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estimate are available in near real-time and hence 
the time series has been extended from May 2012 
(reported last year) to October 2013 (Fig. 3.23). Fur-
thermore, near 16°N, the MOC is being estimated by 
a mooring array of inverted echo sounders, current 
meters, and dynamic height moorings that measure 
the deep circulation that is the southward flowing 
part of the MOC conveyor belt that sends North At-
lantic Deep Water towards the equator (see Send et 
al. 2011 for further details). For this report, the 16°N 
data has been updated from June 2011 to October 
2013, the date of the last cruise. The updated data 
from all three latitudes were 90-day low-pass filtered 
and plotted in Fig. 3.23. The mean MOC based on 
these estimates decreases to the north (22.8 Sv at 
16°N; 17.3 Sv at 26°N; 13.8 Sv at 41°N). Similarly, the 
variability decreases to the north (as described by the 
standard deviation: 4.2 Sv at 16°N; 3.4 Sv at 26°N; 2.9 
Sv at 41°N). All three time series have a seasonal cycle, 
which is most prominent at 26°N and 41°N (Fig. 3.23). 
There are different phases for each, with 41°N having 
a maximum MOC in May–July, 26°N having a broad 
maximum in July–November (Kanzow et al. 2010), 
and 16°N having a maximum southward flow (and 
hence stronger MOC) in November–January. Of note 

with the most recent data, the 16°N data has stronger 
southward flow, reaching filtered values above −34 
Sv; the new 26°N data is slightly lower than the long-
term average and the newest 41°N data is similar to 
the long-term average. Various authors have reported 
longer-term MOC trends ranging from zero (Willis 
2010 using the first seven years of data from 41°N) to a 
−3 Sv decade-1 decrease (Send et al. 2011 using the first 
9.5 years of data from 16°N), to the largest decrease 
of −5.4 Sv decade-1 (Smeed et al. 2014 using the first 
8.5 years of data from 26°N). Using the overlapping 
time period of these observations (2 April 2004 to 2 
October 2012) which includes more recent data than 
reported by Willis (2010) and Send et al. (2011), there 
is an insignificant trend in the MOC of −3.3 ±6.5 
Sv decade-1 at 41°N, while at 26°N there is a strong 
decrease in the MOC of −5.1 ±4.1 Sv decade-1 (using 
95% confidence limits; Fig. 3.23). However, at 16°N 
the deep southward flow has recently been increas-
ing, suggesting a possible increase of the MOC at 8.4 
±5.6 Sv decade-1. At 26°N where both the upper and 
deep southward f lows are measured, the decreas-
ing MOC is seen to be compensated by a reduction 
in the southward export of lower North Atlantic 
Deep Water (LNADW) in the depth range of 3‒5 
km (perhaps surprisingly there is no trend in export 
of upper North Atlantic Deep Water in the depth 
range 1.1‒3 km). The decrease in export of LNADW 
is 4.6 ±3.9 Sv decade-1 (Fig. 3.22b; Smeed et al. 2014). 
From the full time series from 41°N and 16°N, the 
MOC trends decrease, becoming insignificant (−0.9 
±4.6 Sv decade-1 at 41°N and −2.3 ±2.9 Sv decade-1 at 
16°N). At these time scales, there appears to be no 
consistent trend in the MOC at these latitudes. Note 
that statistically significant changes can be found us-
ing various subsets of these time series; however, the 
interpretation of any trend should consider regional, 
interannual, and decadal variability that may not be 
linked to longer-term trends.

i. Meridional oceanic heat transport in the Atlantic 
Ocean—M. O. Baringer, W. E. Johns, S. Garzoli, S. Dong, 
D. Volkov, and W. R. Hobbs
The meridional overturning circulation is re-

lated to the meridional heat transport (MHT) in the 
oceans, and the variability of MHT can impact heat 
storage, sea-level rise, and air-sea fluxes, and hence 
influence local climate on land. Time series of the 
oceanic heat transport are more rare than time series 
of the meridional overturning circulation because 
they involve the product of temperature and veloc-
ity to be resolved across a trans-basin section where 

