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BACKGROUND: Some Vibrio spp. are pathogenic and ubiquitous in marine waters with low to moderate salinity and thrive with elevated sea surface
temperature (SST).

OBJECTIVES: Our objective was to monitor and project the suitability of marine conditions for Vibrio infections under climate change scenarios.
METHODS: The European Centre for Disease Prevention and Control (ECDC) developed a platform (the ECDC Vibrio Map Viewer) to monitor the
environmental suitability of coastal waters for Vibrio spp. using remotely sensed SST and salinity. A case-crossover study of Swedish cases was con-
ducted to ascertain the relationship between SST and Vibrio infection through a conditional logistic regression. Climate change projections for Vibrio
infections were developed for Representative Concentration Pathway (RCP) 4.5 and RCP 8.5.
RESULTS: The ECDC Vibrio Map Viewer detected environmentally suitable areas for Vibrio spp. in the Baltic Sea in July 2014 that were accompa-
nied by a spike in cases and one death in Sweden. The estimated exposure–response relationship for Vibrio infections at a threshold of 16�C revealed
a relative risk ðRRÞ=1:14 (95% CI: 1.02, 1.27; p=0:024) for a lag of 2 wk; the estimated risk increased successively beyond this SST threshold.
Climate change projections for SST under the RCP 4.5 and RCP 8.5 scenarios indicate a marked upward trend during the summer months and an
increase in the relative risk of these infections in the coming decades.
CONCLUSIONS: This platform can serve as an early warning system as the risk of further Vibrio infections increases in the 21st century due to climate
change. https://doi.org/10.1289/EHP2198

Introduction
Vibrio spp. are aquatic bacteria that are ubiquitous in warm estua-
rine and coastal waters with low to moderate salinity (Vezzulli
et al. 2013). Vibrio cholerae (serogroups O1 and O139) is the
causative agent of cholera epidemics, including the outbreak in
Haiti (CDC 2010; Chin et al. 2011). Other Vibrio species are also
pathogenic to humans, including V. parahaemolyticus, V. vulnifi-
cus, and nontoxigenic V. cholerae (nonO1/nonO139), although
they are not responsible for widespread epidemics (Chowdhury
et al. 2016; Heng et al. 2017; Letchumanan et al. 2014). Rather,
they are associated with sporadic cases of gastroenteritis, wound
infections, ear infections, and septicemia. V. parahaemolyticus is
one of the most common bacterial causes of gastroenteritis due to
contaminated seafood (Odeyemi 2016) and also causes wound
infections on occasions (Ellingsen et al. 2008; Tena et al. 2010).

Whereas death from gastroenteritis due to V. parahaemolyticus is
rare, the case-fatality rate from primary septicemia or wound
infections due to V. vulnificus is over 50% (Heymann 2008; Oliver
2005; Torres et al. 2002). For example, following Hurricane
Katrina in the United States in 2005, there were 22 new cases of
Vibrio illness, with five deaths, due to V. vulnificus, V. parahaemo-
lyticus, or nontoxigenic V. cholera (CDC 2005). These infections
were predominantly present in men over 50 y of age with underly-
ing liver and immune-competency issues.

In all European countries, cholera infection due to Vibrio
cholerae is a reportable disease, but other Vibrio infections are
not reportable in all countries. In some countries, screening of
patients with diarrheal diseases is only done in travel-related cases.
Consequently, accurate estimates of Vibrio spp. infections are not
available in Europe, although outbreaks of Vibrio-associated ill-
nesses have been reported from a number of European countries
(Le Roux et al. 2015).

