I. ALKALINE BATTERY WARNING ... 2

II. RESET AND SELF TEST ... 2

III. DEPLOYMENT .. 4

IV. PARK AND PROFILE FEATURE ... 5

V. ARGOS DATA ... 6
 A. SERVICE ARGOS PARAMETERS ... 6
 B. DATA FORMAT – FOR 28-BIT ID FORMAT .. 7
 C. TEST MESSAGE FORMAT .. 10
 D. TELEMETRY ERROR-CHECKING (CRC) ... 11
 E. CONVERSION FROM HEXADECIMAL TO USEFUL UNITS ... 11

VI. MISSIONS ... 12

APPENDIX A: FLAG BYTE DESCRIPTION .. 16

APPENDIX B: CRC ALGORITHM IN BASIC FOR 28 BIT ID ... 18

APPENDIX C: SURFACE ARRIVAL TIME, AND TOTAL SURFACE TIME ... 19

APPENDIX D: ARGOS ID FORMATS, 28 BIT AND 20 BIT ... 22

APPENDIX E: CTD CALIBRATION AND BALLASTING RECORDS ... 22
I. ALKALINE BATTERY WARNING

The profiler contains alkaline "D" cells.
There is a small but finite possibility that batteries of alkaline cells will release a combustible gas mixture. This gas release generally is not evident when batteries are exposed to the atmosphere, as the gases are dispersed and diluted to a safe level. When the batteries are confined in a sealed instrument mechanism, the gases can accumulate and an explosion is possible.
Webb Research Corp. has added a catalyst inside of these instruments to recombine Hydrogen and Oxygen into H2O, and the instrument has been designed to relieve excessive internal pressure buildup by having the upper end cap release.
Webb Research Corp. knows of no way to completely eliminate this hazard. The user is warned, and must accept and deal with this risk in order to use this instrument safely as so provided. Personnel with knowledge and training to deal with this risk should seal or operate the instrument. Webb Research Corp. disclaims liability for any consequences of combustion or explosion.

II. Reset and Self Test

Profilers are shipped to the deployment site in Hibernate mode. Shortly before deployment, reset the profiler by passing a magnet over the marked location on the pressure case. The profiler will run a self-test, transmit for 6 hours with the bladder extended, and then begin its pre-programmed mission.

The six ARGOS transmissions during self-test and the transmissions during the initial 6 hour period contain data about the instrument and are outlined in (V) ARGOS DATA, part (C) TEST MESSAGE FORMAT.

Procedure:
1. Secure float in horizontal position, using foam cradles from crate.

IMPORTANT:
Remove plastic bag and three plugs from CTD sensor, if they have not already been removed.
2. Minimum temperature –2 deg C. If necessary, let float warm indoors before proceeding.

3. Carefully remove black rubber plug from bottom center of yellow cowing to verify bladder inflation (per below). Use fingers only - tools may puncture bladder. Be sure to replace plug before deployment.

Note: it can be very difficult to replace plug when air bladder is fully inflated. Replace plug during beginning of air bladder inflation. Purpose of plug is to prevent silt entry if float contacts sea floor.

4. Hold provided magnet at RESET position marked on for several seconds, then remove magnet.
Note: Magnetic switch must be activated (held) for at least one second to reset the instrument. (This is to provide a safety against accidental reset during transport.) Thus, if the float does not respond as below, the instrument was probably not reset.

5. The air pump will operate for 1 second.

6. The PTT will transmit 6 times at 6 second intervals. Place ARGOS receiver/beeper close to antenna to detect transmissions.

7. The piston pump will begin to operate. The piston will move to the retracted Storage Position, if not already there, pause 2 seconds and then move to full extension.

8. The oil bladder will expand, this should take 15 - 25 minutes.

9. After the piston pump stops, PTT will transmit at specified ARGOS rate.

10. At every PTT transmission, the air pump will turn on for 6 seconds until the air portion of the bladder has been inflated. The pump should turn on 8 – 10 times.