FIG. 3.23. Estimates of the MOC (Sv) in the Atlantic 
Ocean from the Argo/Altimetry estimate at 41°N 
(black; Willis 2010), the RAPID-WATCH/MOCHA/
WBTS 26°N array (red; Rayner et al. 2010), and the 
German/NOAA MOVE array at 16°N (blue; Send et al. 
2011). All time series have a three-month second-order 
butterworth low pass filter applied. Horizontal lines 
are the mean transport during similar time periods as 
listed in the corresponding text. Dashed lines are the 
trends for each series over the same time period. For 
the MOVE data the net zonal and vertical integral of 
the deep circulation represents the lower limb of the 
MOC (with a negative sign for the southward flow) and 
hence a stronger negative southward flow represents 
an increase in the MOC.
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total mass transport can be accounted for. This report 
includes MHT time series data from 26°N, 41°N, and 
35°S in the Atlantic Ocean.

The MHT at 26°N is based on the MOC array of 
moorings, cabled observations, and Argo profiling 
f loat data described in Johns et al. (2011); like the 
meridional overturning circulation estimates from 
this array (section 5h), the MHT reported this year 
has been updated to include new estimates from April 
2011 through October 2012. At 26°N the median 
MHT from April 2004 to October 2012 was 1.25 
±0.36 PW (1 PW = 1015 W; Fig. 3.24). The MHT time 
series follows the general variability of the MOC time 
series at this latitude. The total MHT is composed of 
the sum of temperature transports from the Florida 
Current (median 2.52 ±0.25 PW standard deviation), 
Ekman temperature transport (0.35 ±0.29 PW), and 
interior ocean temperature transport (−1.60 ±0.30 
PW). The annual median MHT shows a decrease in 
the MHT in 2009 and 2010 (including negative values 
in December 2010 for the 10-day low pass filtered 
data), which then returned to average values in 2011, 
reported for the first time in this report (Fig. 3.24). 
The MHT was fairly unremarkable in 2011 and 2012 
(Fig 3.24b), except in May and June 2012 when the 
transport was low for that time of year. For the full 
time series, the Ekman transport accounts for about 
60% of the variance of the MHT (0.77 correlation), 
while the Florida Current accounts for about 30% of 
the variance (0.55 correlation). Unlike the MOC, the 
interior circulation appears to play a lesser role in 
the variability overall; however, it can be a dominant 
factor during certain time periods (e.g., McCarthy et 
al. 2012). The MHT shows a statistically significant 
decrease of −0.3 ±0.25 PW decade-1 (95% confidence 
limits) from April 2004 to October 2012 (using the full 
8.5-year time series); however, this decrease is largely 
due to the lows in 2009 and 2010 and is likely a signal 
of interannual and decadal variability rather than a 
longer-term secular change.

At 35°S in the South Atlantic, MHT has been 
estimated using a combination of expendable bathy-
thermograph (XBT) data and Argo profiling floats 
(Garzoli et al. 2012; Dong et al. 2009). From July 
2002 to January 2014 the median of the MHT near 
35°S is 0.55 ±0.16 PW (±1 standard deviation; Fig. 
3.25). At 41°N the MHT was estimated by Hobbs 
and Willis (2012) using altimetry and Argo profiling 
float data. The median MHT near 41°N has not been 
updated since Baringer et al. (2013), and from Janu-
ary 2002 to September 2010 is 0.50 ±0.10 PW. There 
is no significant trend at 41°N or 35°S, −0.04 ±0.23 

PW and +0.12 ±0.12 PW, respectively (Fig. 3.25). 
The eddy-permitting global ECCO2 data synthesis 
(Menemenlis et al. 2005) follows nearly exactly the 
MHT at 41°N, while its average is too low at 26°N and 
35°S; however, the correlation is actually highest at 
26°N (correlation = 0.8). The state estimation is least 
correlated with observations at 35°S and has much 
larger variance in general. Overall, the heat trans-

