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Fig. 3.21. Mean speed of the Kuroshio current, 2010 
minus 2006 (top) and 2010 minus 2009 (bottom) from 
oscaR. Differences between 2010 and 2007–2008 (not 
shown) are similar.

basin, and were present across the basin in August–
September. Eastward anomalies persisted through the 
remainder of the year in the center of the basin, albeit 
with less organization than seen in late boreal summer. 

3) atlantic Ocean

In the tropical Atlantic, near-equatorial surface 
currents were anomalously westward in February–
April, with peak values of 20 cm s-1–40 cm s-1 east of 
30°W in mid-March, associated with anomalously 
cold SSTs of -0.5°C to -0.7°C at 12°W–18°W (the 
western half of the Atlantic cold tongue). Through 
boreal summer, equatorial current anomalies were less 
organized, although westward anomalies tended to 
dominate in the east-
ern half of the basin. In 
September, eastward 
anomalies began to de-
velop across the basin, 
reaching ~25 cm s-1 by 
mid-October. These 
eastward anomalies 
persisted through No-
vember and weakened 
through December.

The North Brazil 
Current (NBC) plays 

an important role the Atlantic Meridional Overturn-
ing Circulation by periodically shedding rings which 
transfer water of Southern Hemisphere origin to the 
Northern Hemisphere. In 2010, the NBC demonstrat-
ed extremely anomalous conditions, with very high 
values of annually-averaged sea height in the ring cor-
ridor region, superimposed on the higher-frequency 
sea height peaks of anticyclonic rings shed from the 
current (Fig. 3.22). Anomalies of this magnitude have 
not been seen previously in the altimeter time period 
(1993–present).

Against the east coast of South America, the 
southward-flowing warm, salty Brazil Current meets 
the northward flowing cold, fresh Malvinas Current 
to create the Confluence Front. The location of this 
front exhibits strong fluctuations at time scales from 
intraseasonal and seasonal to interannual and decadal 
(Goni and Wainer 20001; Lumpkin and Garzoli 2010). 
The front shifted south approximately 1° in latitude 
between late 1992 and 1998, while its annual-averaged 
position did not change significantly from 1998 to 
2009. In 2010 the annual mean location of the Conflu-
ence at the South American continental shelf break 
was 37.5°S, further north than has been seen since 
1997. The 1992–98 trend in the Confluence location 
may be part of a multidecadal oscillation related to 
surface temperature anomalies advected from the 
Indian Ocean into the Atlantic via the Agulhas-
Benguela pathway (Lumpkin and Garzoli 2010).

h. Meridional overturning circulation observations in the 
subtropical North Atlantic—M. o. Baringer, T. o. Kanzow, 
C. S. Meinen,

 
S. A. Cunningham, D. Rayner, W. E. Johns, H. L. 

Bryden, E. faika-Williams, J. J-M. Hirschi, M. P. Chidichimo, L. M. 
Beal, and J. Marotzke
The meridional redistribution of mass and heat 

associated with the large-scale vertical circulation 
within an ocean basin such as the Atlantic is typically 
called the meridional overturning circulation (MOC). 

Fig. 3.22. sea height residual (annual signal removed) from aVIso altimetry in 
the ring shedding corridor region of the north brazil current (nbc), 0°–15°n. 
Propagating high (red) signals indicate anticyclonic nbc rings. The longitude of the 
Windward Islands, which separates the atlantic from the caribbean, is indicated 
by a horizontal line. 
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The most common definition of the strength of the 
MOC is the maximum of the vertically integrated 
basin-wide stream function, which changes as a func-
tion of latitude and time and is influenced by many 
physical systems embedded within it. Substantial 
progress has been made on developing a coordinated 
observing system to begin to measure the MOC, 
through plans outlined at the international confer-
ence OceanObs’09 in September 2009 (e.g., Cunning-
ham et al. 2010; Rintoul et al. 2010) and subsequent 
planning workshops focused on expanding existing 
observations to include the subpolar North and South 
Atlantic (e.g., Garzoli et al. 2010). A small portion 
of the recommended observing system has been 
in place since April 2004 spanning the subtropical 
gyre in the North Atlantic near 26.5°N. The system 
is composed of UK-NERC RAPID MOC moorings, 
US-NSF Meridional Overturning Circulation Heat-
Transport Array (MOCHA), and the US-NOAA 
Western Boundary Time Series program (see also 
Chidichimo et al. 2010; Rayner et al. 2011). For the rest 
of the global ocean, changes in the complex, global 
MOC can also be inferred only from observations of 
individual components of the MOC (for example, a 
specific current or ocean layer; e.g., Dong et al. 2009), 
which are not discussed here.

