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where ozone columns were largely below average 
(Plate 2.1q). The strong negative anomalies at high
Southern Hemisphere latitudes reflect the large Ant-
arctic ozone hole observed in September–December, 
whose size reached maximum values that were near 
the all-time record high (see section 6h).

In Fig. 2.46 the total ozone annual means from 
different data sources are shown for 1970–2015 in
various zonal bands: near-global (60°S–60°N), mid-
latitudes in both hemispheres (35°–60°), and the inner
tropics (20°S–20°N). Also shown are the polar time 
series in March (Northern Hemisphere, 60°–90°N)
and October (Southern Hemisphere, 60°–90°S), the 
months when polar ozone losses are largest in each 
hemisphere. Poleward of 60°S, a record low October 
mean was observed (Fig. 2.46e). Weaker-than-usual 
dynamical wave activity in the Southern Hemisphere 
winter diminished transport from the tropics, reduc-
ing ozone at Southern Hemisphere midlatitudes and 
in the collar region of the polar vortex, and permitting
a very stable and cold polar vortex. The high vortex 
stability and low temperatures resulted in larger-than-
usual polar ozone losses and a near-record ozone hole 
in terms of size and persistence. Ozone annual mean 
columns at mid- to polar latitudes (35°–90°) in each 
hemisphere are largely determined by winter/spring 
ozone levels. These vary considerably with changes 
in stratospheric meteorological conditions (e.g.,
Steinbrecht et al. 2011; Weber et al. 2011; Kuttippurath 
et al. 2015). The year-to-year variability seen in all
ozone time series also reflects quasi-biennial oscil-
lation (QBO)-related variations extending from the
tropics into the extratropics (Randel and Wu 1996; 
Strahan et al. 2015).

It is clear that the Montreal Protocol and its 
Amendments have been successful in stopping the
multidecadal decline in stratospheric ozone by the
late 1990s (WMO 2011). However, at most latitudes, 
it has not yet been possible to determine a statisti-
cally significant increase in total column ozone or
lower stratosphere ozone because the expected small 
increases are masked by large interannual variability 
(e.g., Chehade et al. 2014; Coldewey-Egbers et al. 
2014; Frith et al. 2014; Kuttippurath et al. 2015; Nair 

Fig. 2.46. Time series of annual mean total ozone in (a–d) four zonal bands and (e) polar (60°–90°) total 
ozone in Mar (Northern Hemisphere) and Oct (Southern Hemisphere). Data are from WOUDC ground-
based measurements combining Brewer, Dobson, SAOZ, and filter spectrometer data (red: Fioletov 
et al. 2002, 2008); the BUV/SBUV/SBUV2 V8.6 merged products from NASA (MOD V8.6, dark blue, 
Chiou et al. 2014; Frith et al. 2014) and NOAA (light blue, Wild et al. 2012); the GOME/SCIAMACHY/
GOME-2 products GSG from University of Bremen (dark green, Weber et al. 2011) and GTO from ESA/
DLR (light green, Coldewey-Egbers et al. 2015); and the MSR V2 assimilated dataset extended with 
GOME-2 data (van der A et al. 2015). WOUDC values for 2015 are preliminary because not all ground 
station data were available in early 2016.
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et al. 2015; de Laat et al. 2015). The 2015 total ozone 
columns in Fig. 2.46 are consistent with this overall 
picture and lie within the expected usual variations.

In the tropics, no discernible long-term trends in 
total column ozone have been observed for the entire 
1970–2015 period (see Fig. 2.46). Ozone trends in the 
tropical lower stratosphere are mainly determined by 
tropical upwelling (related to changes in sea surface 
temperature). In a changing climate it is expected 
that tropical upwelling will increase and thus ozone 
will continue to decline (Zubov et al. 2013; WMO 
2014). However, there is some evidence of a hiatus in 
tropical upwelling trends and corresponding lower
stratospheric ozone trends during the last decade
(Aschmann et al. 2014). Because tropospheric ozone 
contributes to the total ozone columns, trends in
total ozone, despite major contributions from the 
lower stratosphere, may differ from trends in lower 
stratospheric ozone (Shepherd et al. 2014).