The sea surface temperature (SST) of enclosed bodies of water
and estuaries has increased more rapidly as a result of climate
change than that of oceans (European Environmental Agency
2012). Elevated SST in brackish water provides ideal environmen-
tal growth conditions for Vibrio species (Johnson et al. 2012; Julie
et al. 2010; Kaspar and Tamplin 1993; Motes et al. 1998; Pfeffer
et al. 2003; Vezzulli et al. 2013; Whitaker et al. 2010). These con-
ditions can be found during the summer months in areas of water
with moderate salinity such as the Baltic Sea, Chesapeake Bay in
the northeast United States, and the East China Sea around
Shanghai. For example, the number of Vibrio cases around the
Baltic Sea has been found to increase in line with a rise in SST
(Baker-Austin et al. 2012); during the summers of 1994, 2003,
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2006, 2010, and 2014 elevated SST across much of the Baltic Sea
was associated with reported Vibrio-associated illness (Andersson
and Ekdahl 2006; Baker-Austin et al. 2016; Dalsgaard et al. 1996;
Frank et al. 2006; Lukinmaa et al. 2006; Ruppert et al. 2004). In
contrast, open ocean environments do not usually provide suitable
growth conditions for these bacteria due to their high salinity, low
temperature, and limited nutrient content.

Monitoring is critical, given the projected increase in SST in
the future and the potential severity of Vibrio infections (Lindgren
et al. 2012). More specifically, monitoring the environmental con-
text for such infectious diseases can serve as an early warning sys-
tem for public health (Nichols et al. 2014; Semenza et al. 2013;
Semenza 2015). The European Centre for Disease Prevention and
Control (ECDC) developed a quasi–real-time, Web-based plat-
form, the ECDC Vibrio Map Viewer, to monitor environmentally
suitable marine areas for Vibrio growth (ECDC 2016).

This paper presents evidence from marine environments
around the world showing that the ECDC Vibrio Map Viewer
can detect environmental changes that are of public health impor-
tance. It relates environmental data from the ECDC Vibrio Map
Viewer to epidemiological data and, more specifically, assesses
the relationship between SST in the Baltic Sea and Vibrio infec-
tions in Sweden. It also presents the risk of Vibrio infections
along the Swedish Baltic Sea coast in relation to increasing SST
due to climate change under RCP scenarios 4.5 and 8.5.

Methods

ECDC VibrioMap Viewer
The ECDC Vibrio Map Viewer (https://e3geoportal.ecdc.europa.
eu/SitePages/Vibrio%20Map%20Viewer.aspx) displays coastal
waters with environmental conditions that are suitable for Vibrio
spp. growth internationally (Figure 1). It is based on a real-time
model that uses daily updated remotely sensed SST and sea sur-
face salinity (SSS) of coastal waters (see below) as inputs to map
areas of high suitability for Vibrio spp. that are pathogenic to
humans (Copernicus Marine Environment Monitoring Service
2016; NOAA 2016). SST and SSS are two key environmental
factors that influence the number of infections, based on a model
developed by Baker-Austin et al. (2012). For the Baltic Sea, SSS
demarcates the regions suitable for Vibrio infections (Copernicus
Marine Environment Monitoring Service 2016) and SST serves
as a risk predictor (NOAA 2016). Salinity in coastal waters is
strongly modified by rainfall and, in turn, by river flow; the
model uses a threshold of 26 practical salinity units (PSU) for
SSS and 18�C for SST. The nominal spatial resolution of the out-
put is 5 km. The daily suitability index ranges from zero to a
maximum that is determined by the highest SST value. Thus, the
output detects coastal areas with environmental conditions suit-
able for Vibrio species that can cause infections in humans.
These fields, which are estimated on a daily basis by the
National Oceanic and Atmospheric Administration’s (NOAA)
Atlantic OceanWatch node at the Atlantic Oceanographic and
Meteorological Laboratory (AOML) in Miami, Florida, are
integrated within the ECDC Vibrio Map Viewer, which is the
point of access in the Baltic region.