The estimates of the MOC from the 26.5°N array 
include data from April 2004 to April 2009 (see also 
Kanzow et al. 2010). Over this time period the MOC 
has averaged 18.5 Sv with a high of 34.0 Sv, a low of 3.2 
Sv, and a standard deviation of 4.7 Sv [using the twice 
daily values filtered with a 10-day cutoff as described 
in Cunningham et al. (2007); note Sv is a Sverdrup, 
equal to 106 m3 s-1, a unit commonly used for ocean 
volume transports]. These data suggest no statisti-
cally significant trend in the strength of the MOC 
for this extremely temporally limited dataset (-0.8 
± 1.6 Sv decade-1, with 95% confidence limits). After 
five years of data, however, a clear seasonal signal 
is beginning to emerge (Fig. 3.23), with a low MOC 
in April and a high MOC in October with peak to 
trough range of 6.9 Sv. The MOC can be divided into 
three components: the northward western boundary 
Florida Current, the wind-driven Ekman transport, 
and the southward “interior” transport (upper ocean 
geostrophic flow between the Bahamas and Africa). 
The seasonal cycle of the MOC appears to be largely 
attributable to seasonal variability in the interior 
rather than Ekman or Florida Current fluctuations; 
Kanzow et al. (2010) show that the interior seasonal 
cycle is likely due to seasonal upwelling through a 
direct wind-driven response off Africa. Of note is 

that all the MOC transport values estimated from five 
repeated CTD (Conductivity, Temperature, Depth) 
sections by Bryden et al. (2005) can be found within 
the seasonal range of the MOC time series (values 
ranged from 22.9 Sv in 1957 to 14.8 Sv in 2004). In 
fact, Kanzow et al. (2010) demonstrated that remov-
ing the seasonal cycle estimates from Bryden et al. 
would effectively eliminate a statistically significant 
trend in the transport. 

These results do not disprove the presence of a 
long-term trend in the strength of the MOC [e.g., 
Longworth et al. (2011) and Wunsch and Heimbach 
(2006) both found significant long-term decreases 
in the MOC], but they do suggest that a careful error 
analysis must be performed that includes the impact 
of the underlying higher-frequency variability of the 
MOC on trend estimates (see also Baehr 2010; Baehr 
et al. 2008; Brennan et al. 2008). Other recent stud-
ies of the MOC trend are contradictory, with some 
reporting a decrease in the MOC [e.g., Wunsch and 
Heimbach (2006), using data assimilating models; 
Longworth et al. (2011), using end-point hydro-

