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h. Meridional overturning circulation and heat transport 
observations in the Atlantic Ocean—M. O. Baringer, W. E. 
Johns, G. McCarthy, J. Willis, S. Garzoli, M. Lankhorst, C. S. Meinen, 
U. Send, W. R. Hobbs, S. A. Cunningham, D. Rayner, D. A. Smeed, 
T. O. Kanzow, P. Heimbach, E. Frajka-Williams, A. Macdonald, S. 
Dong, and J. Marotzke
The meridional overturning circulation (MOC) 

is typically defined as the maximum of the zonally-
integrated mass transport stream function. In the 
Atlantic Ocean the MOC is the large-scale circulation 
that transports warm near-surface water northward, 
thereby transferring heat to the atmosphere and 
returning southward as colder, denser, deeper water. 
The actual f lows are more complicated than this 
simple description and for further details the reader 
should see previous State of the Climate reports (e.g., 
Baringer et al. 2011, 2012) or the recent reviews of 
Srokosz et al. (2012) or Lozier (2012). 

The longest time series of a major ocean current 
contributing to the strength of the MOC is NOAA’s 
Florida Current (FC) data, which began continuous 
daily measurements in 1982. The full record (Fig. 
3.21) shows substantial variability on all measured 
time scales (Meinen et al. 2010; Baringer and Larsen 
2001). The 1982–2012 median transport of daily 
values is 32.0 ± 0.27 Sv (standard error of the mean 
based on an integral time scale of about 20 days) 
with a minimal downward trend of -0.23 ± 0.06 Sv 
decade-1 (90% confidence). In 2012 the annual median 
was 31.6 ± 1.5 Sv, with the annual mean transport 
slightly below the average since 2007 (Baringer et al. 
2012). However, the 2012 median is within the middle 
50% of all annual means. The 2012 daily values of FC 
transport do show some unusual periods. The daily 
FC transport values as compared to all previous years 
(Fig. 3.21, top) indicate that 2012 was unusual in that 
there were several low transport values (LTP) start-

ing 27 October and ending 24 November. The lowest 
transport observed occurred on 28 October, reaching 
only 17.2 Sv. This low value is similar to the lowest 
transport recorded since 1982 (17.3 Sv on 3 October 
1983). The 2012 LTP was preceded by the only high 
transport event during 2012 that exceeded the 95% 
confidence limits. This transport exceeded 38 Sv from 
3 to 4 October. Low values in the October–November 
time frame are consistent with the average annual 
cycle of FC transport (e.g., Meinen et al. 2010). In the 
last week of October low values are consistent with 
the passage of Hurricane Sandy northward offshore 
of the US East Coast. Previous studies have shown 
that southerly along-shore wind stress can cause a 
reduction in FC strength, leading to increased sea 
level along the coast (e.g., Ezer et al. 2013; Sweet et al. 
2009). Ezer et al. (2013) quantified this effect using 

FIG. 3.21. (a) Daily estimates of the transport of the 
Florida Current during 2012 (red solid line) compared 
to 2011 (dashed blue line). The daily values of the 
Florida Current transport for other years since 1982 
are shown in light gray and the 95% confidence inter-
val of daily transport values computed from all years 
is shown in black (solid line); the long-term annual 
mean is dashed black. The 2012 median transport 
(31.6 ± 1.5 Sv) lies slightly below the long-term median 
for the daily values of the Florida Current transport 
(32.0 Sv). (b) Daily estimates of the Florida Current 
transport for the full time series record (light gray), 
and a smoothed version of transport (heavy black line; 
using a 12-month second-order Butterworth filter) and 
the mean transport for the full record (dashed black).

FIG. 3.20. Space-time diagram of deseasoned sea height 
anomaly (SHR) values along the NBC ring corridor 
during 2008–12. (Source: http://www.aoml.noaa.gov/
phod/altimetry/cvar/nbc.)
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a numerical model to show that a 1 Sv decrease in 
transport corresponds to a 1 cm increase in coastal 
sea level near these latitudes (see also Boon 2012; Sal-
lenger et al. 2012; Ezer and Corlett 2012). 