Environmental Data
In the Baltic Sea, low-salinity areas delineate the areas suitable
for the occurrence of Vibrio infections, whereas SST serves as a
risk predictor (Baker-Austin et al. 2012); however, the influence
of SST and SSS on the environmental suitability for Vibrio
growth can be extrapolated to other regions of the world to obtain
global risk estimates. The ECDC Vibrio Map Viewer was

designed to delineate retrospective, current, and short-term fore-
casts of environmental suitability at a global scale, which requires
obtaining reliable SST and SSS, especially in coastal regions
where human exposure is more likely to occur (Figure 1). The
global model data inputs are SST fields from remote sensing and
models, as well as SSS from models, in situ data, and climatolog-
ical data. The estimates for SST were obtained from a number of
sources:

• USDOC/NOAA/NESDIS (U.S. Department of Commerce/
NOAA/National Environmental Satellite Data and Information
Service) COASTWATCH NOAA19/METOP-A/GOES-E/W
MSG/MTSAT SST Blended Analysis

• NOAA/NCEP (National Centers for Environmental Prediction)
Global Real-Time Ocean Forecast System

• Navy Coastal Ocean Model (NCOM) for the Gulf of
Mexico, Caribbean, and U.S. East Coast

• Operational Mercator Global Ocean Analysis and Forecast
System

• Iberian Biscay Irish (IBI) Ocean Analysis and Forecasting
system

• Forecasting Ocean Assimilation Model 7 km Atlantic
Margin model (FOAM AMM7)

• Baltic Sea Physical Analysis and Forecasting Product
• Mediterranean Sea Physics Analysis and Forecast
• Black Sea Physics Analysis and Forecast
SSS were obtained from the Copernicus Marine Environment

Monitoring Service (2016). For retrospective studies, NOAA’s
Optimum Interpolation (OI) SST V2 data set provided satellite
and model-interpolated daily analysis of SST in a consistent
methodology back to September 1981. For the Swedish coastal
counties, mean SST were spatially aggregated per county per
week for the years of analysis (2006–2014) to generate time-
series data sets for each coastal county.

Climate change projections of SST were derived from a
Coupled Model Intercomparison Project Phase 5 (CMIP5) model
ensemble (r1i1p1) for the Swedish coastline aggregated by county.
Time series per month for each county from 2005 through 2100
were derived. Model output was obtained for emission scenarios
RCP 4.5 and RCP 8.5, representing a possible range of radiative
forcing values in the year 2100 relative to preindustrial values
(+ 4:5, and + 8:5 W=m2, respectively).

Case Data
Infections caused by Vibrio cholerae (other than serotypes O1 or
O139 and Vibrio cholerae serotype O1 or O139, which are non-
toxigenic) are notifiable according to the Swedish Communicable
Diseases Act (Swedish Code of Statutes 2004) and include V.
parahaemolyticus, V. vulnificus, and V. alginolyticus. Cases are
reported to the mandatory notification system at the county medi-
cal office and at the Swedish Public Health Agency. We obtained
a listing of all Vibrio infections from 2006 through 2014 with clini-
cal and laboratory confirmation from the Swedish Public Health
Agency (Folkhelsomyndigheten 2016). The listing included infor-
mation on county, statistical date and onset of disease, type of infec-
tion, Vibrio species, serotype, transmission pathway, sex, and age
group of each case. For reasons including consistency in reporting
and data completeness, we used data for the period 2006 through
2014 for our analysis. A total of 117 cases were reported for the pe-
riod from June 2006 through October 2014, of which 111 occurred
in coastal counties with a possible link to SST. Thus, being in close
proximity to the Baltic provides the opportunity for exposure to
coastal water both for case and control times. However, 30 of these
cases had no precise place of infection and 25 cases had no date of
onset of disease, and these cases were not included in the analysis.
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Statistical Analyses
The variables of the 56 Vibrio cases for 2006–2014 were subjected
to descriptive statistics and frequency analysis. Because changes
in SST occur intermittently, have a short induction time and a tran-
sient effect (Vibriosis), a case-crossover study design was chosen
to assess the association between SST and Vibrio infections. The
SST exposure status (mean SST, spatially aggregated per county
and per week) of the Vibrio infection at the time of the Vibriosis
onset was compared with the distribution of the SST exposure sta-
tus for that same Vibriosis case in earlier/later periods. This
approach assumes that neither exposure nor confounders change
over the study period in a systematic way. Thus, a time-stratified

approach at the individual level was used for control days to con-
trast with the events. An advantage of using such a time-stratified
case-crossover design is the automatic adjustment for individual
non-time varying factors; these can risk introducing confounding
bias in epidemiological studies if not adjusted for. Further, the
time-stratified approach used control events before and after the
event date for each individual Vibrio infection in the same area.
We used 2, 4, and 6 wk as the time window between event data
and the control days, both before and after the event. This adjusts
for unknown temporal confounders and controls for seasonal influ-
ences not related to the seasonality of SST as the primary exposure
variable.