Fig. 3.23. Daily estimates of the strength of the me-
ridional overturning circulation (Moc: blue line) and 
its components, the Florida current (Gs: green), 
wind-driven ekman transport (ek: red) and the geo-
strophic interior (Int: black), as measured by the UK 
national environmental Research council (neRc) 
Rapid climate change Program, the national science 
Foundation Meridional overturning and Heat Trans-
port array, and the long-term noaa funded Western 
boundary Time series Program. The interior volume 
transport estimate (accurate to 1 sv, cunningham 
et al. 2007) is based on the upper ocean transport 
from april 2004 to april 2009 (see also Kanzow et 
al. 2010), with a ten-day low pass filter applied to the 
daily transport values. smooth curves are the annual 
climatology of each component estimates from the 
full five years of data.
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graphic observations following the 26°N mooring 
design principles] while others suggest no change or 
even an increase [e.g., Lumpkin et al. (2008), using hy-
drographic sections]. Some estimates showing an in-
crease (C. Wang et al. 2010) and no trend (e.g., Schott 
et al. 2009) did not include basin-wide estimates of 
the MOC. Clearly, while disagreement remains over 
the details of findings from any particular observing 
systems (e.g., Kanzow et al. 2009), agreement exists 
that longer time series at multiple locations, particu-
larly of the deep transport components, are needed 
(e.g., Zhang et al. 2010; Zhang 2008). New efforts are 
focusing on the use of state estimation models and 
“fingerprints” of other readily observed variables 
linked to changes in the MOC (e.g., Msadek et al. 
2010; Lorbacher et al. 2010; Baehr 2010). Trends in 
the MOC can also be determined through proxies of 
the MOC strength, such as paleo observations (e.g., 
Y. Luo et al. 2010), tracers (e.g., Nelson et al. 2010; 
LeBel et al. 2008) and water mass characteristic (e.g. 
Kouketsu et al. 2009; Zhang 2008). For example, 
temperature and salinity observations in the Labrador 
Sea showed an abrupt return of deep convection be-
tween 2007 and 2008 (Våge 2009). Using water mass 
properties, Yashayaev and Loder (2009) showed that 
the enhanced deep convection in the Labrador Sea 
in the winter of 2008 was the deepest since 1994 and 
included the largest heat loss from the ocean to the 
atmosphere since the mid-1990s, exceeding the long 
term mean by 50%. Such anomalous local events may 
be a precursor to changes in the MOC strength (e.g., 
Lohmann et al. 2009). 

One of the main contributions to the MOC esti-
mate near 26.5°N is the Florida Current transport, the 
longest transport time series of an ocean circulation 
feature directly linked to the MOC. Near this latitude 
in the Atlantic, the bulk of the warm upper limb of the 
Atlantic MOC is thought to be carried to the north 
in the Florida Current through the Straits of Florida 
and the majority of the cold lower limb is believed to 
be carried to the south in the Deep Western Bound-
ary Current (DWBC) just east of the Bahamas (e.g., 
Meinen et al. 2010; Baringer and Larsen 2001). Since 
1982, Florida Current transport has been monitored 
using a submarine cable across the Straits of Florida in 
combination with regular hydrographic sections. In 
2010, the mean transport through the Florida Straits 
continued the decrease over the past four years to 
30.7 ± 1.5 Sv (95% confidence limits), lower than the 
2009 31.3 ± 1.2 Sv, 2008 31.7 ± 2.2 Sv , and 2007 32.1 
± 1.0 Sv mean transports (error bars represent stan-
dard error of daily values using degrees of freedom 

calculated for each year, representing a typical deco-
rrelation time scale of around 20 days). The annual 
mean of 2010 falls within the lowest quartile of mean 
annual values (32 ± 0.14 Sv). Note that while recently 
the annual means appear to have decreased (trend 
of -0.88 ± 0.85 Sv decade-1 from April 2004 to April 
2009, 95% significance), there is only a very small 
significant long-term trend to the Florida Current 
transport (Fig 3.24; trend for full time series is -0.14 
± 0.06 Sv per decade). 

The daily f luctuations of the Florida Current 
transport throughout the year are fairly similar to 
2009 and generally fall within 90% confidence levels 
(Fig. 3.24). There were, however, a few unusual low 
transport events during the year (Fig. 3.24; the most 
significant or occurring over three-day or more 

