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rings that carry waters from the Southern Hemi-
sphere into the North Atlantic basin, exhibited an 
annual transport close to climatology and shed eight 
rings, a larger-than-average value (Goni and Johns 
2003). Sea height anomalies in the region, which 
have generally increased since 2001 (apart from the 
anomalous low years of 2003 and 2008), continued to 
exhibit higher-than-average values in 2013 (Fig. 3.20).

In the southwest Atlantic Ocean, the Brazil Cur-
rent carries waters from subtropical to subpolar 
regions. The separation of the Brazil Current front 
from the continental shelf break continued to ex-
hibit annual periodicity driven by wind stress curl 
variations (c.f., Goni and Wainer 2001). However, 
the annual mean separation of the front was at its 
average (1993–present) latitude after having exhibited 
extreme southward anomalies of up to 2° latitude 
during 2002‒11 (http://www.aoml.noaa.gov/phod 
/altimetry/cvar/mal/BM_anm.php). That southward 
shift was related to a multidecadal oscillation or 
was in response to a secular trend in South Atlantic 
temperatures (c.f., Lumpkin and Garzoli 2010; Goni 
et al. 2011).

h. Meridional overturning circulation observations in the 
North Atlantic Ocean—M. O. Baringer, G. McCarthy, J. Willis, 
M. Lankhorst, D. A. Smeed, U. Send, D. Rayner, W. E. Johns, C. S. 
Meinen, S. A. Cunningham, T. O. Kanzow, E. Frajka-Williams, and 
J. Marotzke
The ocean’s meridional overturning circulation 

(MOC) is the large-scale “conveyor belt” that re-
distributes heat, fresh water, carbon, and nutrients 
around the globe. Variability in the MOC domi-

nates the variability of transported properties (not 
variability in the properties themselves), and so the 
discussion here is focused on the mean and variability 
of the MOC. For discussion of the importance of the 
MOC and the state of understanding of this the reader 
is referred to previous State of the Climate reports 
(e.g., Baringer et al. 2013) and recent reviews such as 
Macdonald and Baringer (2013), Lozier (2012), and 
Srokosz et al. (2012). This section reports the results 
provided by three MOC observing systems in the 
North Atlantic at 16°N, 26°N, and 41°N.

As part of the 26°N system, the Florida Current 
(FC, as the Gulf Stream is called at this latitude) has 
been measured since 1982. Measurements continued 
through 2013; however, the computer recording sys-
tem failed twice, leading to two brief gaps in the time 
series during 28 October–4 November 2013 and dur-
ing 15 December 2013–3 January 2014. The median 
transport (from 1982 to 2013) of the Florida Current 
is 32.0 ±0.26 Sv (standard error of the mean based on 
an integral time scale of about 20 days) with an insig-
nificant downward trend of −0.25 ±0.28 Sv decade-1 
(errors using 95% significance with a decorrelation 
time scale of about 20 days). In 2013 the annual 
median was 31.7 ±1.7 Sv with the annually-averaged 
transport essentially equivalent to the long-term 
average; the 2013 median is within the middle 50% 
of all annual averages. The daily FC transport values 
as compared to all previous years (Fig. 3.21a) indicate 
that 2013 was unusual in that there were several low 
transport values (extremes defined as outside the 
95% confidence limits) during 8–14 March, 10–17 
October, and early December. The lowest transport 
observed (19.7 Sv) occurred on 11 March. This low 
value was the ninth lowest transport recorded since 
1982. During 2013 there was only one high transport 
event that exceeded the 95% confidence limits: during 
10–12 June the transport reached 40.2 Sv.