Figure 1. ECDC Vibrio Map Viewer: environmental suitability for Vibrio spp., July 2014, Baltic Sea. Source: Reproduced from https://e3geoportal.ecdc.
europa.eu/SitePages/Vibrio%20Map%20Viewer.aspx, © European Centre for Disease Prevention and Control.
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The weekdays of the dates of the weekly county means of the
SSTs were restricted to Mondays, but the date of infection was
for any date. Thus, in order to match the date of infection with its
corresponding SST, Tuesday to Thursday were referred to the
preceding Monday, whereas Friday to Sunday were referred to
the following Monday. For analysis, a data set with the event
itself and control events 2, 4, and 6 wk before and after the event
was created. A time series with SST county means from 1 to 8
wk before the event and the controls was added.

We used a conditional logistic regression model to ascertain a
relationship between SST and Vibrio infection and to derive an
exposure–response curve for the relationship between the odds
ratio of Vibrio infection and SST. We refer to the odds ratio anal-
ogously to relative risk in this study due to the low probability of
disease events. We studied the relationship between Vibrio infec-
tions and SST using natural cubic splines (4 degrees of freedom)
and for different lead times of exposure up to 4 wk before disease
occurrence. We identified a piecewise linear model with a knot of
SST at 16�C for the final model.

We used the computed case-crossover exposure–response
relationship to project how the seasonal window of transmission
would change in each of the counties. We used projections of
SST data from a global circulation model from CMIP5 for each
month in the time period from 2006 through 2099 for each
county. Months with elevated risk were categorized as potential
transmission months and aggregated as average per decades. The
annual maximum elevated risk month was averaged to a change of
transmission intensity per decade. Relative risk estimates are pre-
sented using the year 2016 as the baseline and describe changes
due to SST from there onward.

We used also CMIP5 sea surface temperature projections for
the RCP projections to illustrate differences in the projected SST
between RCP 8.5 and RCP 4.5 for August 2050. We computed
the surface area [in kilometers squared ðkm2Þ] of the Baltic Sea
that is environmentally suitable for Vibrio growth for RCP 4.5
and RCP 8.5, from 2010 through 2060, by month.

Results
In July 2014, SST in the Baltic Sea reached record highs and the
ECDC Vibrio Map Viewer detected environmentally suitable
areas for Vibrio spp. (Figure 1). High Vibrio suitability was
detected in the northern and the southern parts of the Baltic Sea
in mid-July, and this extended to the entire Baltic Sea by the end
of the month.

The annual frequency of total Vibrio cases notified in Sweden
from 2006 through 2014 is presented in Figure 2. A peak in cases
was observed in 2006 and in 2014, compared with other years.
Vibrio infections other than CTX (cholera toxin)-producing V.
cholerae (O1 or O139) reported in Sweden, included in the case-
crossover analysis, are listed in Table 1. The majority of infec-
tions were detected in the ear (50%), but wound infections
(28%) and septicemia (20%) combined constituted almost half
of all infections. Only a small fraction of the samples found
pathogens in stool, saliva, or urine (2%). A time series analysis
of the site of infection did not reveal a time trend in Vibrio
infections, with the exception of wound infections that indi-
cated an increase. Almost one-third (30%) of the cases were
≥60 y of age, 25% were 10−19 y of age, 25% were 20−59 y of
age, and 20% were ≤9 y of age.