The only complete daily time series of basin-wide 
MOC strength at a particular latitude currently 
available is from the in situ mooring array, RAPID-
MOC/MOCHA/WBTS (Fig. 3.22). This mooring 
array spans the Atlantic Ocean roughly along 26°N 
(Rayner et al. 2010; Kanzow et al. 2008a). The mean 
MOC transport centered on this low MOC event (1 
April 2009–31 March 2010, referred to as 2009/10) 
was 12.7 Sv. After this 2009/10 low, the annual 
mean transport increased to 16.9 Sv in 2010/11, only 
slightly lower than the 2004–11 mean of 17.5 ± 1.6 
Sv (± standard error of annual means). Although the 
mean transport for 2010/11 represents an increase, 
there is still a statistically significant (p=0.95) MOC 
minimum from 13 November–29 December 2010. 
This MOC minimum is preceded by three minima 
in low Florida Current transport occurring between 
4 October and 10 December 2010 (Fig 3.22). Similar 

to the December–March 2009/10 low MOC event, the 
November 2010–December 2011 low MOC appears 
most coincident with the unusual and significantly 
low Ekman transport compared to a mean of 3.2 
Sv (2–29 December 2010). In December–March 
2009/10, the slowing of the MOC (low FC and Ek-
man transports) was preceded by a weakening of the 
upper ocean southward flow east of 77°W (aka the 
interior transport, Fig. 3.22; 5 October–2 December, 
mean -11.1 Sv) and followed by a strengthening of 
the interior southward flow 29 January–6 February 
2011. Wunsch and Heimbach (2013) estimate the 
frequency of occurrence of such monthly extremes 
to be 14 months in a 1992–2010 monthly transport 
time series that is assumed to represent a station-
ary Gaussian process. Overall, however, the interior 
transport was stronger southward in both 2009 and 
2010 (hence contributing to the low MOC transport 
in those years). In these two years there was interest-
ing phasing between anomalous interior, FC, and 
Ekman transport. It is the sum of these components 
that makes up the MOC at this latitude and therefore 
a clear understanding of this phasing is fundamental 
to the understanding of the physical mechanisms 
supporting MOC transport variability (McCarthy 
et al. 2012).

The North Atlantic MOC is also being monitored 
by somewhat less direct and complete time series at 
41°N and 16°N (Fig. 3.23). Near 41°N, Willis and Fu 
(2008) developed a technique using Argo profiling 
f loats combined with satellite altimetry and the 
ECCO2 state estimate (Menemenlis et al. 2005) to 
estimate the upper ocean circulation with the zonally 
and vertically integrated upper ocean flow represent-
ing the upper layer of the MOC. The 41°N time series 
shows a similar low MOC event slightly preceding the 
26°N winter 2009 low MOC. Near 16°N, a mooring 
array of inverted echo sounders, current meters, and 
dynamic height moorings that measures the deep 
circulation across most of the basin has been in place 
since 2000 (Kanzow et al. 2008b). Interestingly, the 
16°N time series has a high southward flow (hence 
a large MOC) in the winter of 2009 (13 December 
2009–23 January 2010). The three-month low-pass 
filtering of these time series highlights the seasonal 
cycles found in all three. There are different phases 
for each, with 16°N having a maximum MOC in 
May–July, 26°N having a broad maximum in July–
November (Kanzow et al. 2010), and 16°N having a 
maximum southward flow (and hence stronger MOC) 
in November–January. Using these time series, vari-
ous authors have reported MOC trends ranging from 

FIG. 3.22. Daily estimates of the strength of the meridi-
onal overturning circulation (MOC; blue line) and its 
components, the Florida Current (FC; green), wind-
driven Ekman transport (Ek; red) and the geostrophic 
interior (Int; black), as measured by the UK National 
Environmental Research Council Rapid Climate 
Change Program (RAPID-WATCH), the National Sci-
ence Foundation’s Meridional Overturning and Heat 
transport Array proposal, and the NOAA Western 
Boundary Time Series project (WBTS). The interior 
volume transport estimate (accurate to 1 Sv, Cunning-
ham et al. 2007) is based on the upper ocean transport 
from April 2004 to April 2011 (see also Rayner et al. 
2010; Kanzow et al. 2010), with a 10-day low pass filter 
applied to the daily transport values. Annual means of 
the MOC transport starting 1 April of each year are 
shown in blue text (in Sv).
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zero (Willis 2010 at 41°N) to a 10% decrease per de-
cade (Send et al. 2011 at 16°N). Using the overlapping 
time period of these observations (1 April 2004−10 
December 2010), the trend in MOC is -7.1 ± 5.7 Sv 
decade-1 at 41°N and -6.7 ± 5.9 Sv decade-1 at 26°N, 
suggesting a weakening MOC (barely significant at 
95% confidence limits). However, at 16°N the deep 
southward flow is increasing, which is equivalent to 
an increase in the MOC at -7.7 ± 9.3 Sv decade-1 (not 
significantly different from zero at 95% confidence 
limits). Using the full time series from either 41°N or 
16°N reduces the discrepancy largely by eliminating 
any significant MOC trend (-1.2 ± 1.7 Sv decade-1 at 
41°N and 0.5 ± 0.4 Sv decade-1 at 16°N). Given the 
large variability in these short underlying time series 
and the low transport in the winter of 2009, it is dif-
ficult at the present time to determine unambiguously 
whether the large-scale low-frequency MOC circula-
tion has a trend in the North Atlantic. 