The RAPID-MOC/MOCHA/WBTS 26°N moor-
ing array continues to provide a twice-daily estimate 
of basin-wide MOC strength (Fig. 3.22) and is the 
most complete MOC existing observing system, 
measuring the full water column across the full basin 
and absolute transports in boundary currents (see 
Rayner et al. 2010 for details). McCarthy et al. (2012) 
noted statistically significant low MOC transport in 
the winter of 2009/10, showing that the low trans-
port was predominantly caused by both a decrease 
in the northward Ekman transport and particularly 
by an increase in the southward interior transport: 
the overturning weakened as the gyre strengthened. 
Downturns in the overturning circulation such as 

FIG. 3.20. Space-time diagram of de-seasoned sea 
height residual values (cm) along the NBC ring corridor 
during 2011–14. (Source: http://www.aoml.noaa.gov 
/phod/altimetry/cvar/nbc.)
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this have been shown to cool the subtropical North 
Atlantic (Cunningham et al. 2013). The MOC and 
interior transports data (INT) presented in Fig. 3.22 
extend the record reported last year from April 2011 
through October 2012, while FC and Ekman trans-
port data are available through 2013; MOC estimates 
based on mooring data require substantially more 
lead time because a ship is typically required to go 
to the site to retrieve the data. During this period 
there was significantly low MOC transport from 4 
May to 20 June 2012 (average MOC of 10.8 Sv vs. the 
long-term mean of 17.3 Sv). The FC contributes about 
the same reduction during this period as the Ekman 
transport (about −1.5 Sv), which is half the size of the 
interior transport contribution (about −3.2 Sv). It is 
the sum of the Ekman, Florida Current, and interior 
components that makes up the MOC at this latitude 
and the 2012 low transport shows a clear dominance 
of the interior transport changes driving low MOC 

values. The long-term trend of the MOC is −5.4 ±4.5 
Sv decade-1 (using 95% confidence assuming a 45-day 
decorrelation scale); this means there is 95% confi-
dence the decrease in the MOC is greater than 0.8 Sv 
decade-1. Smeed et al. (2014) examine in detail this 
downward trend in the MOC and note that the largest 
changes have occurred since 2008 (as can be readily 
seen from the annual averages noted on Fig. 3.22).

The 26°N array is not the only array estimating the 
strength of the MOC in the North Atlantic. At 41°N 
the MOC in the North Atlantic is being estimated 
using a combination of profiling Argo f loats (that 
measure the ocean temperature and salinity in the 
upper 2000 m on broad spatial scales) and altimetry 
derived surface velocity (see Willis and Fu 2008 for 
complete details). The data sources for this MOC 

FIG. 3.22. Daily estimates of the (a) strength (×106 m3 
s-1) of the meridional overturning circulation (blue line) 
and its components, the Florida Current (green), wind-
driven Ekman transport (red), and the geostrophic 
interior (black), as measured by the UK National En-
vironmental Research Council (NERC) Rapid Climate 
Change Program (RAPID-WATCH), the NSF's Meridi-
onal Overturning and Heat transport Array proposal, 
and the NOAA Western Boundary Time Series project 
(WBTS), and (b) Lower North Atlantic Deep Water 
(3000–5000-m depth; orange line) and Upper North 
Atlantic Deep Water (1100–3000-m depth; purple 
line). The volume transports have a 10-day low pass 
filter applied to the daily values (Rayner et al. 2010) 
and the annual averages of the transports for each year 
are shown in the associated color text (in Sv). 

FIG. 3.21. (a) Daily estimates of the transport (×106 m3 
s-1) of the Florida Current during 2013 (red solid line) 
compared to 2012 (dashed blue line). Daily values for 
years since 1982 are shown in light gray and the 95% 
confidence interval of daily transport values computed 
from all years is shown in solid black line; the long-term 
annual mean is dashed black. (b) Daily estimates of 
the Florida Current transport (×106 m3 s-1) for the full 
time series record (light gray), a smoothed version of 
transport (heavy black line; using a 12-month second-
order butterworth filter), the mean transport for the 
full record (dashed black) and the linear trend from 
1982 to present (dashed blue).
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estimate are available in near real-time and hence 
the time series has been extended from May 2012 
(reported last year) to October 2013 (Fig. 3.23). Fur-
thermore, near 16°N, the MOC is being estimated by 
a mooring array of inverted echo sounders, current 
meters, and dynamic height moorings that measure 
the deep circulation that is the southward flowing 
part of the MOC conveyor belt that sends North At-
lantic Deep Water towards the equator (see Send et 
al. 2011 for further details). For this report, the 16°N 
data has been updated from June 2011 to October 
2013, the date of the last cruise. The updated data 
from all three latitudes were 90-day low-pass filtered 
and plotted in Fig. 3.23. The mean MOC based on 
these estimates decreases to the north (22.8 Sv at 
16°N; 17.3 Sv at 26°N; 13.8 Sv at 41°N). Similarly, the 
variability decreases to the north (as described by the 
standard deviation: 4.2 Sv at 16°N; 3.4 Sv at 26°N; 2.9 
Sv at 41°N). All three time series have a seasonal cycle, 
which is most prominent at 26°N and 41°N (Fig. 3.23). 
There are different phases for each, with 41°N having 
a maximum MOC in May–July, 26°N having a broad 
maximum in July–November (Kanzow et al. 2010), 
and 16°N having a maximum southward flow (and 
hence stronger MOC) in November–January. Of note 

