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Abstract. The seasonal variability of surface layer salinity
(SLS) is examined in the Pacific Ocean between 40◦ S and
60◦ N using a variety of data sources. Significant seasonal
cycles were found in 5 regions: 1) The western North Pacific,
2) The northeastern North Pacific and Alaska gyre, 3) the in-
tertropical convergence zone (ITCZ), 4) an area of the central
North Pacific north of the Hawaiian Islands, 5) the central
South Pacific along 10–20◦ S. Amplitudes range from 0.1 to
> 0.5. The largest amplitudes are in the tropical band and
the western North Pacific. Maximum salinity is obtained in
late (northern) winter in the western North Pacific, late win-
ter and early spring in the northeastern North Pacific, early
summer in the ITCZ area, late summer and early fall in the
central North Pacific area and (austral) winter in the central
South Pacific. Large areas of the Pacific have no significant
seasonal variation in SLS.

Seasonal variability of evaporation rate, precipitation
rate and the difference between them (E-P) were calcu-
lated from the OAFlux and Global Precipitation Climatol-
ogy Project datasets. Typical amplitudes of E-P are 0.1–
1× 10−4 kg m−2 s−1. The seasonal variability of E-P is
largely dominated by variability in evaporation in the west-
ern North Pacific and precipitation elsewhere. The largest
amplitudes are in areas along the edge of the western North
Pacific and in the far eastern tropical Pacific around 10◦ N.
Phases in these areas indicate maximum E-P in mid- to late
winter in these areas of large amplitude. The closest cor-
respondence between E-P and SLS is in the ITCZ. E-P was
combined with seasonal variation of the mixed-layer depth to
calculate the freshwater flux forcing term of the SLS balance
equation. The term was found to be similar in magnitude
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and distribution to E-P. Some other terms of the SLS balance
were calculated. Horizontal advection was found to have sea-
sonal cycles in a region near the equator. Entrainment was
found to be mostly not significant except for a small region
along 2.5–7.5◦ N in the eastern Pacific.

Averaged spatially over large areas in the western North
Pacific, ITCZ, South Pacific and northern North Pacific, the
seasonal cycle is mostly a balance between changes in SLS
and E-P, with entrainment and advection playing relatively
minor roles.

This work highlights the potentially significant role of sur-
face salinity in the hydrologic cycle and in subtropical mode
water formation. It can also help to interpret measurements
that will soon be available from the Aquarius and SMOS
(Soil Moisture and Ocean Salinity) satellite missions.

1 Introduction

It has long been understood that the ocean outside the trop-
ics undergoes a seasonal cycle in surface temperature, get-
ting warmer in summer/fall and cooler in winter/spring. The
reasons for this are obvious, with a strong seasonal signal
in solar radiation. Seasonal changes in surface layer salinity
(SLS) over the open ocean are much less well understood.
SLS in the ocean is affected by evaporation, precipitation,
entrainment, advection and mixing (Delcroix et al., 1996).
Any one of these components might be expected to have sea-
sonal variability, especially precipitation or evaporation. We
would most expect to see seasonal signals in SLS in areas that
have seasonal signals in evaporation and precipitation, such
as areas of mode water formation and near zones of season-
ally varying rainfall like the intertropical convergence zone
(ITCZ).
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The mode water formation process has been described in
a number of places (e.g. Hanawa and Talley, 2001). It is
thought to be largely a result of evaporative cooling and
thickening of the surface mixed layer in wintertime. Evap-
oration leads not only to cooling, but also to salinification,
which in turn leads to increased density. To understand mode
water formation it is therefore important to assess the roles
of both temperature and salinity. Quantifying the seasonal
cycle of salinity in mode water formation regions can help
to clarify the role played by salinity and evaporation in the
mode water formation process.

In the near future, two satellite missions, Aquarius (Lager-
loef et al., 2008) and SMOS (Soil Moisture and Ocean Salin-
ity; Berger et al., 2002) will begin to measure surface salin-
ity from space. (As of this writing, SMOS has successfully
launched and is beginning to return data.) To better under-
stand satellite retrievals, it will be necessary to know the sea-
sonal cycle of surface salinity as these will be among the ear-
liest signals to emerge from the satellite datasets. Areas with
strong seasonal variability are good candidates for intensive
calibration and validation activities for the missions.

The seasonal variability of SLS has been most intensively
studied in the tropical Pacific (e.g. Delcroix et al., 1996; Del-
croix and Henin, 1991, henceforth DH91; Delcroix et al.,
2005). DH91 looked at seasonal variability averaged from
bucket data along a series of volunteer observing ship tracks
in the tropical Pacific. They found maximum variability in
the ITCZ in the Northern Hemisphere and along 8–10◦ S in
the Southern Hemisphere, with SSS minima in September–
October and March–April, respectively. The method they
used to determine the seasonal cycles was to find the stan-
dard deviation for each month away from the mean yearly
values for a particular latitude. The maximum standard devi-
ations they found were 0.13–0.38 increasing in size and lati-
tude from west to east. They calculated the seasonal cycles of
precipitation for each of the lines to understand the relation-
ship between rainfall and SSS. They found, as expected, that
the maximum in precipitation in the South Pacific and ITCZ
led the minimum in SLS by three months, leading them to
conclude that the seasonal cycle in those areas was largely
driven by precipitation. There was a strong maximum in the
seasonal cycle along their eastern track north of the equator,
near 90◦ W. They attributed this maximum to a combination
of precipitation, evaporation and horizontal and vertical ad-
vection of salt. In examining the role of advection of salt in
the seasonal SSS budget, they concluded that there was not
sufficient information to make any judgment on the impor-
tance of geostrophic advection, but that seasonal Ekman ad-
vection was in phase with rainfall. DH91 examined seasonal
cycles of SLS along some specific lines in limited areas, but
did not include any estimate of the uncertainty of their calcu-
lations. Nevertheless, their results are largely consistent with
what we will show in this paper over a much larger area.