The most recent ozone assessment (WMO 2014) 
and studies (Nair et al. 2015; Harris et al. 2015) 
indicate that the clearest signs of significant ozone
increases should occur in the upper stratosphere 
(2%–4% decade−1 at ~2 hPa or 40 km; see Fig. 2.47). 
However, there still are uncertainties associated 
with the various available data records and with the 
proper interpretation of statistical approaches used 
to derive and attribute trends (e.g., Nair et al. 2015; 
Kuttippurath et al. 2015; Harris et al. 2015). This is 
reflected in the updated Stratospheric Aerosol and
Gas Experiment (SAGE)–Optical Spectrograph and 
Infrared Imager System (OSIRIS) record, which now 
better accounts for tangent altitude drifts, and in the 
updated Solar Backscatter Ultraviolet (SBUV) data
from NOAA with improved inter-satellite adjust-
ments. Overall, the 2015 annual means in Fig. 2.47
support the claim of recent increases in upper strato-
spheric, extra-polar ozone. These suggest the Mon-
treal Protocol has successfully turned the previous 
downward trend in ozone into an ozone increase, at 
least in the upper stratosphere.

5) Str atoSpher ic water vapor— S .  M .  Dav i s ,  
K. H. Rosenlof, D. F. Hurst, and H. B. Selkirk

Variations in stratospheric water vapor (SWV) 
over interannual-to-decadal timescales have the
potential to affect stratospheric ozone (Dvortsov 
and Solomon 2001) and surface climate (Solomon
et al. 2010). Throughout the first 10 months of 2015, 
water vapor mixing ratios in the tropical lowermost 
stratosphere were within 10% (0.4 ppm, μmol mol−1) 
of the previous decade’s average. Then, starting
in November and continuing through December, 

tropical lowermost SWV increased to near-record 
levels, especially over the tropical western Pacific and
Indian Ocean regions. The deep tropical-averaged 
(15°S–15°N) SWV anomaly at 82 hPa, based on data 
from the Aura Microwave Limb Sounder (MLS), was 
+0.7 ppm (+17%) in November and +0.9 ppm (+24%) 
in December. These values are in stark contrast to 
the weak negative (dry) tropical average anomalies
of about −0.2 ppm (−6%) in November–December 
2014 (Figs. 2.48, 2.49). Since the MLS record began in
August 2004, the November–December 2015 anoma-
lies at 82 hPa are surpassed only by +0.9 ppm (+25%) 
deep tropical anomalies in February–March 2011. 
The +0.7 ppm (+19%) average deep tropical anomaly 
at 100 hPa in November–December 2015 is the high-

Fig. 2.47. Annual mean ozone anomalies at 2 hPa 
(~40 km, upper stratosphere) in three zonal bands. 
Data are from the merged SAGE II/OSIRIS (Bourassa 
et al. 2014) and GOZCARDS (Froidevaux et al. 
2015) records and from the BUV/SBUV/SBUV2 v8.6 
merged products from NASA (McPeters et al. 2013; 
Frith et al. 2014) and NOAA (Wild et al. 2012) (base 
period: 1998–2008). The orange curves represent 
EESC (effective equivalent stratospheric chlorine), 
scaled to reflect the expected ozone variation due 
to stratospheric halogens. Data points for 2015 are 
preliminary, because SAGE-OSIRIS data were not 
yet available after July 2015, and adjusted SBUV2 
v8.0 data are used after July 2015 instead of v8.6 data, 
which are not available in early 2016.
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est ever observed by MLS at that pressure level. The 
change in tropical lower SWV from December 2014 
to December 2015 was +1.1 ppm, ~50% of the typi-
cal seasonal mixing ratio amplitude at 82 hPa in the 
tropics. Strong water vapor increases in the tropical 
lower stratosphere at the end of 2015 were also ob-
served at Hilo, Hawaii (20°N), and San José, Costa
Rica (10°N), by balloonborne frost point hygrometers 
(Figs. 2.50b,c).

The seasonal variability of water vapor in the 
tropical lower stratosphere is predominantly con-
trolled by the annual cycle of cold-point temperatures 
(CPTs) in the tropical tropopause layer (TTL). These 
minimum temperatures determine the amounts of 
water vapor that remain as moist tropospheric air
masses are freeze-dried during their slow ascent into 
the stratosphere. Seasonal-to-interannual variations 
in tropical lower SWV are highly correlated with CPT 

variations in the TTL. The dramatic increase in tropi-
cal lower SWV at the end of 2015 is consistent with 
the observed ~1°C increase in tropical CPTs over the 
same period (Fig. 2.50c).