11. 6 hours after reset, transmissions will cease, the bladder will deflate, and the piston pump will retract, the profiler begins its programmed mission.

12. Reminder - replace black rubber plug in cowling hole before deployment. During self-test, the controller checks the internal vacuum sensor. If the internal pressure has increased above a preset limit (i.e. hull leakage caused loss of vacuum), the instrument will not pump. If you do not detect the 6 test transmissions, and if the bladder does not inflate, then the self-test has failed and the instrument should not be deployed!
III. Deployment

- RESET instrument.
- SELF-TEST starts automatically (see above).
- When piston pump stops, air pump inflates, external bladder is full, PTT will transmit for 6 hours at ARGOS Repetition rate intervals. Typical repetition rate is 90 seconds or less. Programmed repetition rate can be found in the Missions section of this manual.
- If the repetition rate is 120 seconds the controller is not communicating properly with the CTD and the float should not be deployed.
- Six hours after reset, the piston pump will retract and bladder will deflate. Deploy before this time is up or reset the instrument again to re-initialize the 6 hour period. The purpose is to have the instrument on the surface and receive test transmissions.
- Pass a rope through the hole in the damper plate.
- Holding both ends of doubled up rope, carefully lower the float into the water. Do not let rope slide through hole in disk- this may cut the plastic disk.
- Take care not to damage the antenna.
- Do not leave the rope with the instrument, release one end and retrieve the rope.
- The float will remain on the surface until the 6 hour interval has expired.
IV. PARK and PROFILE Feature

APEX floats with park and profile feature can be set to profile from a maximum depth (profile depth) after a given number of profiles from a shallower depth (park depth).

Terminology:
PARK: intermediate depth at which the float drifts
PROFILE: maximum depth to which the float descends before profiling up.
DOWN time: spent during descent and at park depth.
UP time: includes ascent and time at surface.

Ascent rate: approximately .08 meters per second.

Total Up time is typically set to 12 to 20 hours, increasing proportional to depth and amount of data to be transmitted per profile. Another factor is deployment location: due to the polar orbit of ARGOS, the number of passes per day increases at high latitudes.

Parameter PD determines the frequency of deep profiles.
Schematic examples:

<table>
<thead>
<tr>
<th>PD = 1</th>
<th>PD = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>deep profile every cycle</td>
<td>deep profile every 2nd cycle</td>
</tr>
</tbody>
</table>
V. ARGOS DATA

A. SERVICE ARGOS PARAMETERS

The user must specify various options to Service ARGOS. These choices depend on how the user wishes to receive and process data. Typical parameters are listed below:

- Standard location.
- Processing: Type A2 (pure binary input; hexadecimal output)
- Results Format: DS (all results from each satellite pass), Uncompressed.
- Distribution Strategy: Scheduled, all results, every 24 hours.
- Number of bytes transmitted: 31 per message*

Note: Webb Research strongly recommends all users to use ARGOS “Multi Satellite Service”, which provides receptions from 3 satellites instead of 2 for a small incremental cost.

* Using Argos 28-bit ID Format, 31 data bytes are transmitted in each message. With 20-bit ID Format, each message had 32 data bytes. (see Appendix D for more information).
B. DATA FORMAT – For 28-bit ID format

Data are sent via ARGOS in 31 byte hex messages. The number of 31 byte messages sent depends on the programmed quantity of temperature measurements per profile. See appendix D

Format for message number 1 only:

 Byte #
- 01 CRC, described in section C.
- 02 Message number, Assigned sequentially to each 31 byte message (Total number of messages per profile is shown below). Messages are transmitted in sequential order, starting with message1 and incrementing by one, until entire data set is transmitted.
- 03 Message block number, begins as 1 and increments by one for every ARGOS message data set. This, combined with the ARGOS repetition rate (section VI), allows the user to track surface drift. Byte 03 will roll-over at 256 and will reset to 1 on each new profile.
- 04 & 05 Serial number, identifies the controller board number. (This may not be the same as instrument number.)
- 06 Profile number, begins with 1 and increases by one for every float ascent.
- 07 Profile length, is the number of six byte STD measurements in the profile. Total number of bytes of STD data from each profile depends on the sampling strategy chosen.
- 08 Profile termination flag byte 2 -see section D
- 09 Piston position, recorded as the instrument reaches the surface.
- 10 & 11 Pump motor time, in two second intervals. (multiply by 2 for seconds)
- 12 Battery voltage, at initial pump extension completion
- 13 Battery current at initial pump extension completion, one count = 13 mA
- 14 Profile piston position
- 15 Air bladder pressure measured in counts - approximately 148 counts
- 16 Battery voltage, with air pump running.
- 17 Battery current, with air pump running.
- 18 & 19 Park temperature, sampled just before instrument descends to target depth.
- 20 & 21 Park salinity, sampled just before instrument descends to target depth.
- 22 & 23 Park pressure, sampled just before instrument descends to target depth.
- 24 Park battery voltage, no load
- 25 Park battery current
- 26 & 27 Surface Pressure as recorded just before last descent with an offset of +5 dbar
- 28 Internal vacuum measure in counts- approximately 101 counts
- 29 Park piston position
- 30 Battery voltage at Sbe pump time
- 31 Battery current at Sbe pump time
Format for message number 2 and higher:

Byte #
- 01 CRC, described in section C.
- 02 Message number
- 03 to 31 6 bytes- in sequence and continuing in the next message**
 2 bytes temperature
 2 bytes salinity
 2 bytes pressure

**Note byte pairs will split between messages. For instance byte 31 of message #2 will contain half of the byte pair for the 5th pressure sample. The other half pressure byte will appear in byte 3 of message #3. See chart below.

Message Format and Sampling Depths

<table>
<thead>
<tr>
<th>BYTE #</th>
<th>MSG 1</th>
<th>MSG 2</th>
<th>MSG 3</th>
<th>MSG 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 & 19</td>
<td>Tp*</td>
<td>3 & 4</td>
<td>Half P 5</td>
<td>P10</td>
</tr>
<tr>
<td>20 & 21</td>
<td>Sp*</td>
<td>5 & 6</td>
<td>T6</td>
<td>T11</td>
</tr>
<tr>
<td>22 & 23</td>
<td>Pp*</td>
<td>7 & 8</td>
<td>S6</td>
<td>S11</td>
</tr>
<tr>
<td>26 & 27</td>
<td>Ps**</td>
<td>9 & 10</td>
<td>P6</td>
<td>P11</td>
</tr>
</tbody>
</table>

Sampling continues as shown above relevant to the number of depth table points sampled. After the last data point in last message a Hex value of FFFF will fill remaining bytes.

* Tp, Sp, and Pp are Park Temperature, Salinity, and Pressure values
** Ps is surface Pressure
*** T, S, and P are Temperature, Salinity, and Pressure values
APEX records a profile during ascent (i.e., upcast). Bottom pressure may change due to several causes, such as variation of insitu density, internal waves, float grounding in shallows, change of float mass, etc. APEX automatic depth adjustment will compensate in most, but not all, cases.

The number of sample points taken is proportional to depth, as per sample depth table below. The first (i.e., deepest) sample is taken at the first point in the depth table above bottom pressure.