Delcroix et al. (1996) also examined seasonal variations
of SLS and compared them with precipitation measurements.

They decomposed the basin-wide SLS data into ENSO-scale
first mode and seasonal second mode empirical orthogonal
functions (EOFs). The seasonal mode accounted for 17% of
the variance. The seasonal mode (their Fig. 6) included a
maximum in variability at close to 10◦ N in the eastern trop-
ical Pacific, trending toward the equator towards the west.
A much stronger and oppositely-phased maximum was ob-
served in the South Pacific at around 15◦ S, 170◦ W. At the
same time, they found a similarly-structured first mode EOF
in precipitation. The precipitation EOF led the (negative of
the) SLS EOF in phase by about 2 months, with the precip-
itation reaching a minimum in July–August and the SSS a
maximum in September–October. They concluded that pre-
cipitation was the most important process governing SLS in
the tropical Pacific. However, a spatial offset in the peaks
of SLS and precipitation variability in the South Pacific im-
plied that precipitation was not the only process controlling
SLS on the seasonal time scale (Gouriou and Delcroix, 2002;
Johnson et al., 2002).

The results of Delcroix et al. (1996) are dependent upon
the use of EOFs which unify the entire tropical Pacific basin.
A simpler analysis is attempted here assuming no connection
between SLS variations in the various areas of the North and
South Pacific. We attempt to find the phase and amplitude
wherever a significant signal may exist.

Delcroix et al. (2005) examined the seasonal cycle along
a number of repeating volunteer observing ship tracks in the
Pacific (and Atlantic and Indian) Ocean using mainly VOS
data. They found that the seasonal cycle was most pro-
nounced in the area under the ITCZ, accounting for over 50%
of the variance in this latitude band. Their analysis focused
on only the latitudes equatorward of 30◦ and only on the SLS
itself, not on evaporation and precipitation. We will do a sim-
ilar analysis here, only in a larger area of the tropical and
mid-latitude Pacific from 40◦ S to 60◦ N. We will also evalu-
ate the contribution of E-P.

In the Atlantic, Foltz and McPhaden (2008) calculated the
salinity balance in three large areas, one in the central North
Atlantic with weak seasonal variability and two in the trop-
ical and western North Atlantic with larger seasonal vari-
ability. Their approach was to use large boxes and calculate
mixed-layer salt budgets. They found that the contributions
to the budgets were quite varied. In the central tropical At-
lantic, the seasonal cycle of SLS was mainly influenced by
seasonal variation in precipitation driven by migration of the
intertropical convergence zone. In the western tropical At-
lantic, salinity advection was the dominant process. In the
central North Atlantic, a weak seasonal cycle in SLS was
mainly a balance between advection and precipitation.

Johnson et al. (2002) calculated horizontal divergence of
SSS in the global tropics in the mean and on a seasonal time
scale using the 1994 World Ocean Atlas (Levitus et al., 1994)
and the OSCAR surface currents (Bonjean and Lagerloef,
2002). They found the seasonal divergence to be a signif-
icant fraction (53%) of the annual mean divergence. The
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calculation was done using a relatively large smoothing scale
(9.8◦ longitude, 2.3◦ latitude) and did not include local salin-
ity change or E-P on the seasonal scale. They did find sea-
sonal variations in the divergence in the tropical oceans, es-
pecially underneath the ITCZ.

In the most comprehensive study of seasonal variability of
SLS, Boyer and Levitus (2002) published maps of seasonal
cycles on a global scale based on the 1998 World Ocean At-
las monthly gridded values (Boyer et al., 1998). The results
they found are similar to what we will show in the Pacific.
Our work is different from theirs in a couple of ways. Boyer
and Levitus did not attempt to apply harmonic analysis to in-
dividual data, but to monthly gridded values. Thus, they may
have lost some of the smaller scale detail in the amplitudes
and phases. They did not show the statistical significance of
the harmonic amplitudes. Just as important as the amplitude
and phase of the seasonal cycle is to determine the places in
the ocean where seasonal cycles do not exist or cannot be de-
termined by current data. A significant number of new data
have been collected since their work, mainly through profil-
ing floats, that are incorporated here. Finally, they did show
the seasonal cycles of E-P, but did not estimate horizontal
advection, which we will attempt as well.

Until recently, the seasonal variability of SSS has been
difficult to quantify over the open ocean. Salinity measure-
ments have been limited to specific locations or ship tracks,
and coverage over the entire range of seasons has been lim-
ited. Recently, however, the Argo program (Roemmich et al.,
2009) has deployed profiling floats which measure profiles in
quasi-random locations over a wide area. Now that Argo has
been running for several years it has become possible to use
these and other observations to examine variability on many
time scales. As several realizations of the annual period have
been measured, we can now determine the seasonal cycle of
salinity and E-P, and explicitly determine the amplitude and
phase and their statistical significance. Since the data are
available, we take the approach of not averaging over a set
of large areas (Foltz and McPhaden, 2008; Ren and Riser,
2009), using EOFs (Delcroix et al., 1996), gridded clima-
tologies (Boyer and Levitus, 2002) or of focusing on specific
ship tracks (DH91) but of looking at the seasonal cycle in de-
tail over a large area. This allows us to get a closer picture of
areas of interest like the mode water formation regions and
the ITCZ. We also examine terms of the SLS budget to see
what the balance is on a seasonal time scale.