The SSTs along the Swedish coast were interpolated for the
study period (2006–2014). An exposure–response relationship
was estimated with a case-crossover study; additional non-
disease (no Vibrio infections) time periods with the correspond-
ing SST were selected as matched control periods for each Vibrio
infection. The estimated exposure–response relationship for

Vibrio infections in response to SST is shown in Figure 3. At the
threshold of 16�C SST, with a lag of 2 wk, the relative risk (RR)
was 1.14 [95% confidence interval (CI): 1.02, 1.27]. The relation-
ship between Vibrio infections and SST was statistically signifi-
cant (p=0:024), and the estimated risk increased successively
beyond a threshold of 16�C SST. However, that relationship did
not hold at lower SST. Case data were available with a statistical
date and a date of onset of disease. The date of onset of disease
correlated to the SST of the same week and with lags up to 2 wk,
whereas the statistical date, which is the first date when the case
was reported to the national notification system for the cases cor-
related best with lags between 2 and 4 wk.

Climate change projections for SST under the RCP 4.5 and
RCP 8.5 scenarios for the 21st century were used to estimate the
relative risk of Vibrio infections in the future. A global compari-
son of the SST between RCP 4.5 and RCP 8.5 for August 2050 is
shown in Figure 4A, which illustrates a general warming overall,
but also regional cooling in certain locations, such as the Baltic
Sea (Figure 4B). The monthly projection of SST suitability for
Vibrio in the Baltic Sea up to 2060 is provided in Figure 5. A
marked upward trend is observed for SST during July, August,
and September but even more so during the months immediately
prior to and after the summer (June and October).

The area suitable for Vibrio growth is projected to expand
over the coming decades, particularly during June and September
(Figure 6), doubling between 2015 and 2050. In July 2015, the
area of risk was 140,000 km2; for scenario RCP 4.5, the area of
risk would reach 309,966 km2 in July 2050 and for RCP 8.5,
317,793 km2 in July 2050. Figure 7 shows Baltic Sea areas suita-
ble for Vibrio growth during the months of June, July, August,
and September 2016 and for RCP 4.5 and RCP 8.5 in 2050. The
RCP 8.5 scenario for 2050 gives a lower maximum SST than
RCP 4.5 (Figure 7); although at global level, the rise in tempera-
ture is higher with RCP 8.5 (Figure 4), and at a regional level,
RCP 4.5 gives higher temperatures for this particular year. The
difference is significant and at some point the differences between
the twomodels can reach up to 2�C. This discrepancy is also visible
in the isotherms for the difference between 2015 and projections
for 2050 under RCP 4.5 and RCP 8.5 bymonth (see Figure S1).

The change in relative risk (%) for Vibrio infections in com-
parison with 2015 is illustrated in Figures 8 and 9 for the coast-
line of Sweden for RCP 4.5 and RCP 8.5. A marked increase in
the relative risk was predicted beyond the year 2039 for both

Figure 2. Annual frequency of total Vibrio infections notified in Sweden,
2006–2014.
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scenarios and, toward the end of the 21st century, the change in
relative risk was particularly pronounced for the RCP 8.5 scenario.

Potential transmission months, defined by an elevated risk for
Vibrio infections based on the SST, were aggregated as averages
per decades (see Figures S2 and S3). The transmission season is
and will be longer in the southern part of Sweden compared with
the northern part. Under climate change scenarios RCP 4.5 and
RCP 8.5, the number of months with risk of Vibrio transmission
increases; the seasonal transmission window expands, with mark-
edly higher increases of months with transmission for the high
emission scenario RCP 8.5. However, the impact of climate
change becomes more prominent in the northern part after the
year 2039 when the transmission season reaches the current lev-
els of southern Sweden.

Discussion
In July 2014, the ECDC Vibrio Map Viewer detected highly suit-
able conditions for Vibrio infections in the Baltic Sea (Figure 1)
and the mandatory notification system at the Swedish Public
Health Agency reported a historic peak of Vibriosis cases for
2014 (Figure 2). We demonstrate with a case-crossover study
that the reported Vibrio infections are related to these favorable
environmental conditions; we found a pronounced exposure–
response relationship between SST and Vibrio infections
(Figure 3). Climate change projections indicate that the risk for
Vibrio infections will increase in the 21st century: The

transmission season will be expanded and the number of
months with risk of Vibrio transmission will increase, particu-
larly in the northern latitudes of the Baltic Sea. SST in the
Baltic Sea is projected to increase by 4–5�C over the next deca-
des due to climate change.