Depth Table No. 26

<table>
<thead>
<tr>
<th>Sample Point</th>
<th>Pressure (dbar)</th>
<th>Sample Point</th>
<th>Pressure (dbar)</th>
<th>Sample Point</th>
<th>Pressure (dbar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2000</td>
<td>27</td>
<td>700</td>
<td>53</td>
<td>180</td>
</tr>
<tr>
<td>2</td>
<td>1950</td>
<td>28</td>
<td>650</td>
<td>54</td>
<td>170</td>
</tr>
<tr>
<td>3</td>
<td>1900</td>
<td>29</td>
<td>600</td>
<td>55</td>
<td>160</td>
</tr>
<tr>
<td>4</td>
<td>1850</td>
<td>30</td>
<td>550</td>
<td>56</td>
<td>150</td>
</tr>
<tr>
<td>5</td>
<td>1800</td>
<td>31</td>
<td>500</td>
<td>57</td>
<td>140</td>
</tr>
<tr>
<td>6</td>
<td>1750</td>
<td>32</td>
<td>450</td>
<td>58</td>
<td>130</td>
</tr>
<tr>
<td>7</td>
<td>1700</td>
<td>33</td>
<td>400</td>
<td>59</td>
<td>120</td>
</tr>
<tr>
<td>8</td>
<td>1650</td>
<td>34</td>
<td>380</td>
<td>60</td>
<td>110</td>
</tr>
<tr>
<td>9</td>
<td>1600</td>
<td>35</td>
<td>360</td>
<td>61</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>1550</td>
<td>36</td>
<td>350</td>
<td>62</td>
<td>90</td>
</tr>
<tr>
<td>11</td>
<td>1500</td>
<td>37</td>
<td>340</td>
<td>63</td>
<td>80</td>
</tr>
<tr>
<td>12</td>
<td>1450</td>
<td>38</td>
<td>330</td>
<td>64</td>
<td>70</td>
</tr>
<tr>
<td>13</td>
<td>1400</td>
<td>39</td>
<td>320</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>14</td>
<td>1350</td>
<td>40</td>
<td>310</td>
<td>66</td>
<td>50</td>
</tr>
<tr>
<td>15</td>
<td>1300</td>
<td>41</td>
<td>300</td>
<td>67</td>
<td>40</td>
</tr>
<tr>
<td>16</td>
<td>1250</td>
<td>42</td>
<td>290</td>
<td>68</td>
<td>30</td>
</tr>
<tr>
<td>17</td>
<td>1200</td>
<td>43</td>
<td>280</td>
<td>69</td>
<td>20</td>
</tr>
<tr>
<td>18</td>
<td>1150</td>
<td>44</td>
<td>270</td>
<td>70</td>
<td>10</td>
</tr>
<tr>
<td>19</td>
<td>1100</td>
<td>45</td>
<td>260</td>
<td>71 *4 or Surf</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1050</td>
<td>46</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1000</td>
<td>47</td>
<td>240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>950</td>
<td>48</td>
<td>230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>900</td>
<td>49</td>
<td>220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>850</td>
<td>50</td>
<td>210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>800</td>
<td>51</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>750</td>
<td>52</td>
<td>190</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The SeaBird CTD is not sampled at zero pressure, to avoid pumping the cell dry and/or ingesting surface oil slicks. The shallowest profile point is taken at either 4 dbar or at the last recorded surface pressure plus 5 dbar, whichever value is larger.
C. TEST MESSAGE FORMAT

The test message is sent whenever an I2 command is given, the six transmissions during the startup cycle, and during the six hour surface mode period prior to the first dive. Each test message has 31 Bytes, in hex unless otherwise noted, with the following format:

Byte #

- 01 CRC, described in section C.
- 02 Message block number, begins as 1 and increments by one for every ARGOS message.
- 03 & 04 Serial number, identifies the controller board number. (This may not be the same as instrument number.)
- 05 & 06 Time from start up, in two second intervals (Hex)
- 07 Flag (2) byte
- 08 & 09 Current pressure, in bar
- 10 Battery voltage
- 11 Current Bladder pressure, in counts
- 12 Flag (1) Byte
- 13 Up time, in hours
- 14 & 15 Down time, in hours
- 16 & 17 Park pressure, in bar
- 18 Park piston position, in counts
- 19 Depth correction factor, in counts
- 20 Ballast piston position, in counts
- 21 Fully extended piston position, in counts
- 22 OK vacuum count at launch, in counts
- 23 Ascend time, in intervals
- 24 Target bladder pressure, in counts
- 25 & 26 Profile pressure, in bar
- 27 Profile piston position, in counts
- 28 Deep profile cycle counts
- 29 Month, software version number (in decimal).
- 30 Day, software version number (in decimal).
- 31 Year, software version number (in decimal).