In this paper we have focused on the Pacific basin between
40◦ S and 60◦ N. There are a couple of reasons for this. There
is a large concentration of SLS data in the region, from vol-
unteer observing ship lines, Japanese hydrographic surveys,
Argo floats and other sources. There have been some previ-
ous studies of seasonal variability of SLS in the region, and
we are building from those to provide a regional focus and to
put the previous studies in a basinwide perspective.

2 Data and methods

The data used in this study depict several different phenom-
ena, SLS, evaporation and precipitation. In addition, for our
calculations we have used mixed-layer depth (MLD) and cur-
rent data to determine seasonal cycles of some of the terms
in the surface salt balance. We now describe the origin and
methods used for each dataset.

2.1 Data sources

The following describes the sources for the SLS, mixed-layer
depth, precipitation, evaporation and surface current data.
Since each of the sources are averaged onto a slightly dif-
ferent grid, all datasets were subsampled or averaged onto a
common 2.5◦

×2.5◦ grid. World Wide Web addresses for all
data sources are provided in the acknowledgements.

2.1.1 Surface layer salinity

The SLS data used in this study come from several sources,
the 2005 World Ocean Database (WOD05), EPIC CTD data,
French LEGOS data, Argo and the TAO-TRITON moorings.

2.1.2 WOD05

The 2005 World Ocean Database (WOD05) (Johnson et al.,
2006) contains several data files in the Pacific. In this pa-
per we used the ocean station data (Fig. 1c; OSD) file. The
WOD05 CTD file was not used as CTD data are included
in a low-resolution version in the OSD file. For each pro-
file in each of these files, we picked out the topmost value
of salinity as the value of SLS, as long as that value was at
10 m depth or shallower and the observation was flagged as
good in the file. The distribution of the OSD data in Fig. 1c
indicates that they are heavily concentrated in coastal areas
near the US in the eastern North Pacific, Japan in the western
North Pacific, and a few other areas.

In addition to the WOD05, we used the World Ocean Atlas
2009 (Antonov et al., 2010) annual mean salinity field to cal-
culate mean vertical salinity gradient for use in calculation of
entrainment.

2.1.3 LEGOS

The LEGOS (Laboratoire d’Etudes Geophysiques et
Oceanographiques Spatiales) validated data include surface
bucket and underway thermosalinograph data from 30◦ S–
30◦ N, 1950–2003 in the Pacific (Fig. 1b). These observa-
tions are heavily grouped along major shipping lanes. See
Delcroix et al. (2005) for discussion of data origin and val-
idation procedures. The depths represented by these data
range from the surface using a bucket to a few meters from
a thermosalinograph. Adjustment was made in this study for
variations in sample depth or collection method. Delcroix et
al. (2005) subtracted 0.1 from all bucket salinities and added
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Fig. 1. Spatial distribution of SLS observation density, number of
observations/one degree square. Color scale is shown at bottom.
(a) All data. (b) Legos Data.(c) OSD data.(d) Argo data. Note
color scale is logarithmic. Note also that there was considerable
overlap between the original datasets, particularly Legos and OSD.
This figure depicts the final data after removal of duplicate measure-
ments.

0.02 to all thermosalinograph measurements to account for
the different techniques. We followed this practice for data
obtained from LEGOS but not from other data sources.

2.1.4 EPIC

EPIC is the data management system for oceanographic data
taken during various NOAA cruises. From this system, we
extracted CTD data from our Pacific domain at 5 m depth.
The cruises where these data were taken were mostly servic-
ing missions for the TAO array. The number of data from this
source was small compared to other sources (Fig. 2).

2.1.5 Float data

Argo float profiles were gathered from the NODC (National
Oceanographic Data Center) Argo data repository. Data from
the repository from the period January 1996–December 2009
are used in this study with quality control flags of either 1 or
2. The Argo data added about 240 000 observations to the en-
semble. Float data have the advantage over the other datasets
in that the spatial distribution is quite uniform (Fig. 1d).

2.1.6 Combined data

Once the above four datasets were extracted, they were com-
bined into one large ensemble, taking care to screen for du-
plicates. There was some duplication, especially between the
LEGOS and OSD data. The final dataset is made up of ap-

Fig. 2. Time distribution of SSS observations per year in the final
dataset. Different colored lines are matched with text at the top of
the figure to show which dataset is being plotted. The thick black
line is the total for all observations. Note the ordinate is logarithmic.
Note also that there was considerable overlap between datasets, par-
ticularly Legos and OSD. This figure depicts the final dataset after
removal of duplicate measurements.

proximately 890 000 measurements between 40◦ S and 60◦ N
(Fig. 1a). The distribution of observations in time (Fig. 2)
shows them to be relatively uniform during the 1970s and
1980s, with a dip in the 1990s and then another rise after
2002 with the onset of Argo sampling. Before the 1990s the
data consist mainly of a combination of LEGOS and OSD.
In more recent times, the data are dominated by Argo. The
reduction in data availability in the late 1990s probably re-
flects delays by research institutions in submitting their data
to their respective national data centers, which then submit
them to the US NODC which produced the WOD05.

Each data source has a different method of measuring
salinity and verifying its accuracy. In some cases (Argo, LE-
GOS and TAO-TRITON), the data were collected by single
agencies or entities with relatively standardized techniques.
The WOD05 however, is a compendium of data collected
by a myriad of sources. Given the diversity of data sources,
the large amount of data that were eventually used and the
purpose, to calculate the seasonal harmonic, a unified ap-
proach to quality control was not possible. We adopted the
data deemed acceptable by the providers’ quality flags (when
available), and rejected data that in subsequent analysis were
obviously erroneous.