In the South Atlantic there is an ongoing estima-
tion of the MOC using upper ocean measurements 
from expendable bathythermograph sections that 
measure the upper ocean temperature approximately 
every three months (Garzoli et al. 2012). The MOC 
estimate from that data along 35°S since 2002 has 
suggested no significant trend in the MOC (Dong 
et al. 2009).

The MOC is related to the meridional transport 
of heat (MHT) in the oceans, and the variability of 
MHT can impact heat storage, sea-level rise, and air-
sea fluxes, and hence influence local climate on land. 
MHT has been inferred using the time series data at 
41°N (Hobbs and Willis 2012) and 26°N (Johns et al. 
2008). Near 41°N, the time series mean MHT is 0.50 
± 0.10 PW (1PW = 1015 W) and near 26°N is 1.26 ± 
0.40 PW (Fig. 3.24). In the South Atlantic, MHT has 
been estimated using a combination of expendable 
bathythermograph (XBT) data and Argo profiling 
f loats (Garzoli et al. 2012; Garzoli and Baringer 
2007). The mean MHT near 35°S is 0.55 ± 0.3 PW (±1 
standard deviation). Note that the mean MHT from 
the ECCO-PROD and SODA assimilating models are 
higher than those computed directly from observa-
tions at 41°N, lower near 26°N, and bracket the direct 
MHT estimates at 35°S. In a detailed intercomparison 

FIG. 3.24. Observed time series of meridional heat 
transport (MHT) at 41°N (profiling floats), 26°N 
(mooring/hydrography) and 35°S (XBTs) in the At-
lantic compared to the monthly estimates from the 
ECCO-PROD version 4 (FH12, blue line; Forget et al. 
2012, unpublished manuscript) and the Soda version 
2.2.4 (red line; Carton and Giese 2008) models. (Top) 
The black line is the estimate MHT and the gray lines 
represents the error in the estimate (Hobbs and Wil-
lis 2012). (Middle) The black line is the observed data 
filtered with a 30-day boxcar filter and the gray lines 
are the underlying 12-hourly data. (Bottom) The gray 
line is the quarterly estimated MHT from XBTs and 
the black line is a yearly boxcar filter to those quarterly 
estimates.

FIG. 3.23. Estimates of the MOC in the Atlantic Ocean 
from the Argo/Altimetry estimate at 41°N (black; Wil-
lis 2010), the RAPID-WATCH/MOCHA/WBTS 26°N 
array (red; Cunningham et al. 2007), and the German/
NOAA MOVE array at 16°N (blue; Send et al. 2011) are 
shown versus year. All time series have a three-month 
second-order Butterworth low pass filter applied. 
Horizontal lines are the mean transport during similar 
time periods as listed in the corresponding text. For 
the MOVE data, the net zonal and vertical integral of 
the deep circulation represents the lower limb of the 
MOC (with a negative sign for the southward flow).
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examining the RAPID/MOCHA/WBTS array near 
26°N with two climate models, Msadek et al. (2013) 
found that the low MHT in the models was due to an 
overly diffuse thermocline rather than a weak MOC. 
In terms of variability, the low MOC winter of 2009/10 
corresponds to a low MHT near both 26°N and 41°N. 
Both models capture the 26°N event, but not the 41°N 
event. Near 35°S the assimilation estimates have a 
much larger MHT seasonal cycle than observations 
(and, surprisingly, have larger variability). More work 
is needed to understand the causes of the underlying 
differences between direct-observation-based and 
data-assimilating-model estimates of MHT/MOC. 