* Flag (2) byte: 1 Deep profile **Flag (1) byte: 1 Trip interval time
 2 Pressure reached zero 2 Profile in progress
 3 25 minute Next Pressure timeout 3 Timer done
 4 piston fully extended before surface 4 UP/ DOWN
 5 Ascend time out 5 Data entry error
 6 Test message at turn on 6 Measure battery
 7 Six hour surface message 7 Piston motor running
 8 Seabird String length error 8 Negative SBE number
D. Telemetry error-checking (CRC)

Because ARGOS data contains transmission errors, the first byte of each message contains an error checking value. This value is a Cyclic Redundancy Check (CRC), and is calculated as a function of the message content (bytes 2 to 32).

- For each message, calculate a CRC value
- Compare the calculated CRC to the transmitted CRC (byte no. 2)
- If the calculated and transmitted CRC values are not equal, the message has been corrupted and should be deleted before further data processing.

Appendix (B) lists a sample program (in BASIC) to calculate the CRC value for a message. This program can be provided upon request in Basic, Fortran or C

E. Conversion from hexadecimal to useful units

The pressure is measured every 6 seconds. Temperature, salinity and pressure are measured and stored at each point in the depth table. Two hex bytes are stored for each sensor. The decimal numbers from the STD sensors are converted to hex for compression in the ARGOS transmission as follows:

- Temperature: 5 digits, 1 milli-degree resolution.
- Salinity: 5 digits, .001 resolution
- Pressure: 5 digits, 10 cm resolution.

To convert the hex ARGOS message back to decimal numbers:

```
<table>
<thead>
<tr>
<th>hex</th>
<th>dec</th>
<th>converted</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature: 3EA6</td>
<td>16038</td>
<td>16.038</td>
<td>C</td>
</tr>
<tr>
<td>Temperature*: F58B</td>
<td>02677</td>
<td>-2.677</td>
<td>C</td>
</tr>
<tr>
<td>Salinity**: 8FDD</td>
<td>36829</td>
<td>36.829</td>
<td></td>
</tr>
<tr>
<td>Pressure: 1D4C</td>
<td>7500</td>
<td>750.0</td>
<td>decibars</td>
</tr>
<tr>
<td>Current: 0A</td>
<td>10</td>
<td>130</td>
<td>mA</td>
</tr>
<tr>
<td>Volts: 99</td>
<td>153</td>
<td>15.7</td>
<td>volts</td>
</tr>
</tbody>
</table>
```

Voltage (V) = counts/10 + .4 (counts is in decimal number) nominally 15 V and decreasing.
Current (mA) = counts *13 (counts is in decimal number)
Vacuum (inHg) = counts *-0.209 + 26.23 (counts is in decimal number) nominally 5 inHg.

*Note regarding negative temperatures (T °C < 0)
Positive temperature range is 0 to 62.535°C (0 to F447 hex)
Negative temperature range is -0.001 to -3.000°C (FFFF to F448 hex).
If (hex value) ≥ F448, then compute FFFF - (hex value) = Y
Convert Y to decimal = dec_Y
(dec_Y + 1) / 1000*-1 = degrees C
The 5 most significant salinity digits are telemetered. The 6 digit salinity number is rounded up and converted to hex. 36.8286 rounds to 36.829 and converts to 8FDD.

VI. MISSIONS

This section lists the parameters for each float covered by this manual. The parameter listing appears when the float is RESET while connected to a terminal.