A question arises whether the recent addition of Argo data
skews the results presented. The basic analyses of amplitude
and phase were repeated using only the Argo dataset and us-
ing only non-Argo data with only a small difference in the
results. The Argo data help fill in gaps in mid-ocean, es-
pecially in the northeastern North Pacific and eastern South
Pacific. As Argo continues over the years, it will become
clearer if the patterns depicted in this study are robust.
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2.1.7 TAO/TRITON moorings

A separate independent analysis was carried out using near-
surface TAO (Tropical Atmosphere-Ocean) mooring data.
The near-surface instruments typically were deployed at a
depth of 1 or 2 m. Salinities were extracted from the files
where the quality flag provided by the TAO program was ei-
ther 1 (“highest quality”) or 2 (“default quality”).

2.1.8 Evaporation

Evaporation data were taken from the OAFlux dataset of
Yu et al. (2008). This dataset combines satellite retrievals
with three reanalyses as input to the COARE 3.0 bulk al-
gorithm (Fairall et al., 2003). The data include monthly
values of evaporation from 1958–2006 in 1◦ squares. Yu
et al. published maps of standard deviation for latent heat
flux (their Fig. 17), showing values between about 2 and
26 W m−2. Translated into evaporation this range is 9–
90× 10−7 kg m−2 s−1, much smaller than the seasonal am-
plitudes that will be calculated later in this paper.

2.1.9 Precipitation

Precipitation data were taken from the Global Precipitation
Climatology Project (GPCP) monthly merged precipitation
analysis (Huffman et al., 1997; Adler et al., 2003) on a
2.5◦

×2.5◦ grid. Adler et al. published error fields for the
precipitation, and included one example month. The error
fields were not used in this study. Significance estimates of
seasonal amplitude and phase were based on scatter from har-
monic fits (Sect. 2.2).

2.1.10 Mixed-layer depth

Mixed-layer depths were obtained from the Ocean Mixed
Layer Depth Climatology which is a monthly climatology of
mixed-layer depth derived from World Ocean Database and
World Ocean Circulation Experiment data. The climatology
uses a temperature criterion of 0.2◦C difference from 10 m
depth to estimate the depth (de Boyer Montegut et al., 2004).
Note that this is not a time series, but a seasonal climatology,
with a single value for each month for each 2◦ square.

2.1.11 Surface currents

Surface currents are taken from the OSCAR current
database. Currents are estimated in 1◦ bins from satellite
altimetry and vector winds, validated from in situ sources
where available (Bonjean and Lagerloef, 2002). Currents in-
clude both geostrophic and Ekman components.

2.1.12 Upwelling

Values of Ekman upwelling were obtained from QuickSCAT
data from the NOAA Coastwatch program. Upwelling values
were obtained every 3 days for the period 31 July 1997–16

July 2006 on a 0.25◦ grid. They were calculated aswe =

∇ ×τ/(ρf ), whereτ is the windstress,ρ the surface density
andf the Coriolis parameter. CoastWatch processes wind
velocities to wind stress following Smith (1988) and to wind
stress curl after the method of Gill (1982). Upwelling is not
calculated within± 1◦ of the equator. However, since we
used 2.5◦ boxes in this study, we used the equatormost values
in our calculations for areas close to the equator.

2.2 Harmonic analysis

The simple harmonic analysis used in this paper closely fol-
lows the method of Emery and Thomson (2001; pp. 392–
395). For SLS for example, the combined data (Sect. 2.1.6)
were grouped into 2.5◦

×2.5◦ boxes. For each box with more
than 10 observations, SLS was least squares fit to the func-
tion

S = S0+a0cos(ωt)+a1sin(ωt)+ε (1)

whereω = 2π/365.25 days. ε is a residual whose size is
minimized in a least squares sense by choice ofa0 anda1.
t is the time measured in days from 1 January of each year.
The significance of the fit was determined using a standard
f-test and considered significant when it exceeded 95%. The
percent of variance explained by the fit (R2) was determined

as well. The amplitude of the seasonal cycle isA =

√
a2

0 +a2
1

and the phase in radians isϕ = tan−1(a1/a0). Only the first
harmonic – one cycle per year – is included in the analysis
presented in this paper. We tried the same set of calculations
including the semi-annual harmonic in the least squares fit
as well. The results were not much different. Some areas
with significant seasonal cycles got a bit larger, but the extra
harmonic did not make much difference to the basic results
that will be presented. We also tried removing a linear trend
before doing the harmonic fit, and again the results were only
slightly different.

3 Results

3.1 Seasonal cycles of SLS and E-P

The amplitude of the seasonal cycle of SLS is generally be-
tween 0.1 and 0.5 (Fig. 3) in areas where it is significant.
There are roughly five areas where a significant fit was ob-
tained: An area stretching around the northern and western
rim of the North Pacific (areas WP and NNP), a band go-
ing across the tropical Pacific from close to the equator in
the west to about 10◦ N in the east (area TP), an area in the
tropical South Pacific stretching across about 15◦ S west of
150◦ W and about 10◦ S east of 150◦ W (area SP) and a small
area north of the Hawaiian Islands centered at about 30◦ N
(area HI). The amplitudes reach 0.5 and over in the eastern
Pacific, the East China Sea, the Japan Sea and the Arafura
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Fig. 3. Amplitude of the seasonal cycle of SLS from the combined
dataset. Color scale is shown at bottom. Areas with no fill had ob-
servations, but from those observations no significant seasonal com-
ponent was found. Seasonal cycles from TAO/TRITON moorings
are shown in circles near the equator. Small empty circles indicate
that mooring data were examined, but no significant seasonal cycle
was found for that mooring.