with the most recent data, the 16°N data has stronger 
southward flow, reaching filtered values above −34 
Sv; the new 26°N data is slightly lower than the long-
term average and the newest 41°N data is similar to 
the long-term average. Various authors have reported 
longer-term MOC trends ranging from zero (Willis 
2010 using the first seven years of data from 41°N) to a 
−3 Sv decade-1 decrease (Send et al. 2011 using the first 
9.5 years of data from 16°N), to the largest decrease 
of −5.4 Sv decade-1 (Smeed et al. 2014 using the first 
8.5 years of data from 26°N). Using the overlapping 
time period of these observations (2 April 2004 to 2 
October 2012) which includes more recent data than 
reported by Willis (2010) and Send et al. (2011), there 
is an insignificant trend in the MOC of −3.3 ±6.5 
Sv decade-1 at 41°N, while at 26°N there is a strong 
decrease in the MOC of −5.1 ±4.1 Sv decade-1 (using 
95% confidence limits; Fig. 3.23). However, at 16°N 
the deep southward flow has recently been increas-
ing, suggesting a possible increase of the MOC at 8.4 
±5.6 Sv decade-1. At 26°N where both the upper and 
deep southward f lows are measured, the decreas-
ing MOC is seen to be compensated by a reduction 
in the southward export of lower North Atlantic 
Deep Water (LNADW) in the depth range of 3‒5 
km (perhaps surprisingly there is no trend in export 
of upper North Atlantic Deep Water in the depth 
range 1.1‒3 km). The decrease in export of LNADW 
is 4.6 ±3.9 Sv decade-1 (Fig. 3.22b; Smeed et al. 2014). 
From the full time series from 41°N and 16°N, the 
MOC trends decrease, becoming insignificant (−0.9 
±4.6 Sv decade-1 at 41°N and −2.3 ±2.9 Sv decade-1 at 
16°N). At these time scales, there appears to be no 
consistent trend in the MOC at these latitudes. Note 
that statistically significant changes can be found us-
ing various subsets of these time series; however, the 
interpretation of any trend should consider regional, 
interannual, and decadal variability that may not be 
linked to longer-term trends.

i. Meridional oceanic heat transport in the Atlantic 
Ocean—M. O. Baringer, W. E. Johns, S. Garzoli, S. Dong, 
D. Volkov, and W. R. Hobbs
The meridional overturning circulation is re-

lated to the meridional heat transport (MHT) in the 
oceans, and the variability of MHT can impact heat 
storage, sea-level rise, and air-sea fluxes, and hence 
influence local climate on land. Time series of the 
oceanic heat transport are more rare than time series 
of the meridional overturning circulation because 
they involve the product of temperature and veloc-
ity to be resolved across a trans-basin section where 

FIG. 3.23. Estimates of the MOC (Sv) in the Atlantic 
Ocean from the Argo/Altimetry estimate at 41°N 
(black; Willis 2010), the RAPID-WATCH/MOCHA/
WBTS 26°N array (red; Rayner et al. 2010), and the 
German/NOAA MOVE array at 16°N (blue; Send et al. 
2011). All time series have a three-month second-order 
butterworth low pass filter applied. Horizontal lines 
are the mean transport during similar time periods as 
listed in the corresponding text. Dashed lines are the 
trends for each series over the same time period. For 
the MOVE data the net zonal and vertical integral of 
the deep circulation represents the lower limb of the 
MOC (with a negative sign for the southward flow) and 
hence a stronger negative southward flow represents 
an increase in the MOC.