INSTRUMENT #948
APEX version 06 06 02 sn 1256
1383A79 ARGOS ID number.
090 seconds repetition rate.
224 hours DOWN.
016 hours UP.
2000 d-bar park pressure. P1
030 park piston position. P2
012 ascent rate correction. P3
100 storage piston position. P4
250 piston full extension. P5
2000 d-bar profile pressure. P6
025 profile piston position. P7
113 OK vacuum count. P8
011 ascend time intervals. P9
145 air bladder pressure. PB
255 deep profile count. PD
025 Initial piston extension.

INSTRUMENT #949
APEX version 06 06 02 sn 1257
1383A8B ARGOS ID number.
090 seconds repetition rate.
224 hours DOWN.
016 hours UP.
2000 d-bar park pressure. P1
030 park piston position. P2
012 ascent rate correction. P3
100 storage piston position. P4
251 piston full extension. P5
2000 d-bar profile pressure. P6
025 profile piston position. P7
115 OK vacuum count. P8
011 ascend time intervals. P9
144 air bladder pressure. PB
255 deep profile count. PD
025 Initial piston extension.

INSTRUMENT #950
APEX version 06 06 02 sn 1258
1383A98 ARGOS ID number.
090 seconds repetition rate.
224 hours DOWN.
016 hours UP.
2000 d-bar park pressure. P1
030 park piston position. P2
012 ascent rate correction. P3
100 storage piston position. P4
254 piston full extension. P5
2000 d-bar profile pressure. P6
025 profile piston position. P7
113 OK vacuum count. P8
011 ascend time intervals. P9
145 air bladder pressure. PB
255 deep profile count. PD
025 Initial piston extension.

INSTRUMENT #951
APEX version 06 06 02 sn 1259
1383A9D ARGOS ID number.
090 seconds repetition rate.
224 hours DOWN.
016 hours UP.
2000 d-bar park pressure. P1
030 park piston position. P2
012 ascent rate correction. P3
100 storage piston position. P4
252 piston full extension. P5
2000 d-bar profile pressure. P6
025 profile piston position. P7
113 OK vacuum count. P8
011 ascend time intervals. P9
145 air bladder pressure. PB
255 deep profile count. PD
025 Initial piston extension.

INSTRUMENT #952
APEX version 06 06 02 sn 1260
1383ABE ARGOS ID number.
090 seconds repetition rate.
224 hours DOWN.
016 hours UP.
2000 d-bar park pressure. P1
030 park piston position. P2
012 ascent rate correction. P3
100 storage piston position. P4
247 piston full extension. P5
2000 d-bar profile pressure. P6
025 profile piston position. P7
113 OK vacuum count. P8
011 ascend time intervals. P9
144 air bladder pressure. PB
255 deep profile count. PD
025 Initial piston extension.

INSTRUMENT #953
APEX version 06 06 02 sn 1261
1383AC7 ARGOS ID number.
090 seconds repetition rate.
224 hours DOWN.
016 hours UP.
2000 d-bar park pressure. P1
030 park piston position. P2
012 ascent rate correction. P3
100 storage piston position. P4
251 piston full extension. P5
2000 d-bar profile pressure. P6
025 profile piston position. P7
112 OK vacuum count. P8
011 ascend time intervals. P9
145 air bladder pressure. PB
255 deep profile count. PD
025 Initial piston extension.

INSTRUMENT #954
APEX version 06 06 02 sn 1262
1383AD4 ARGOS ID number.
090 seconds repetition rate.
224 hours DOWN.
016 hours UP.
2000 d-bar park pressure. P1
030 park piston position. P2
012 ascent rate correction. P3
100 storage piston position. P4
248 piston full extension. P5
2000 d-bar profile pressure. P6
025 profile piston position. P7
112 OK vacuum count. P8
011 ascend time intervals. P9
144 air bladder pressure. PB
255 deep profile count. PD
025 Initial piston extension.