Fig. 3.24. (top) Daily estimates of the transport of the 
Florida current during 2010 (red solid line) compared 
to 2009 (dashed blue line). The daily values of the 
Florida current transport for other years since 1982 
are shown in light gray and the 90% confidence inter-
val of daily transport values computed from all years 
is shown in black (solid line); the long-term annual 
mean is dashed black. The mean transport in 2010 of 
30.7 ± 1.5 sv decreased for the fourth year in a row, 
below the long-term mean for the daily values of the 
Florida current transport (32.2 sv). (bottom) Daily 
estimates of the Florida current transport for the full 
time series record (light gray), a smoothed version 
of transport (heavy black line; using a 30-day running 
mean six times) and the mean transport for the full 
record (dashed black).
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events during 25–27 May, 5–9 October, 15–17 Octo-
ber, 15-17 November, and 8–10 December with values 
as low as 19.8 Sv). In comparison, only the transport 
on 24 August was higher than the 90% confidence 
range, with a daily average transport of 38.5 Sv. Due 
to the fact that these events were relatively short-lived, 
it is likely they are local responses to atmospheric 
forcing and coastally trapped wave processes and are 
not particularly indicative of a climatically impor-
tant shift (e.g., Mooers et al. 2005). These transient 
f luctuations can have important environmental 
consequences. As examples, in the summer of 2009, 
the East Coast of the United States experienced a high 
sea-level event that was unusual due to its unexpected 
timing, large geographic scope, and coastal flooding 
that was not associated with any storms (Sweet et al. 
2009). Sweet et al. (2009) showed that this anomalous 
event was related to the anomalously low Florida Cur-
rent transport: a reduced Florida Current transport 
corresponds to a lower sea surface height gradient 
across the front and hence higher sea level onshore. 
In 2010, the low transport events could reasonably be 
inferred to have influenced sea level along the eastern 
U.S.; as of this report no relationship has been docu-
mented. For longer time scales, the same mechanical 
effect due to a reduction in ocean currents causes 
sea-level changes associated with geostrophy; Yin 
et al. (2010) showed that the dynamical response to 
MOC reductions associated with 
carbon dioxide (CO2) emission 
scenarios would lead to approxi-
mately 20 cm rise in regional 
sea-level along the East Coast 
of the U.S. due to this sort of 
circulation change alone. Yin et 
al (2010) suggest that this region 
may be in greater jeopardy from 
regional effects of ocean circula-
tion changes on top of the global 
mean sea-level rise predicted by 
climate models. 

i. Sea level variations—M. Merrifield, 
G. Mitchum, E. Leuliette, D. Chambers, 
S. Nerem, P. Woodworth, S. Holgate, L. 
Miller, and S. Gill 
Sea surface height (SSH) vari-

ations exhibited weak-to-mod-
erate amplitudes during 2010, 
with the most evident patterns 
associated with a transition from 
a weak La Niña during most of 

2009 to a weak El Niño (in terms of sea level) that 
peaked in late 2009 to early 2010 (Fig. 3.25a), return-
ing to La Niña conditions during the remainder of 
2010. In the annual mean SSH for 2010 (Fig. 3.26a), 
this sequence of events led to a dominant La Niña 
pattern in the tropical Pacific, consisting of low SSH 
anomalies (relative to a 1993–2010 baseline) in the 
central equatorial region and high SSH anomalies 
in the western tropical Pacific, particularly north of 
the Equator. SSH anomalies in other regions of the 
ocean that stand out in 2010 (relative to the 1993–2010 
mean) include negative anomalies in the Southern 
Ocean to the west of South America, negative anoma-
lies in the North Atlantic, and positive anomalies in 
the northwest Pacific with negative anomalies farther 
east (Fig. 3.26a). 

The SSH tendency during 2010 is measured by 
the difference between the 2010 and 2009 annual 
means (Fig. 3.26b). The tendency in the tropical Pa-
cific reflects the transition from El Niño to La Niña 
conditions, with falling SSH in the central equatorial 
Pacific and in the South Pacific Convergence Zone 
region. Other SSH tendencies of note during 2010 
include negative changes in the North Pacific in the 
region of the Aleutian Low, with positive coastal 
sea level anomalies along Alaska and Canada. A 
similar pattern arises with falling SSH in the North 
Atlantic, with positive sea level anomalies along the 

Fig. 3.25. seasonal ssH anomalies (cm) for 2010 relative to the 1993–2010 
baseline average are obtained using the multimission gridded sea surface 
height altimeter product produced by ssalto/Duacs and distributed by 
aVIso, with support from cnes (http://www.aviso.oceanobs.com). 