i. Sea level variability and change—M. A. Merrifield, P. 
Thompson, R. S. Nerem, D. P. Chambers, G. T. Mitchum, M. 
Menéndez, E. Leuliette, J. J. Marra, W. Sweet, and S. Holgate
Four aspects of sea level variability during 2012 are 

examined. First updated time series of global mean 
sea level (GMSL) as determined from satellite altim-
eter observations are considered. GMSL provides a 
measure of the temporal change in ocean volume, 
which is affected by changes in density and the net 
heat content of the ocean, and by the mass transfer of 
water between the continents and the oceans via land 
ice melt and shifting evaporation-precipitation pat-
terns. Second, seasonal anomalies of regional sea level 
based on satellite altimetry and tide gauge observa-

SIDEBAR 3.2: SLOWDOWN OF THE LOWER, SOUTHERN LIMB OF 
THE MERIDIONAL OVERTURNING CIRCULATION IN RECENT 
DECADES—G. C. JOHNSON AND S. G. PURKEY

The Atlantic Meridional Overturning Circulation (AMOC), 
fed by sinking of North Atlantic Deep Water (NADW), has 
been continuously monitored for possible changes in the sub-
tropical North Atlantic since 2006 (see section 3h). Annual 
means of the measured transport of the AMOC range from 
13 Sv to 20 Sv between 2006 and 2010 (McCarthy et al. 2012). 
However, the AMOC is only the upper northern limb of the 
global meridional overturning circulation (MOC; Lumpkin and 
Speer 2007). The lower southern limb of the MOC, fed by 
sinking of Antarctic Bottom Water (AABW), has a transport 
of similar magnitude (Lumpkin and Speer 2007). In fact, AABW 
fills more of the world oceans than NADW, including much 
of the Southern Ocean as well as the deep Indian, Pacific, and 
western South Atlantic Oceans (Johnson 2008).

There is growing evidence that this lower southern limb is 
changing over recent decades, including statistically significant 
warming of deep waters of Antarctic origin nearly globally 
since circa 1990 (Kouketsu et al. 2011; Purkey and Johnson 
2010), as well as freshening of bottom waters near Antarctica 
in the Indian (Rintoul 2007) and Pacific (Swift and Orsi 2012) 
sectors of the Southern Ocean. While there is no equivalent 
of the subtropical North Atlantic AMOC observation system 
(see section 3h) for the lower southern limb of the meridional 
overturning circulation, many studies, summarized below, have 
inferred consistent, worldwide reductions in the strength of 
this limb by comparing various oceanographic section data 
from the Global Ship-Based Hydrographic Investigations 
Program (http://www.go-ship.org/) with data from earlier 
oceanographic sections occupied during the 1980s and 1990s 
as part of the World Ocean Circulation Experiment (WOCE) 
Hydrographic Program.

Changes in the inventories of the coldest, deepest waters 
around the globe using oceanographic section data from the 
1980s to present suggest a strong contraction of the coldest 
varieties of AABW (Fig. SB3.4; Purkey and Johnson 2012). 
Their results suggest that deep Southern Ocean waters with 
potential temperatures below 0°C are disappearing at a rate 
of over 8 Sv. At 35°S, the northward flow of bottom waters of 
southern origin is estimated to be slowing down by about 0.7 
Sv decade-1 from 1968 to 2005 in the Pacific and 0.4 Sv decade-1 
in the western Atlantic Ocean over the same time interval 
from a numerical model assimilating these data (Kouketsu et 
al. 2011). The same assimilation finds no change in the deep 
Indian Ocean, but oceanographic section data are sparser 
there since the completion of WOCE. While classic AABW 
(potential temperatures <0°C) is only found in the Argentine 
Basin of the western Atlantic at this latitude (Fig. SB3.4), the 
AABW influence is still strong in the bottom waters of all three 
oceans (Johnson 2008).

In the Northern Hemisphere, inverse model calculations in 
the Pacific using data from repeat hydrographic sections along 
24°N suggest that the deep northern transport of waters of 
Southern Ocean origin lessened by 1.5 Sv between 1985 and 
2005 (Kouketsu et al. 2009), consistent with results in the 
South Pacific. In the North Atlantic Ocean at 24°N, one analy-
sis based on geostrophic calculations inferred a remarkable 
slowdown of northward flow of 4 Sv from four hydrographic 
sections occupied between 1981 and 2004 (Johnson et al. 
2008); although another set of inverse estimates using different 
reference levels, integration areas, and data extrapolation into 
u-sampled areas found a slowdown of only 1.3 Sv over those 
same times, with a resurgence of 0.4 Sv between 2004 and 