Fig. 4. As in Fig. 3, but for the phase. Color scale is shown at
bottom with units of months, indicating the month of maximum
SLS. Light blue slashes mean maximum SLS occurred during the
second half of the year. For TAO/TRITON moorings a dark black
dot in the middle indicates maximum SLS in the second half of the
year.

Sea between New Guinea and Australia. Most squares with
significant fits had amplitudes between 0.1 and 0.3.

There are large areas of the Pacific where there were data,
but no significant seasonal cycle of SLS, blank areas in
Fig. 3. There tended to be fewer data in the blank areas,

Fig. 5. As in Fig. 3, but for percent of variance explained,R2. Color
scale is shown at bottom with units of %, indicating the fraction of
variance explained by the seasonal cycle in each location.

a median of 189 observations in blank squares vs. 322 in
non-blank squares. Perhaps as the Argo program fills in with
more data, the seasonal cycles will be better defined in those
areas. More likely, the blank areas in Fig. 3 do not have a
stastically significant seasonal cycle.

The phase (Fig. 4) shows the distinction between each
of the areas mentioned above. In areas WP and NNP, the
maximum salinity occurs in late winter or early spring. In
area TP, the maximum occurs in early- to mid- (Northern
Hemisphere) summer. In area SP, the maximum occurs
mostly in late (Southern Hemisphere) winter/early spring
(August/September), but the timing is quite variable. In area
HI, the maximum occurs in the late summer and fall.

The percent of variance (Fig. 5) of squares with a signif-
icant fit ranges from 10–20% up to nearly 100% . Area TP
shows the highest percent of variance explained indicating
that the seasonal is the main component of SLS variation in
this area. Other areas with high values of percent of variance
are south of the Aleutian Islands, and the marginal areas of
the Sea of Japan and the Arafura Sea.

For area TP, the results closely match those of Delcroix et
al. (2005) and Delcroix et al. (1996). In particular Delcroix
et al. (2005) show an area of highR2 in the eastern tropical
Pacific, centered near 10◦ N and an area of good fit in the
western tropical North Pacific, nearer to the equator. In both
cases, the month of maximum salinity found here agrees with
that shown by Delcroix et al. (1996). Amplitudes found here
appear to be somewhat less than those found by Delcroix et
al. For our results in the western tropical Pacific, the salinity
varies in almost opposite phase to the central Pacific. The
month of maximum salinity is near July around 180◦, and
moves toward earlier in the year both to the east and west of
there. In agreement with this, Delcroix et al. (1996) show
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an area in the western Pacific of nearly opposite phase. Gou-
riou and Delcroix (2002) also found similar results when they
examined SLS variability in this region (10–25◦ S–160◦ E–
140◦ W). They found a seasonal mode with an amplitude of
about 0.5 pss and maximum salinity in September.

Area SP in the South Pacific in part corresponds to the
South Pacific Convergence Zone (SPCZ), which stretches
from the warm pool at 0◦, 150◦ E to 30◦ S, 130◦ W (Vincent,
1994). The seasonal cycle of SLS under the SPCZ has an am-
plitude of∼ 0.1–0.3 and a maximum in austral winter/spring
(Figs. 3, 4). The amplitude and phase agree well with the val-
ues found by Delcroix et al. (2005) along ship tracks in the
central and western Pacific. In contrast to the maximum in
SLS variability related to the ITCZ, there are gaps in the SLS
amplitude underneath the SPCZ in the western South Pacific
(Fig. 3). This could be related to the fact that the SPCZ
is wider and more diffuse than the ITCZ, and that the sea-
sonal amplitudes of precipitation are generally smaller in the
SPCZ. The SP region continues eastward along about 10◦ S
to the eastern boundary. The seasonal amplitudes in the east-
ern SP region are similar to those under the SPCZ, though the
phasing in the eastern SP region is more variable (Figs. 3, 4).

The results presented here also match with those of Hires
and Montgomery (1972) who measured seasonal variability
along a track from Honolulu to Pago Pago. This track crosses
the equator at approximately 165◦ W and slopes northeast-
ward toward Honolulu at 158◦ W. They found a maximum
amplitude of SLS seasonal variability at about 10◦ N. The
minimum salinity comes in November and the amplitude is
about 0.6.

For the northern North Pacific (area NNP), Ren and Riser
(2009) looked at the area 45–50◦ N, 155–140◦ W. The ampli-
tude of SLS they found, about 0.1 pss, is close to what we
found. The SLS balance in the area was found to be mostly
between SLS tendency and precipitation. The Coast Guard
(1982) showed semi-annual variability in SSS at Ocean Sta-
tion November (30◦ N, 140◦ W) from July 1966–June 1974.
However, no attempt was made in that study to assess the
significance of the signal. Xie and Arkin (1997) show global
maps of seasonal precipitation based on the algorithm of Xie
and Arkin (1996) over the years 1979–1995. Their maps
show that the Alaskan gyre and northeast Pacific do get a
large seasonal cycle in precipitation, with maximum rainfall
in the January–March time period. We find a maximum in
salinity in this area during March–May, suggesting that other
processes besides precipitation must be important.