INSTRUMENT #955
APEX version 06 06 02 sn 1263
1383AE1 ARGOS ID number.
090 seconds repetition rate.
224 hours DOWN.
016 hours UP.
2000 d-bar park pressure. P1
030 park piston position. P2
012 ascent rate correction. P3
100 storage piston position. P4
254 piston full extension. P5
2000 d-bar profile pressure. P6
025 profile piston position. P7
114 OK vacuum count. P8
011 ascend time intervals. P9
145 air bladder pressure. PB
255 deep profile count. PD
025 Initial piston extension.

INSTRUMENT #956
APEX version 06 06 02 sn 1264
1383AF2 ARGOS ID number.
090 seconds repetition rate.
224 hours DOWN.
016 hours UP.
2000 d-bar park pressure. P1
030 park piston position. P2
012 ascent rate correction. P3
100 storage piston position. P4
245 piston full extension. P5
2000 d-bar profile pressure. P6
025 profile piston position. P7
111 OK vacuum count. P8
011 ascend time intervals. P9
143 air bladder pressure. PB
255 deep profile count. PD
025 Initial piston extension.

INSTRUMENT #957
APEX version 06 06 02 sn 1265
1386900 ARGOS ID number.
090 seconds repetition rate.
224 hours DOWN.
016 hours UP.
2000 d-bar park pressure. P1
030 park piston position. P2
012 ascent rate correction. P3
100 storage piston position. P4
252 piston full extension. P5
2000 d-bar profile pressure. P6
025 profile piston position. P7
115 OK vacuum count. P8
011 ascend time intervals. P9
145 air bladder pressure. PB
255 deep profile count. PD
025 Initial piston extension.

INSTRUMENT #958
APEX version 06 06 02 sn 1266
1386913 ARGOS ID number.
090 seconds repetition rate.
224 hours DOWN.
016 hours UP.
2000 d-bar park pressure. P1
030 park piston position. P2
012 ascent rate correction. P3
100 storage piston position. P4
252 piston full extension. P5
2000 d-bar profile pressure. P6
025 profile piston position. P7
115 OK vacuum count. P8
011 ascend time intervals. P9
146 air bladder pressure. PB
255 deep profile count. PD
025 Initial piston extension.

INSTRUMENT #959
APEX version 06 06 02 sn 1267
1386926 ARGOS ID number.
090 seconds repetition rate.
224 hours DOWN.
016 hours UP.
2000 d-bar park pressure. P1
030 park piston position. P2
012 ascent rate correction. P3
100 storage piston position. P4
254 piston full extension. P5
2000 d-bar profile pressure. P6
025 profile piston position. P7
115 OK vacuum count. P8
011 ascend time intervals. P9
149 air bladder pressure. PB
255 deep profile count. PD
025 Initial piston extension.

Appendix A: Flag Byte Description
Two memory bytes are used, one bit at a time, to store 16 different bits of program flow information. Both of these bytes are telemetered in the test messages sent at startup and for the initial 6 hour surface period. Only flag byte 2 is sent in the data messages, as part of message number 1. Bit one is set for each deep profile and bit 8 is set each time the last SBE sensor value used an arithmetic round up.

Below is a list of what each bit in each byte signifies.

bit
Flag (2) byte:
1 Deep profile
2 Pressure reached zero
3 25 minute NextP timeout
4 Piston fully extended
5 Ascend timed out
6 Test message at turn on
7 Six hour surface message
8 Seabird string length error

bit
Flag (1) byte:
1 Trip interval time
2 Profile in progress
3 Timer done (2 min bladder deflate time.)
4 UP/DOWN
5 Arithmetic round up
6 Measure battery while pumping
7 Piston motor running
8 Negative SBE number

The flag bytes are transmitted as two hex characters with four bits of information encoded in each character. Each hex character can have one of 16 different values as shown in the following table.

