to propose how.

How to model the spatio-temporal and flow-dependent
variations of K37 The first conceptually successful theory
specifically for this purpose is that of Visbeck et al. (1997).
Their form is isotropic and based on a timepcale from linear
instability theory (Eady, 1949). It is

201
K.=K,= 0.001 .5f P (8.45)
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where /. is intended to be a baroclinic zone width inspired
by Green (1970). However, in typical implementations, the
gridscale or Rhines scale is used for /.. Similar scalings for
geophysical horizontal diffusivities based on linear insta-
bility, deformation radius, or other physical scales are also
commonly discussed (Green, 1970; Stone, 1972; Larichev
and Held, 1995; Held and Larichev, 1996).

Some parameterizations of the spatial variation of K are
based on diagnostic analyses rather than theoretical consid-
erations (Danabasoglu and Marshall, 2007). This approach
has the advantage of getting the right pattern of diffusivity,
but maybe for the wrong reasons and with the wrong sensi-
tivity to changes in the flow.

More recently, parameterizations based on a pro-
duction—dissipation of eddy kinetic energy (Eden and
Greatbatch, 2008) have been tested in a simplified form
(Eden et al., 2009). Under additional assumptions and sim-
plifications, this balance can be related to a parameter
similar to the Eady timescale, but one that varies with depth,
so it is different from the Visbeck et al. (1997) parameter-
ization. While this approach has the advantage over linear-
instability-based approaches of being valid at finite
amplitude, many aspects of the finite amplitude dynamics
such as the inverse cascade, anisotropy, barotropic pro-
duction, and realistic eddy kinetic energy dissipation are
presently neglected. Many authors have shown that these
effects contribute to the eddy fluxes of tracer (Smith
et al., 2002; Arbic and Flierl, 2004; Arbic et al., 2007;
Thompson and Young, 2007), so production—dissipation
balances as in Eden and Greatbatch (2008) will not be fully
explored until they have been extended to include such
effects. Even so, Eden et al. (2009) compare the present
simplified parameterizations of K, their bias from clima-
tology data, and the level of impact on model results.

4.1.

Figure 8.6 compares the diffusivities that resulted from the
different parameterizations tested by Eden et al. (2009).
All of the K,y they tested were horizontally isotropic,
so K,3=1nr, which according to Oh and Zhurbas (2000)
may be compared to the smaller horizontal eigenvalue of
the tensor K. While the diffusivities vary widely, the
diagnosis-based (Danabasoglu and Marshall, 2007) and pro-
duction-dissipation-based (Eden and Greatbatch, 2008)
estimates agree with each other more than they do with
any of the other estimates. Using these two parameteriza-
tions in a simulation resulted in similar modeled salinity
and temperature climatologies and biases, while using a con-
stant diffusivity and the Visbeck et al. (1997) parameteri-
zation produced radically different and Igss realistic
simulation climatologies (Eden et al., 2009). The pattern

Parameterizations Versus Diagnosed K
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Eden et al. (2009)

of parameterization diffusivities (Figure 8.6c and d) is
similar to the weaker horizontal eigenvalue diagnosed from
the model here (Figures 8.5 (center) and 8.6f), but the param-
eterization magnitudes are too small. No isotropic parame-
terization predicts diffusivities nearly as large as the major
eigenvalue in the tracer-diagnosed model (Figures 8.5 and
8.2) or drifter estimate (Figure 8.2), but a parameterization
of shear dispersion might.

4.1.1.  Eddy Scales Versus Instability Scale

Estimates of the characteristics of eddies short of prescribing a
K.y estimate are also useful in grounding the mixing esti-
mates. Satellite estimates of the statistics of oceanic meso-
scale variability have been invaluable in setting model
parameters at realistic values and validating theory
(e.g.. Wunsch and Stammer, 1995; Stammer, 1997, 1998;

Kushner and Held, 1998: Scott and Wang, 2005; Arbic and
Scott, 2008). Other studies using data-assimilating models
have been used to estimate eddy statistics (Abernathey
etal., 2010; Mazloff et al., 2010; Tulloch et al.,2011). A suc-
cessful parameterization will be in agreement with such esti-
mates in terms of eddy kinetic energy (Figure 8.1), eddy
integral timescale (Figure 8.3), and eddy lengthscale (related
to timescale and kinetic energy). Predicting these scalars
accurately allows prediction of the minor eigenvalue of
K. The anisotropy of K. associated with the major eigen-
value is an additional effect, which may be associated with
the longer separation distance of parcels in a sheared mean
flow (Taylor, 1953), sustained eddy correlation timescales
in a particular direction, or other effects.