Seasonal cycles calculated from TAO moorings are similar
to those from the station/float data (Figs. 3, 4 and 5). Sig-
nificant seasonal variability is found throughout the tropical
Pacific, with larger amplitudes in the northeastern area un-
der the ITCZ. We compared the amplitudes and phases de-
rived from TAO data and those from the main SLS dataset
(Sect. 2.1.6) in the same areas. The two datasets had a cor-
relation of 0.68 (amplitude) and 0.73 (phase). As an ex-
ample of a comparison of the two datasets, we looked at

Fig. 6. Example of the seasonal cycle in the 2.5◦
×2.5◦ box cen-

tered at 8◦ N, 170◦ W. In blue are TAO mooring data from that lo-
cation and in red are the combined SLS data from that box. Data
are displayed by month to emphasize the seasonal cycle.

the TAO mooring at 8◦ N, 170◦ W (Fig. 6). This shows the
two datasets vary in phase and exhibit a very similar sea-
sonal cycle, with maximum SLS in April–May, minimum in
October–November and amplitude of about 0.5.

It is possible that the ENSO cycle has a significant af-
fect on seasonality of the SLS. To try to understand this, we
ran the harmonic analysis of Figs. 3–5 for only ENSO years
(1972–1973, 1976–1977, 1982–1983, 1986–1987, 1991–
1992, 1997–1998, 2002–2003 and 2006–2007. 1 June–31
May for each pair of years (McPhaden and Zhang, 2009)),
and for all data but excluding ENSO years. For the non-
ENSO years, we found little difference in the results. For the
ENSO years, there were some small differences. The sea-
sonal cycles in the South Pacific mostly disappear, as do the
ones in the northern and northeastern North Pacific. It is not
clear how much of the difference is due to the use of ENSO-
year data and how much to the greatly reduced size of the
dataset.

Maps of E-P, E and P shows that most of the Pacific has
significant seasonal variability in at least one of these quan-
tities (Fig. 7). The seasonal cycle of E-P consists of the com-
bined seasonal cycles of E and P. The seasonal cycle of E is
the dominant component in the western North Pacific, while
P is generally dominant elsewhere. The areas with the maxi-
mum amplitude of E-P are in the western North Pacific near
Japan and to the east, an area east of the Philippines, an area
between New Guinea and Australia and an area along the
ITCZ at∼ 10◦ N.

The maximum of E-P occurs in mid-winter near Japan,
in spring along the ITCZ and in late Southern Hemisphere
winter in the western South Pacific. In a regime where sea-
sonal SLS variability is dominated by E-P, we would expect
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Fig. 7. Amplitude (left column) and phase (right column) of the sea-
sonal cycle of(a) and(b) E-P, (c) and(d) evaporation and(e) and
(f) precipitation. Panels (e) and (f) present the same information as
Adler et al. (2003) Fig. 10. Color scale for panels (a), (c) and (e), is
shown below panel (e) with units of 10−4 kg m−2 s−1. Color scale
for panels (b), (d) and (f) is shown below panel (f). Phase scale in-
dicates month of maximum E-P, evaporation or precipitation. Light
blue slashes mean maximum SLS occurred during the second half
of the year. White or blank areas indicate that enough data existed,
but no significant seasonal cycle was found.

approximately a three month time lag between the maximum
of E-P and the maximum of SLS (DH91; Hires and Mont-
gomery, 1972; Fig. 4). This is more or less the case in most
areas where seasonal cycles of both quantities exist. The
phase of E shows maximum values throughout the North Pa-
cific in late fall/early winter. The phase of P is more com-
plicated, with a band across the tropical Pacific around 10◦ N
with maximum precipitation in late summer/early fall.

3.2 Seasonal balance of SLS terms

Ignoring turbulent vertical diffusion which is difficult to reli-
ably estimate, a simple equation describing SLS is given by
Delcroix et al. (1996)

∂S

∂t
=

S0(E-P)

h
−u ·∇S −w

∂S

∂z
(2)

whereS0 is the yearly average SLS,h is the mixed layer
thickness,u = (u,v) is the horizontal velocity,w the verti-
cal velocity and z the vertical coordinate. Each of the terms
in Eq. (2) can be expressed in terms of the seasonal harmonic
as in Eq. (1).

In the third term,u · ∇S, we can express each ofu and
S as a mean (u) and seasonally varying (u′) part. The term
can then be broken up into 1) seasonal advection of the mean
salinity (u′

·∇S̄), 2) mean advection of the seasonally varying

Fig. 8. (a) Amplitude of theu′
·∇S term in Eq. (2). Color scale

is shown with units 10−7 pss s−1. (b) Phase of theu′
·∇S term in

Eq. (2). Color scale is shown indicating month of maximum value
of theu′

·∇S term. White or blank areas over the ocean indicate that
enough data existed, but no significant seasonal cycle was found.

salinity (ū ·∇S′), and 3) seasonal advection of the seasonally
varying salinity (u′

· ∇S′). We will make no attempt here
to depict 2) and 3). Calculation of these requires computa-
tion of the spatial gradient of salinity as a function of time,
and then fitting those gradients to a sinusoidal function (as
in Eq. 1). We deemed that doing this with the available data
was not possible with any degree of confidence, especially
with Argo data which are collected in quasi-random times
and places. We do show the amplitude and phase ofu′

·∇S̄

(Fig. 8). The variability in this quantity is concentrated near
the equator and underneath the ITCZ where there is a signifi-
cant seasonal cycle of current. The amplitude and especially
the phase are highly variable. This is due to the fact that the
seasonal variability is in the zonal current but the SLS gradi-
ent vector points mostly in the meridional direction, making
the dot product of the two close to zero. The advection shown
in Fig. 8 is mainly zonal with some meridional component in
the eastern Pacific.