The 5-d forecasting function available on the ECDC Vibrio
Map Viewer can serve as an early warning system for Vibrio
infections in the Baltic Sea (Figure 1). Currently, ECDC moni-
tors the environmental suitability for Vibrio infections in the
Baltic Sea with the ECDC Vibrio Map Viewer on a weekly ba-
sis and, during the transmission season, publishes the findings
in its Communicable Disease Threat Reports (CDTR). This
enables public health authorities to take action, such as issuing
alerts to the public or information to immunocompromised
individuals or even beach closures. The European Environmental
Agency provides information on bathing water quality, based on
actual measurements of bacterial contamination (intestinal entero-
cocci and Escherichia coli) of recreational water sites (European
Environmental Agency 2016), whereas the alerts from the ECDC
Vibrio Map Viewer are based on estimates of environmental suit-
ability for Vibrio infections, not actual risk because no exposure
data are available for such an assessment.

Globalization, through international travel and trade, is an im-
portant driver of emerging infectious diseases (Semenza et al.
2016), including virulent Vibrio strains, and can synergistically
interact with other drivers such as climate change (Semenza and
Menne 2009). A new serotype of V. parahaemolyticus (O3:K6)
has emerged in Asia and has spread rapidly to South America
(González-Escalona et al. 2005; Martinez-Urtaza et al. 2008).
The pandemic expansion of this strain is associated with large-
scale food-borne disease outbreaks (Yeung et al. 2002). Other
virulent V. parahaemolyticus strains (O4:K12 and O4:KUT) have
recently spread from the Pacific Northwest to the Atlantic coasts
of the United States and Spain (Martinez-Urtaza et al. 2013;
McLaughlin et al. 2005).

The ECDC Vibrio Map Viewer can also be used to detect
suitability for Vibrio growth in other settings. For example, for
gastrointestinal infections in estuarine environments, to assess
the environmental suitability for Vibrio growth in oyster and
other shellfish farms that might warrant a temporary harvesting
ban. In the summer of 2012, outbreaks of V. parahaemolyticus
infection caused by Pacific Northwest strains occurred on the

Figure 3. Exposure–response relationship of Vibrio infections in response to
sea surface temperature (SST), Sweden 2006–2014. Note: Because Vibrio
infections in the Baltic are relatively rare, the relative risk is used here analo-
gously to the odds ratio.

Table 1. Vibrio infections other than Vibrio cholera, included in the case-
crossover analysis, reported in Sweden by site of infection, species, age, sex,
region, 2006 through 2014.

Demographic data Cases (n)

Male 82
Female 35
Age
Mean (y) 40.9
SD (y) 29
Range (y) 2–94

Route of infection
Blood 20
Ear 59
Feces 3
Mouth 1
Urine 1
Wound 33

Vibrio spp.
V. alginolyticus 13
V. parahaemolyticus 14
V. vulnificus 3
V. cholerae (not CTX producing) 48
Vibrio species (not agglutinatingV. cholerae) 39

Counties
Blekinge 6
Gotland 1
Gävleborg 6
Halland 9
Jämtland 1
Jönköping 4
Kalmar 3
Kronoberg 5
Skåne 27
Stockholm 21
Uppsala 4
Värmland 3
Västerbotten 3
Västernorrland 3
Västra Götaland 15
Örebro 3
Östergötland 3
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Atlantic coast of the United States (Martinez-Urtaza et al. 2013);
this was the first multistate outbreak of V. parahaemolyticus ill-
nesses reported in the United States for almost a decade. A total
of 12 confirmed and 16 probable outbreak-associated cases were
reported between 24 April and 3 August (Newton et al. 2014).
Illness onset dates ranged from 27 May to 20 July 2012. The me-
dian age of patients was 49 y and 46% were female. Two patients
were hospitalized; none died. The outbreak was linked to con-
sumption of shellfish harvested from Oyster Bay Harbor in New
York State between April and August 2012. The Rhode Island
Department of Health advised food establishments to check the
tags on any shellfish that they were selling to consumers or using
in food preparation and to avoid selling or using shellfish har-
vested from the Oyster Bay area. Harvesting of shellfish from the
area was temporarily prohibited on 13 July. The suitability for
Vibrio growth in this area was detected by the ECDC VibrioMap
Viewer (see Figure S4).