Interannual variations in CPTs are potentially re-
lated to the changing phases of the El Niño–Southern
Oscillation (ENSO) and the stratospheric quasi-bien-
nial oscillation (QBO). In October, the QBO phase
transitioned from easterly (cold) to westerly (warm) 
and persisted in the westerly phase through the end 
of 2015 (see sections 2b3, 2e3). The evolution towards
a warmer TTL and wetter tropical lower stratosphere
at the end of 2015 is consistent with this reversal of 
the QBO phase. Regionally, the enhancement of SWV
in the tropical western Pacific and Indian Ocean 
regions is consistent with the adiabatic response of
the TTL to reduced convection in this region as a 
result of the El Niño conditions present during 2015. 
Other factors such as variations in the strength of the 
Brewer–Dobson circulation can also impact SWV
anomalies on an interannual timescale. However, 
given the potential interrelationships between ENSO,
QBO, and the Brewer–Dobson circulation, a rigorous 
attribution of the positive SWV anomalies present at 
the end of 2015 is not possible.

Fig. 2.48. (a) Vertical profiles of MLS tropical (15°S–
15°N) water vapor anomalies (μmol mol−1) and (b) 
latitudinal distributions of MLS water vapor anoma-
lies (μmol mol−1) at 82 hPa. Anomalies are differences 
from the 2004–15 mean water vapor mixing ratios 
for each month.

Fig. 2.49. Global stratospheric water vapor anomalies 
(μmol mol−1) centered on 82 hPa in (a) Dec 2014 and 
(b) Dec 2015 from the Aura Microwave Limb Sounder. 
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Anomalies in tropical lower SWV propagate from
the tropics to the midlatitudes of both hemispheres, 
as is visually demonstrated by the many “C”-shaped 
contours in Fig. 2.48b. The late 2015 wet anomaly 
in tropical lower SWV (Figs. 2.48b, 2.50c) was just
starting to reach the midlatitudes of each hemisphere 
at the end of 2015.

During 2015, SWV anomalies over Lauder, New 
Zealand, were close to zero or slightly positive
(Fig. 2.50d). These are consistent with the poleward 
transport of weak dry tropical SWV anomalies pres-
ent at the end of 2014 and early 2015 (Fig. 2.49a), and 

the 2014 Antarctic vortex being anomalously weak, 
warm, and less dehydrated (Davis et al. 2015; see sec-
tions 2b3 and 6h). In general, Southern Hemisphere 
midlatitude SWV can vary interannually with the
degree of seasonal dehydration within the Antarctic 
vortex and the strength of the poleward transport of 
dehydrated air masses (Fig. 2.48b). Indeed, the 2015 
Antarctic vortex was particularly strong (see section 
6h), as evidenced by the appearance of a −0.5 ppm 
anomaly in the high southern latitudes near the end 
of 2015 (Fig. 2.48b).

6) tropoSpheric ozone—J. R. Ziemke and O. R. Cooper
Two of the most important reasons to monitor tro-

pospheric ozone are that it is a surface pollutant with 
harmful biological effects and is a greenhouse gas that
affects long-term climate change. Tropospheric ozone 
is also the primary source of the hydroxyl radical
(OH), the main oxidizing agent for pollutants in the 
troposphere. Sources of tropospheric ozone include 
transport from the stratosphere, photochemical 
production from lightning NOx, and photochemi-
cal production from precursor gases emitted by the 
combustion of fossil fuels, biofuels, and biomass (e.g.,
Sauvage et al. 2007; Martin et al. 2007; Leung et al. 
2007; Murray et al. 2013; Hess and Zbinden 2013;
Young et al. 2013).

The variability of tropospheric ozone, from urban
to hemispheric scales, is driven by a combination of 
photochemical ozone production and atmospheric
transport. Tropospheric ozone production varies 
because its precursor gases and sunlight are vari-
able. Transport phenomena that drive large-scale 
variability include ENSO (e.g., Chandra et al. 1998, 
2009; Sudo and Takahashi 2001; Doherty et al. 2006; 
Koumoutsaris et al. 2008; Voulgarakis et al. 2011)
and the Madden–Julian oscillation (MJO: Sun et al. 
2014). Small- to large-scale tropospheric ozone vari-
ability also occurs over shorter periods, including 
weekly baroclinic timescales (e.g., Ziemke et al. 2015,
and references therein), and finer scale airstream 
transport on the order of hours to days. Changes in 
tropospheric ozone at hemispheric and global scales 
include decadal trends (e.g., Hess and Zbinden 2013; 
Cooper et al. 2014; Lin et al. 2014; Parrish et al. 2014).