Many argue that the integral length and timescales
shoTld be closely related to the fastest-growing or energet-
ically favored modes from linear instability theory. Recent
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.tudies have examined the structure, growth rates, and length
scales of linear instability throughout the world, based on
realistic stratification and shear profiles (Smith. 2007,
Tulloch et al., 2011). The most recent and comprehensive
of these studies is Tulloch et al. (2011). Figure 8.7 repro-
duces the most relevant results from that study—the eddy
length and time scales—which may be compared to the
drifter integral inverse timescale in Figure 8.3.

4.1.2. Eddy Versus Instability Spatial Scale

Even when production—dissipation balance is assumed, an
additional prediction of length or time scale is needed to
arrive at the units of diffusivity as in Equation (8.41). Part
of the spatial-variation of K parameterization may be based
on an eddy mixing length conceptual framework (Held and
Larichev, 1996; Spall, 2000; Thompson and Young, 2007).
In Eden et al. (2009) a simplified eddy lengthscale (minimum
of the Rhines scale and deformation radius) is used. Prandtl
(1925) first proposed a mixing length to describe momentum
transfer across a boundary layer (eddy viscosity) by a mass of
moving turbulent fluid. Prandtl’s and Taylor’s theory share a
conceptual similarity to the thermodynamic mean free path.
In some subgrid models, a prognostic model to predict the
turbulent lengthscale is used (see Burchard and Petersen,
1999: Pope, 2000). The eddy length scale in Figure 8.7a
shows that different measures of scalar eddy length scale
vary by perhaps a factor of 4, which is an estimate of the mag-
nitude of the inverse cascade. Diffusivity would be in error
by the square of the error in the estimate of eddy integral
lengthscale. Thus, if the (Eden et al., 2009) lengthscale were
increased to reflect that the energy-containing eddy scale is
1-2 times larger than the assumed deformation radius scale.
the parameterization diffusivity would be 1—4 times stronger
and very close to the diagnosed K in Figure 8.6.

4.1.3. Eddy Versus Instability Time Scale

While there are some similarities in pattern, the instabil-
ity timescale (Figure 8.7b) is longer than the drifter integral
timescale (3b) by about a factor of 10, and the

instability timescale increases as the equator is approached,
consistent with 1/|fl—oc. The drifter timescale is shorter
near the equator, by contrast. Tuiloch et al. (2011) argue
that a particular weighting of the Eady (1949) timescale
does a good job of predicting observed eddy statistics. [t
remains to be seen if this better linear instability timescale
can improve the diffusivity in a parameterization like
Visbeck et al. (1997): the disagreement between the insta-
bility and decorrelation timescales here is not encouraging.

4.2. New Parameterization Approaches and
Future Developments

As is clear from the results of Eden et al. (2009), the eddy
parameterization details strongly affect simulations. The
Gent and McWilliams (1990) parameterization applies in
the ocean interior, and treatment of how the parameterization
is adjusted as a boundary is approached has recently been
advanced. Early approaches used unphysical tapering
schemes (Gnanadesikan et al.. 2007), but recently two novel
approaches have made the boundary treatment more
physical. The first approach transitions from the neutral,
along-g surface mixing plus velocity described above to a
purely horizontal diffusion in the surface layer, where dia-
batic effects render the approach less meaningful (Treguier
et al., 1997; Danabasoglu et al., 2008; Ferrari et al., 2008).
The deliberate transition from eddy transport along neutral
planes to across occurs over the depth where diabatic pro-
cesses occur sporadically (the transition layer) across a
gridcell and is complete across the depths where diabatic pro-
cesses occur consistently (the mixed layer). The second
approach is that of Ferrari et al. (2010), which raises the order
of Equation (8.35) to include a vertical smoothing of the
streamfunction compared to the neutral slope, which they
argue is related to the dominance of low-mode vertical struc-
tures in the production of the u*. Based on the differential
order of the smoothing operator, they gain extra boundary
conditions that may be used to satisfy surface and bottom
boundary conditions. Conceivably, a similar approach might
adopt the differential form of Equation (8.34) instead of
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Equation (8.35). Danabasoglu et al. (2008) and Ferrari et al.
(2010) produce smoother profiles of eddy fluxes as the
boundaries are approached, consistent with high-resolution
models. Significantly. both nove! boundary methods are
independent of other specifications of the horizontal and ver-
tical variations of K, so they may continue to be used with
new parameterizations of the spatial variations.