The map of the amplitude of the seasonal cycle of SLS
(Fig. 3) is the same as the map of the amplitude of the sea-
sonal cycle of∂S

∂t
but using the scale of Fig. 8 (Delcroix et

al., 1996). The phase of∂S
∂t

is the same as that ofS (Fig. 4),
but shifted backward in time by 3 months (Fig. 9).
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Fig. 9. Phase of the seasonal cycle of∂S/∂t from the combined
dataset. This figure presents the same information as Fig. 4 (with-
out the TAO/TRITON data), shifted backward in time by 3 months.
Color scale is shown at the bottom.

The seasonal cycle of theS0(E-P)
h

term of Eq. (2) (Fig. 10)
largely follows E-P (Figs. 7a, b). Seasonal variations of
mixed-layer thickness were not large enough in most areas
to alter the basic seasonal variation of this term. The term
is strongest under the ITCZ in the eastern tropical North Pa-
cific where it is driven by seasonal variations in rainfall, and
in the western North Pacific where evaporation is the domi-
nant process. Comparison of the figures showing the terms
of Eq. (2) (Figs. 3, 8, 9 and 10) indicate some rough agree-
ment between them in amplitude and phase. In areas where
there is a significant seasonal cycle of∂S

∂t
it matches or nearly

matches that ofS0(E-P)
h

.
Similar to the advection term, we calculated the entrain-

ment, the last term of Eq. (2), as 1) the seasonal variation of

vertical velocity times the mean vertical gradient (w′ ∂S
∂z

) and
2) the mean vertical velocity times the seasonally varying
vertical gradient (̄w ∂S′

∂z
). The mean vertical salinity gradient

was calculated from the World Ocean Atlas 2009 between the
surface and the bottom of the mixed-layer. The seasonal ver-
tical salinity gradient was calculated as the seasonal cycle of
SLS minusS(hm divided byhm, ∂S′

∂z
=

(SLS−S(h+m))
hm

, where
hm is the depth of the annual average mixed-layer (as calcu-
lated from the data presented in Sect. 2.1.10) plus 30 m. Sea-
sonal vertical velocities were calculated from combining the
upwelling (we; Sect. 2.1.12) and the vertical motion of the
mixed-layer depth (∂h

∂t
; Sect. 2.1.10),w = we +

∂h
∂t

. Term 2)
was found to be negligible over the entire Pacific. The me-
dian value of the amplitude was 20 times less than the median
of the values of the seasonal cycle of∂S

∂t
. Term 1) was mostly

negligible, except for a small area in the eastern Tropical Pa-
cific between 2.5 and 7.5◦ N (Fig. 11). Interestingly, this area

Fig. 10. (a) Amplitude and(b) phase of the seasonal cycle of
S0(E-P)

h
from Eq. (2). White or blank areas indicate that enough

data existed, but no significant seasonal cycle was found. Color
scale for panel(a) is shown with units of 10−7 pss. Color scale for
panel (b) is shown. Units are months indicating maximum value of
S0(E-P)

h
.

coincides with a meridional gap in the seasonal cycle of SLS
(Fig. 3). This suggests that seasonal variation of E-P is bal-
anced by entrainment in this small area. The amplitude of the
entrainment is large in the area close to the coast of Central
America, the Costa Rica Dome (Hoffman et al., 1981). The
phase indicates the maximum ofw′ ∂S

∂z
, or a minimum fresh-

ening of the surface layer in this area as the mean vertical
gradient of salinity is negative (S increases with depth).

To get a better sense of the seasonal cycle on a regional
scale, we calculated it over the areas as shown in Fig. 12, with
results displayed in Table 1. The areas were chosen to be rep-
resentative of the areas discussed in Sect. 3.1, WP, NNP, TP
and SP. In all the areas shown except the South Pacific the

amplitude and phase of theS0(E-P)
h

and ∂S
∂t

terms are simi-
lar. Phases are within two months and amplitudes within 1–
2× 10−8 pss/s, indicating rough balance between the terms.
The tropical South Pacific area is the one where the largest
discrepancy occurs, with no significant seasonal signal at all

in S0(E-P)
h

. The differing natures of the seasonal cycles are
illustrated in Fig. 13, in which we show all the SLS data for
each area, plotted as if they were collected in a single year,
with monthly averages also displayed. The seasonal cycles in
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Fig. 11. Seasonal amplitude(a) and phase(b) of the entrainment
term, w′ ∂S

∂z
. White or blank areas indicate that enough data ex-

isted, but no significant seasonal cycle was found. Color scale for
panel (a) is shown with units of 10−7 pss. Color scale for panel (b)
is shown. Units are months indicating maximum value ofw′ ∂S

∂z
.

the tropical North Pacific and the northern North Pacific are
sinusoidal, with SLS maxima in March/April and April/May
respectively. The seasonal variations in the South Pacific and
western North Pacific are more driven by a number of low
outliers in the summer season in each case, giving maximum
SLS values in the winter.

4 Discussion

The seasonal variability of SLS in the Pacific has been stud-
ied, using SLS and E-P data along with surface currents and
mixed-layer depths. Maps of SLS seasonal cycles show lim-
ited areas where they are significant and large areas of the
central oceans where they are not. The lack of seasonal vari-
ation of salinity in large areas of the Pacific may simply be
due to a lack of sufficient data, and as Argo data become
more abundant, many of the gaps in Fig. 3 will be filled in
and the seasonal cycle better defined. Nevertheless, we were
able to quantify and characterize the variability in the areas
where it was most obvious, the western North Pacific bound-
ary and mode water formation area, underneath the ITCZ in

Fig. 12. Averaging areas as described in Table 1.