FIG. 3.24. (a) Daily estimates at 26.5°N of the strength 
(×1015 W) of the meridional heat transport (blue line) 
and its associated temperature transport components, 
the Florida Current (green), wind-driven Ekman trans-
port (red), and the geostrophic interior (black), as 
measured by the UK National Environmental Research 
Council (NERC) Rapid Climate Change Program 
(RAPID-WATCH), the National Science Foundation’s 
Meridional Overturning and Heat transport Array pro-
posal, and the NOAA Western Boundary Time Series 
project (WBTS). The high frequency heat transports 
have a 10-day low pass filter applied to the daily values 
(Rayner et al. 2010), the smooth curve (heavy lines) 
represent 90-day low pass filtered data. The annual 
averages  of the transports for each year are shown in 
the associated color text. (b) MHT (×1015 W) from 2012 
(red), 2011 (dashed blue), and all other years (gray) 
plotted as a function of month . Thin horizontal dashed 
lines are annual mean values for 2012 (red), 2011 (blue), 
and all years (black ).
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port was fairly average in 2012. In 2013, near 35°S 
the MHT was larger than usual (with August 2013 
data falling higher than 97.5% of the other estimates 
at this latitude).

j. Sea level variability and change—
Thompson, E. Leuliette, R. S. Nerem, B. Hamlington, D. P. Chambers, 
G. T. Mitchum, K. McInnes, J. J. Marra, M. Menéndez, and W. Sweet
Global mean sea level (GMSL) continued to rise 

during 2013, on pace with a 20-year linear trend of 
3.2 mm yr-1 (Fig. 3.26a). A portion of this trend (0.5 
mm yr-1) has been attributed to natural variability 
associated with the Pacific decadal oscillation (PDO; 
Hamlington et al. 2013) as well as to ongoing contri-
butions from the melting of glaciers and ice sheets 
and ocean warming (Rhein et al. 2013). While inter-
annual variations in GMSL occur regularly, there is 
no evidence of a hiatus in sea-level rise as has been 
observed in the surface temperature record over the 
last decade (Trenberth and Fasullo 2013).

Interannual fluctuations in GMSL about the trend 
are largely linked to exchanges of water with the 
continents due to changes in precipitation patterns, 
including the pronounced minima of 2010–11 and 
maxima of 2012–13 (Boening et al. 2012; Fasullo et 
al. 2013). Over 2011–12, global mean sea level rose at 
~10 mm yr-1 as it recovered from the 2010–11 minima. 
This is also reflected in the changes in global mean 
ocean mass measured by satellite gravimetry (Fig. 
3.26a) and in global mean continental water storage 
(see section 2d6). The highest regional sea surface 
height (SSH) trends occur in the western equatorial 
Pacific with strong positive trends extending across 
northern Australia (White et al. 2014, manuscript 
submitted to Earth-Sci. Rev.) and associated weak to 
negative trends along the eastern boundary of the Pa-
cific (Fig. 3.26b). The regional sea level trend pattern 
is reflected in the Southern Oscillation and Pacific 
decadal oscillation indices in the Pacific (Merrifield 
et al. 2012; Zhang and Church 2012) and northern 
Australia (White et al. 2014, manuscript submitted 
to Earth-Sci. Rev.) and is a result of multidecadal 

FIG. 3.25. Observed time series of meridional heat 
transport (PW) at (a) 41°N (profiling floats), (b) 26°N 
(mooring/hydrography) and (c) 30°–35°S (XBTs) in the 
Atlantic compared to the monthly estimates from the 
ECCO2 state estimation (light blue line) and a 3-month 
low pass of ECCO2 data (blue line). In (a) the black line 
is the estimate MHT and the gray lines represents the 
error in the estimate (Hobbs and Willis 2012). In (b) the 
black line is the observed data filtered with a 3-month 
low pass filter and the gray lines are the underlying 
12-hourly data. In (c) the gray line is the quarterly es-
timated MHT from XBTs and the black line is a yearly 
boxcar filter to those quarterly estimates.

FIG. 3.26. (a) Global mean sea level (mm yr-1) and global 
mean ocean mass (ppm; seasonal variations removed, 
60-day smoothing applied). (b) Regional SSH trends 
(mm yr-1) 1993–2013.