Global maps of annual means and anomalies of
tropospheric column ozone from the satellite-based 
Ozone Monitoring Instrument (OMI) and MLS for 
2015 are shown in Fig. 2.51 and Plate 2.1u, respective-
ly. As in previous reports, OMI/MLS ozone trends are
calculated only for latitudes 60°S–60°N where there is
full annual coverage by OMI. In 2015, as for the last 
decade, annual average tropospheric column ozone 

Fig. 2.50. Lower stratospheric water vapor anomalies 
(μmol mol−1) at 82 hPa over four balloonborne frost 
point (FP) hygrometer stations. (a)–(d) show the 
anomalies of individual FP soundings (black) and of
monthly zonal averages of MLS retrievals in the 5° 
latitude band containing the FP station (red). High-
resolution FP vertical profile data were averaged be-
tween 70 and 100 hPa to emulate the MLS averaging 
kernel for 82 hPa. Each MLS monthly zonal mean was 
determined from 2000 to 3000 profiles. Tropical cold-
point temperature anomalies based on the MERRA re-
analysis [(c), blue curve] are generally well correlated 
with the tropical lower SWV anomalies.
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amounts in the Northern Hemisphere exceeded those 
in the Southern Hemisphere. Some basic features
of tropospheric column ozone include strong topo-
graphical effects, such as greatly reduced amounts
over the Tibetan Plateau and the western U.S. Rocky 
Mountain region, with much larger amounts east and
west of these regions over both land and ocean. The 
greatest annual mean tropospheric column values
were observed over the Mediterranean–South Asian 
region and from eastern China eastward toward
North America. In the tropics, the west-to-east zonal 
wave-1 pattern (Fishman et al. 1990) is evident, with 
high values over the Atlantic and low values over the 
Pacific. An extended band of high ozone was present 
at 30°S, with the greatest amounts between southern 
Africa and Australia. Zonally-averaged tropospheric
column averages and their 95% confidence intervals 
for 2015 were 30.7 ± 2.2 DU for 60°S–60°N, 32.1 ±
2.6 DU for 0°–60°N, and 29.4 ± 1.9 DU for 0°–60°S. 
These column averages convert to tropospheric bur-
dens of 291.2 ± 20.9, 152.1 ± 12.3, and 139.1 ± 9.0 Tg, 
(Tg = 1012 g), respectively. For comparison, the tro-
pospheric column averages for 2005–15 for the three 
regions were 29.5 ± 2.1, 30.7 ± 2.5, and 28.2 ± 2.2 DU 
(279.0 ± 19.9, 145.4 ± 11.8, and 133.6 ± 10.4 Tg).

The 2015 average tropospheric ozone burdens for 
each hemisphere and the globe were greater than 
those in 2014, and 12-month running averages of each
show steady increases since October 2004 (Fig. 2.52). 
Linear trends (in Tg yr−1) with their ± 2σ statistical 
uncertainties are also given. The increasing trends in 
OMI/MLS tropospheric column ozone are statisti-
cally significant for both hemispheric means and the 
near-global mean. Relative to the average burdens for
2005–15 the three trends all depict increases of 0.8% 

yr−1. The combined OMI/MLS record now exceeds
11 years and the measured increases are becoming 
more indicative of true long-term trends, building on
similar findings from previous reports.

Cooper and Ziemke (2013) reported surface ozone
increasing since 1990 over eastern Asia and the west-
ern United States, but decreasing over the eastern
United States, using measurements by ground- and 
satellite-based instruments. Cooper and Ziemke
(2014) presented a time series of near-global (60°S–
60°N) tropospheric burdens determined from satellite
measurements that indicated a statistically significant 
increase over 2005–13 and Cooper and Ziemke (2015)
showed that the increase in global tropospheric ozone 
continued through 2014.

For the past two years, the State of the Climate
tropospheric ozone summary was based upon only
the OMI/MLS satellite measurements (Ziemke et 
al. 2006) due to insufficient updated analyses of
the ground-based measurement network data since 
2012. Updates of the surface ozone data and trends 
have continued to be infrequent during 2015, so once 
again only the OMI/MLS satellite data are used. One 
significant change from previous reports is the use of 
new MLS version 4.2 ozone retrievals. A new activity
of the International Global Atmospheric Chemistry 
(IGAC) project began in earnest in 2015 to produce 
a Tropospheric Ozone Assessment Report (TOAR). 
The TOAR is expected to be completed by the end
of 2016 and will summarize the global distribution 

Fig. 2.51. Average OMI/MLS tropospheric ozone col-
umn ozone for 2015. Data poleward of ±60° are not 
shown due to the inability of OMI to measure ozone 
during polar night. 

Fig. 2.52. Monthly averages of OMI/MLS tropo-
spheric ozone burdens (Tg) from Oct 2004 through 
Dec 2015. The top curve (black) shows 60°S–60°N 
monthly averages with 12-month running means. 
The bottom two curves show monthly averages and 
running means for the Northern Hemisphere (red) 
and Southern Hemisphere (blue). Slopes of linear fits 
(Tg yr-1) of all three curves are also listed along with 
their ±2σ statistical uncertainties.
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