Fig. 13. SLS for the areas depicted in Fig. 12 and Table 1, plotted
as a single year. Note that y-axis limits are different for each panel.
Lettering in the bottom of each panel corresponds to areas described
in Table 1. Dots are individual measurements, with only 10% of
points plotted for clarity. Solid curves are monthly averages.

the eastern tropical Pacific, in the low-latitude eastern South
Pacific, in the northern North Pacific and in some of the west-
ern marginal seas. In many areas, there is a seasonal balance
between E-P and changing SLS.

Large amplitude changes in SLS in the western North Pa-
cific likely play a significant role in the mode water forma-
tion process. Until now, much has been made of the way that
density increases in this area in the wintertime leading to a
thickening mixed-layer (e.g. Bingham, 1992). In most stud-
ies, decreased temperature has been considered as the main
factor driving increased density. However, the present study
suggests that seasonal variability in salinity, shown here to
have just the right phase, could contribute significantly to
mode water formation as well. At a base salinity of 35 and
temperature of 15◦C, a seasonal cycle of 0.5 in salinity is
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Table 1. Amplitudes and phases of seasonal constituents shown in the first line in areas shown in Fig. 11. Amplitudes are in units of
10−8 pss/s. Phases are in months, 1 = 1 January, 2 = 1 February, etc., and indicate the month of maximum value. Phase values in parentheses
are dates of maximum salinity in each area and correspond approximately with the peaks of the curves in Fig. 11. Error bounds represent
95% confidence intervals found through a propagation of errors calculation.

dS
dt

S0
(E-P)

h

Area Amplitude Phase Amplitude Phase

Northern Tropical Pacific 7.1± 0.2 1.29 (4.29)± 0.07 7.0± 0.1 2.88± 0.03
Western North Pacific 4.5± 0.1 11.99 (2.99)± 0.04 4.9± 0.1 12.74± 0.04
Southern Tropical Pacific 2.8± 0.1 7.03 (10.03)± 0.10 not significant not significant
Northern North Pacific 2.9± 0.2 1.17 (4.17)± 0.14 3.2± 0.05 2.0± 0.03

the density equivalent of a seasonal cycle of temperature of
about 2◦C. The extra densification provided by salinity may
be enough to create the extremely thick mixed layers seen in
this area in late winter.

Seasonal advection was seen to play a minimal role in the
salinity balance except perhaps in the tropics. However, the
difficulty of doing the calculation of the mean advection of
the seasonally varying salinity makes this conclusion very
uncertain. The one place where advection clearly does play
an important role is in the Costa Rica Dome area off Cen-
tral America. Here, seasonally varying currents cross a sharp
slanting SLS front which cuts northwest-southeast between
120 and 90◦ W. DH91 emphasized the role of meridional
Ekman advection on the mean SLS, noting that the merid-
ional maximum of precipitation is displaced slightly equa-
torward of the minimum of the mean SLS, attributing this
displacement to advection. Delcroix et al. (1996) briefly dis-
cussed the potential role of seasonal advection of SLS by the
north equatorial countercurrent, concluding it might possibly
be significant. The value they give for the possible contri-
bution, 2.5× 10−2 month−1, is approximately equivalent to
0.1×10−7 pss s−1 as presented here and similar in magni-
tude to our results (Fig. 8).

Entrainment was found to be negligible over most of the
Pacific, except for a small area in the eastern tropical Pacific.
The far eastern part of this area of enhanced entrainment,
the Costa Rica Dome, contains the thinnest mixed-layer of
the entire Pacific, about 20 m thick on average (Kara et al.,
2003). With such a thin mixed-layer one would expect that
oceanic processes might be as important as surface forcing
in regulating the SLS on the seasonal scale (Chang, 1993).
Indeed, the amplitudes of the entrainment, SLS tendency,
atmospheric forcing and horizontal advection terms are all
large in this region. The seasonal SLS balance in this region
is more complex than over the rest of the ocean, and would
be a good area for future study.

The tropical Pacific Ocean is an important region climati-
cally because it is the spawning ground for El Nino and the
Southern Oscillation (ENSO). Understanding and predicting

ENSO and its global consequences requires a better under-
standing of the background conditions on which ENSO de-
velops. In particular, the mean seasonal cycle has a strong in-
fluence on the character of ENSO variability through nonlin-
ear interactions as demonstrated in intermediate and general
coupled ocean-atmosphere circulation models (e.g., Chang
et al., 1995; Guilyardi, 2006). The coupling of the ocean
and atmosphere that gives rise to both the seasonal cycle and
ENSO time scale variations in the Pacific depends on feed-
backs between surface winds and sea surface temperatures
(SST). The evolution of ENSO is also strongly influenced
by changes in upper ocean heat content and potential energy
(Jin, 1997; Brown and Fedorov, 2010). Salinity variations
can affect these processes through their influence on upper
ocean stratification, mixed layer heat storage, and SST (e.g.,
Ando and McPhaden, 1997; Reynolds et al., 1998; Maes
et al., 2005). Thus, documenting the variations in and the
causes for the mean seasonal cycle of surface salinity is an
important step towards developing a comprehensive under-
standing of seasonal-to-interannual climate variability origi-
nating in the tropical Pacific.

This work has important implications for the SMOS and
Aquarius satellite missions. Aquarius is supposed to deliver
surface salinity measurements with accuracies of 0.1–0.2 pss
with a spatial resolution of 100–300 km and a temporal reso-
lution of 7–30 days (Lagerloef et al., 2008). There are ar-
eas in the Pacific with seasonal amplitudes this large and
predictable phase, the ITCZ and the western North Pacific,
along with some of the western marginal seas. The signals
the satellite sees in these areas should be among the first to
emerge from the data stream. Thus, these areas will make
good test beds for the satellite missions and would be good
candidates for intensive calibration and validation activities.
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