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
<th>0000</th>
<th>10</th>
<th>9</th>
<th>1001</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>0001</td>
<td>11</td>
<td>A</td>
<td>1010</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0010</td>
<td>12</td>
<td>B</td>
<td>1011</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0011</td>
<td>13</td>
<td>C</td>
<td>1100</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0100</td>
<td>14</td>
<td>D</td>
<td>1101</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>0101</td>
<td>15</td>
<td>E</td>
<td>1110</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0110</td>
<td>16</td>
<td>F</td>
<td>1111</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>0111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bit 8 is the most significant bit and bit 1 is the least significant bit in the byte.

As an example: if a deep profile ended with the piston fully extended and ascend had timed out, then bits 1, 4 and 5 would be set in the termination byte. This binary pattern, 0001 1001, would be transmitted as the two hex characters, 19.
As another example: if a regular profile ended with the piston fully extended and the 25 minute next pressure had timed out, then bits 3 and 4 would be set in the termination byte. This binary pattern, 0000 1100, would be transmitted as the two hex characters, 0C.

Appendix B: CRC Algorithm in BASIC for 28 bit Id

Below is a sample program (in BASIC) to calculate the CRC value for a message. This program can be provided upon request in Basic, Fortran or C.

DECLARE FUNCTION CRC% (IN() AS INTEGER, N AS INTEGER)
Appendix C: Surface arrival time, and total surface time

Some users may wish to determine surface arrival time, and total surface time, in order to calculate drift vectors.
Although each 31-byte message is time-stamped by ARGOS, there may not be a satellite in view when the float surfaces.

When the float surfaces (ie detects surface pressure recorded before last descent) it will begin ARGOS telemetry. Messages are transmitted in numerical order, starting with message no. 1. When all messages have been transmitted, the cycle starts again at message no. 1.

Elapsed time since surfacing (Te)

\[Te = (m-1) \times n \times r \]

Where:
- \(m \) = message block number (byte 03 of message 01)
- \(n \) = total number of messages to transmit profile
- \(r \) = repetition rate

Total number of messages (n) is described in section IV (b), or may be determined from the ARGOS data. Note (n) may be less than specified in user manual if the float is operating in shallow water, causing reduced profile length.

Repetition rate (r) is the time interval between ARGOS transmissions. This value can be determined from section V, or from the ARGOS data.

Approximate time of surfacing

Subtracting Te from the ARGOS time stamp can determine approximate time of surfacing

Example

Below is message 01 in DS format

```
2001-11-02 22:47:54 1 CF 01 05 02
AF 02 2F 00
85 01 01 01
16 92 17 19
9E 94 01 AD
85 09 1F 48
97 9B 00 46
62 24 0E
```

\(m = \) message block number (byte 03) = 5
\(n = \) total number of messages to transmit profile = 11
\(r = \) repetition rate = 62 seconds

\[Te = \text{elapsed time since surfacing} = (m-1) \times n \times r = (5-1) \times 11 \times 62 \text{ s} = 2728 \text{ s} = 00h \ 45m \ 28s \]
Approximate time of arrival at surface:
ARGOS time stamp - $T_e = 22:47:54 - 00:45:28 = 22:02:26$

Total time spent at surface transmitting (T_{surf}):

This is determined by subtracting ascent time from UP time.

$T_{surf} = (UP\ time, \ hr) - (bottom\ pressure)/(ascent\ rate\ 0.08\ dbar/s)/3600$

Bottom pressure is telemetered as bytes 7 & 8 of message 02.

Example:

For bottom pressure of 2000 dbar, and UP time of 18 hours

$T_{surf} = (18\ hr) - (2000/0.08/3600) = 11\ hr$
In 2002 Service Argos notified its users there were a limited number of 20-bit IDs available and to begin preparing for a transition to 28-bit IDs. The 28 bit-IDs reduced from 32 to 31 the number of data bytes in each message. Data provided by Argos will consist of 31 hex bytes per message. Data acquired by use of an uplink receiver will consist of 32 hex bytes per message. The first byte, when using an uplink receiver, is a 28-bit ID identifier used by Argos and is not represented in the Apex Data formats included in this manual.