During the summer of 2015, a total of 81 cases were reported
in Canada between 26May and 26August. Cases ofV. parahaemo-
lyticus were identified in British Columbia (60), Alberta (19),
Saskatchewan (1), andOntario (1), andone case needed to be hospi-
talized. No deathswere reported. Themajority of caseswere linked

to consumption of raw shellfish, primarily oysters. Oysters har-
vested from British Columbia coastal waters for raw consump-
tion on or before 18 August were recalled from the market by the
Canadian Food Inspection Agency. The suitability for Vibrio
growth in these areas was also detected by the ECDC Vibrio Map
Viewer (see Figure S5) and the trend for SST (see Figure S6).

Global sea level rise due to climate change is also projected
to result in the flooding of low-lying coastal areas, resulting in
expansion of estuarine and brackish environments (Semenza
et al. 2012). Both phenomena may contribute to the proliferation
and geographic expansion of bacterial pathogens of marine and
estuarine environments (Ebi et al. 2017; Jacobs et al. 2015; Levy
2015). The ECDC Vibrio Map Viewer can play an important
public health role in view of the ubiquitous presence of Vibrio
spp. in brackish coastal water. Although the burden of disease
from these pathogens is relatively low, the severity of the high
case fatality for susceptible individuals from primary septicemia
is nevertheless a concern.

Limitations
The ECDC VibrioMap Viewer displays environmental suitability
for Vibrio infections based on SST and SSS (Copernicus Marine

Figure 4. Difference of sea surface temperature (SST) between RCP 4.5 and 8.5 for August 2050: (A) global and (B) regional. Note: Climate model for RCP
projections: CMIP5 SST projection that uses various models (86 total). The figures were created using a data set from a contribution to GEOSS Data-Core
(GEOSS Data Collection of Open Resources for Everyone), as a result of the GEOWOW (GEOSS interoperability for Weather, Ocean and Water) project.
Data are licensed under Creative Common CC-BY-4.0 (as defined in http://www.opendefinition.org/licenses/cc-by), which allows redistribution and re-use.
Data sources: Combal 2014a, 2014b, 2014c. Difference RCP 8.5–4.5: Difference in the projected SST between RCP 8.5 and RCP 4.5 for August 2050. RCP
8.5 projections are in general warmer than RCP 4.5 ones. However, the distribution and intensity of the differences are inhomogeneous and highly variable.
The values are predominantly positive but negative values are shown in the Baltic Sea during this period.
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Environment Monitoring Service 2016; NOAA 2016). However,
Vibrio ecology and growth also depend on a number of other var-
iables including marine nutrient concentrations, river discharge,
and algae blooms (Boer et al. 2013; Johnson et al. 2012; Julie
et al. 2010). For example, long-distance atmospheric deposition
and aerosols such as Saharan dust nutrients can promote Vibrio
bloom formation in marine surface waters (Ansmann et al. 2003;
Westrich et al. 2016). Moreover, individual Vibrio species dis-
play different responses in relation to SST and SSS (Boer et al.

2013; Johnson et al. 2012; Julie et al. 2010). Thus, the environ-
mental suitability shown by the ECDC Vibrio Map Viewer rep-
resents an approximation of the actual suitability and local
variation might apply. In addition, many Vibrio infections are
influenced by other factors, such as immunity, travel, and gas-
trointestinal disease, in addition to coastal water exposure.
Currently, the Swedish Public Health Agency recommends that
people avoid swimming if they have a significant or open
wound and the SST is 20�C or higher.