While not a lateral transport in the ocean interior, the
mixed layer eddy parameterization for submesoscale eddy
restratification of Fox-Kemper et al. (2008) and Fox-
Kemper et al. (2011) shares many features with the Gent
and McWilliams (1990) parameterization. Bachman and
Fox-Kemper (2013) show that a matching symmetric param-
eterization. as in Redi (1982), should be used with the
Fox-Kemper et al. (2008) antisymmetric parameterization.
However, the stratification and shear of the mixed layer are
simpler than in the full ocean depth, so Fox-Kemper et al.
(2008) were able to handle the surface and mixed layer base
boundary problem conditions and the flow-dependent spatial
variation of mixed layer eddies all at once. Continued devel-
opment of the parameterization approaches in the previous
section, guided by the diagnostic results from eddy-resolving
models and data in the preceding section, may soon allow the
mesoscale problem to be similarly complete.

Eddies and their transport across the Antarctic Circum-
polar Current (ACC) are of present interest due to the recent
DIMES experiment (Gille et al., 2007), as well as the poten-
tially significant impact of changing winds over the ACC
(Lovenduski et al., 2008). Some high-resolution models
have shown that eddy sensitivity to wind may be difficult
to reproduce in parameterizations (Hallberg and
Gnanadesikan, 2006), but some results are more encour-
aging, that coarse-resolution models may be doing a rea-
sonable job (Gent and Danabasoglu, 2011) or may be
improved with new scalings (Abernathey et al., 2011).
Along the way, properties of the ACC eddy transport have
been discovered (Smith and Marshall, 2009; Abernathey
et al., 2010; Ferrari and Nikurashin, 2010).

Currently, a number of groups are developing and using
eddy-permitting models on a large or global scale (e.g.,
McClean et al., 2011; Delworth et al., 2012). As computer
speed increases, these approaches will become standard and
the coarse-resolution, eddy-free models using the mesoscale
parameterizations in the preceding section will only be used
in contexts such as millennial-scale and longer paleoclimate
simulations, high complexity Earth system modeling, large
ensemble projects, etc. This new generation of eddy-
permitting models will require a different kind of parameter-
ization, more akin to the Large Eddy Simulation subgrid
models in use for engineering and boundary layer turbulence
applications. Some early progress in this direction has been
made (Smagorinsky, 1963; Leith, 1996; Roberts and

arshall, 1998; Griffies and Hallberg, 2000; Fox-Kemper
zﬁd Menemenlis, 2008; Hecht et al., 2008; Chen et al.,
2011; San et al., 2011, 2013; Graham and Ringler, 2013).

Ocean Processes

5. CONCLUSIONS AND REMAINING
QUESTIONS

The processes that dominate the lateral transport in the
ocean interior, both the mean flow and mesoscale eddy
transport, are presently observed, diagnosed from high-
resolution simulations, and parameterized in coarse reso-
{ution models with modest success. These estimates do
not all agree, and many ad hoc assumptions are yet to be
understood in a larger context of appropriate theory.

The agreement between the modeled eddy tracer transport
and the anisotropic diffusivity in the surface drifter diagnosis
suggests that the effects of anisotropy and shear dispersion,
while perhaps not strictly part of the “eddy diffusivity,” are
nonetheless missing from a coarse resolution model and
should be approximated with subgrid eddy closures.

It is useful to summarize here the aspects of these lateral
transport processes that are clear and consistent. The
transport in the ocean interior is largely along directions that
minimize disturbances of energy or stratification, at a rate
closely related to the mean and rms horizontal velocities
and eddy correlation scales. The eddy kinetic energy, eddy
length scale, and eddy time scale are not spatially homoge-
neous, nor are the mean flow statistics. Heterogeneity in the
eddy statistics, as well as interactions with the spatially var-
iable mean flow, lead to large variations in the rate of eddy
tracer transport. There is a relationship between linear insta-
bility scales and those of the finite amplitude eddies, but
distinctions between the two roughly rationalizes the dis-
agreement in magnitude between extant parameterizations
and diagnosed diffusivity eigenvalues. The horizontal eddy
diffusivity is properly a tensor based on its connection to
displacement covariances, and strong anisotropy Is
common, although continued study of mechanisms is
needed to understand and properly parameterize anisotropy.
Finally, observations of tracers worldwide have led to good
maps of tracer concentrations against which models may be
validated, but even more observations and modeling are
needed to account for all tracers and correlations of interest,
including the biological and chemical.

Model errors in the transport of tracers result in signif-
icant mode! biases, but improvement has occurred and will
continue. As a general rule, parameterizations should be as
simple as possible and diagnoses as general as possible.
Otherwise, errors cannot be diagnosed and excessive tuning
may make our solutions look good for the wrong reasons.
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