Figure 6. Surface area (km2) of the Baltic Sea that is environmentally suitable for Vibrio growth for RCP 4.5 and RCP 8.5, from 2010 through 2060, by month.
Note: The figures were created using a data set from a contribution to GEOSS Data-Core (GEOSS Data Collection of Open Resources for Everyone), as a
result of the GEOWOW (GEOSS interoperability for Weather, Ocean and Water) project. Data are licensed under Creative Common CC-BY-4.0 (as defined in
http://www.opendefinition.org/licenses/cc-by), which allows redistribution and re-use. Data sources: Combal 2014a, 2014b, 2014c.

Figure 5. Suitability for Vibrio based on SST in the Baltic Sea for RCP 4.5 and RCP 8.5, from 2010 through 2058, by month. Note: The figures were created
using a data set from a contribution to GEOSS Data-Core (GEOSS Data Collection of Open Resources for Everyone), as a result of the GEOWOW (GEOSS
interoperability for Weather, Ocean and Water) project. Data are licensed under Creative Common CC-BY-4.0 (as defined in http://www.opendefinition.org/
licenses/cc-by), which allows redistribution and re-use. Data sources: Combal 2014a, 2014b, 2014c.
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Our analysis was based on Swedish data because Vibrio
infections became reportable in Sweden in 2004. In many other
Baltic countries, Vibrio infections are not reportable and there-
fore, little information is available to assess the risk in those
countries. Regrettably, there was not a training data set and a
testing data set to validate the exposure–response relationship
of Vibrio infections in response to SST. However, our findings
are consistent with the documented number and distribution of

Vibrio infections clustered around the Baltic Sea area associated
with the temporal and spatial peaks in SST (Baker-Austin et al.
2012).

Conclusion
Mortality and morbidity due to Vibrio infections continue to occur
in the Baltic Sea area. Moreover, we show that the environmental
suitability of Vibrio growth in the Baltic Sea will expand in a

Figure 7. Environmental suitability for Vibrio based on maximum SST for 2016, for 2050 with RCP4.5, and for 2050 with RCP8.5, for June, July, August,
and September. Note: Environmental suitability fields in the Baltic Sea during June, July, August, and September: low-salinity areas delineate the region suita-
ble for the occurrence of infections, whereas SST serves as a risk predictor. The left column shows the fields estimated for the year 2016. The center and right
columns show the projected suitability index (SI) for the year 2050, under RCP 4.5 and RCP 8.5, respectively. In both cases, there is an important increment in
the mean values of the SI (SI >10) when compared with the year 2016. The figures were created using a data set from a contribution to GEOSS Data-Core
(GEOSS Data Collection of Open Resources for Everyone), as a result of the GEOWOW (GEOSS interoperability for Weather, Ocean and Water) project.
Data are licensed under Creative Common CC-BY-4.0 (as defined in http://www.opendefinition.org/licenses/cc-by), which allows redistribution and re-use.
Data sources: Combal 2014a, 2014b, 2014c.
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warming climate. However, in Europe, there is almost a complete
lack of information regarding the persistence/abundance of Vibrio
in the environment and the number of human cases. Reporting of
Vibrio infections is not mandatory in the European Union, and
many laboratories test only for Vibrio infections in patients with di-
arrhea when they are returning from a foreign holiday (to rule out
Vibrio cholerae). The strength of this study lies in the fact that
most of the infections were nongastrointestinal and therefore not
subject to this selection bias. Thus, in the absence of mandatory no-
tification data on Vibrio infections in Europe, the ECDC Vibrio
Map Viewer can forecast the environmental suitability of coastal

waters for Vibrio spp. using remotely sensed SST and SSS. These
forecasts and potential alerts are currently disseminated by ECDC
to public health decision makers, along with different response
options for their consideration, through the CDTR: Public access to
a beach should be temporarily denied for public safety purposes,
warnings should be issued when the environmental suitability of
Vibrio infections is imminent, or alerts should be issued to notify
health care providers and at-risk individuals such as the immuno-
compromised. Through this cascade of steps—risk assessment,
monitoring of environmental suitability and alert detection, dissem-
ination and communication, and response—the ECDC Vibrio Map

Figure 8. Change in relative risk (%) of Vibrio infections associated with climate change scenario RCP 4.5, 21st century.
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Viewer constitutes an important link in an early warning system
for Vibrio infections.
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