User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(Firmware Revision: Apf9iSbe41cpDandelion-062907)

Dana Swift*
School of Oceanography
University of Washington
Seattle, Washington 98195

July 29, 2007

*swift@ocean.washington.edu, (206) 543-6697

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

Revision Log.

The following revision log summarizes the history of this Iridium APEX User Manual.

$Log: IridiumApex.tex,v $

Revision 1.7 2007/07/29 14:57:04 swift

Revised manual to be suitable for use in preparing Amy’s Dandelion floats
for deployment.

Revision 1.6 2007/07/29 14:47:18 swift
Fine-tuned mission parameters and ballasting parameters based on simulations.

Revision 1.5 2007/06/22 19:49:29 swift
Modifications to reflect Amy Bower’s email of Fri, 22 Jun 2007 11:12:08 -0400.

Revision 1.4 2007/06/21 19:32:44 swift
Change to handle parametric representation of the activation pressure.

Revision 1.3 2007/06/09 18:58:42 swift
Initial implementation of Amy Bower’s Dandelion floats.

Revision 1.2 2006/11/22 02:54:56 swift
Change to facilitate automatic revision control.

Revision 1.1 2006/11/03 19:08:57 swift
Added user manual to CVS control.

Revision 1.1 2006/04/14 23:21:31 swift
First draft of the Iridium-APEX user manual.

Revision 0.8 2006/04/14 23:18:49 swift
Added a section on the remote control facility.

Revision 0.7 2006/04/14 17:32:06 swift
Added a section describing mission configuration facility.

Revision 0.6 2006/04/11 15:34:03 swift
Added a section on decoded and processed data.

Revision 0.5 2006/04/11 14:49:21 swift
Added section on recovery mode operations and functionality.

Revision 0.4 2006/04/10 16:15:42 swift
Finished initial revision of the parametric model of Iridium APEX missions.

Revision 0.3 2006/04/09 16:12:08 swift
Added a section describing the remote host functions and set-up.

RCS file : Iridium Apex.tex,v i Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

Revision 0.2 2005/12/27 23:29:56 swift
Added a section describing the profile cycle model.

Revision 0.1 2005/12/21 17:15:50 swift
Predistribution partial draft.

RCS file : Iridium Apex.tex,v ii Revision : 1.7

(9%s)
Contents

Revision Log.

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(Firmware Revision: Apf9iSbed4lcpDandelion-062907)

1 Introduction 1
2 Controlling Iridium APEX behavior: A parametric model. 1
2.1 Sample miSSIONS.o e e e e e e e 1
2.2 Deconstructing the profile cycle. Lo Lo 2
2.2.1 Pressure-activation phase (optional). oL 3

2.2.2 The mission prelude. 4

2.2.3 Profile from park depth. oo 4

2.2.4 Deep profile. 7

3 Mission configuration. 8
3.1 The Configuration Supervisor. 11
3.1.1 Missions impossible. 12

3.1.2 Missions insane. 13

4 Remote control (a.k.a 2-way commands). 13
4.1 The (linux) chkeconfig utility. 17
4.2 Group-wise or fleet-wise remote control.o oL Lo L. 19

5 Recovery mode. 19
6 Telemetered data. 20
6.1 Format specification for APF9i firmware. 20
6.1.1 Format for park-phase PT samples.. 21

6.1.2 Format for low resolution PTS samples. 21

6.1.3 Format for high resolution PTS samples. 21

6.1.4 Format for GPS fixes. 22

6.1.5 Format for biographical and engineering data. 23

6.2 Engineering log files. L 23

7 Processed data. 23

RCS file : Iridium Apex.tex,v iii

Rewvision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment

(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

8 The remote UNIX host. 23
8.1 System requirements. L L e 24
8.2 Remote host set up. e 24

8.2.1 Setting up the default user on the remote host. 24
8.2.2 Setting up the remote host for individualized remote control. 27
8.2.3 Setting up the remote host for fleet-wise remote control. 27

A Sample: Iridium message file. 27

B Sample: Decoded and processed data. 29

C Sample: Iridium engineering log file. 31

D Encoding of hydrographic data. 33

E Implementation notes for Amy Bower’s dandelion floats. 39
E.1 Thumbnail description of the dandelion mooring. 39
E.2 Self-activation and operation of dandelion floats. 40
E.3 Disorganized Miscellanea. e 40

RCS file : Iridium Apex.tex,v iv Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

List of Figures

1 Schematic of a PnP mission with cycle length n = 4. The park level is the same for all
profiles. Every fourth profile is a deep profile. The shallow blip prior to the (special)
first profile represents pressure activation.o Lo 1

2 Schematic of a PnP mission with cycle length n = 1. Every profile parks shallow but
profiles deep. The shallow blip prior to the (special) first profile represents pressure
activation. L L e e e e 2

3 Schematic of a degenerate PnP mission with cycle length n=254. Every cycle parks
and profiles from the park level. The shallow blip prior to the (special) first profile
represents pressure activation. Lo Lo oL Lo Lo 3

List of Tables

RCS file : IridiumApex.tex,v v Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

1 Introduction

WARNING: This Iridium APEX user manual applies only to Apf9i firmware revision 062907.

You should treat this manual as if it were a hint of what the firmware actually does. If your style
does not include compulsive skepticism and a neurotic obsession with understanding why things
do (or don’t) work then my style of float development and techonology transfer might not be for
you. When you need a Reference Manual, you should go straight to The Source which was written
entirely in the C programming language and is freely available.

2 Controlling Iridium APEX behavior: A parametric model.

The Iridium APEX firmware is highly configurable so that the user can control float behavior by
adjusting the values of more than 20 parameters and by selecting several optional modes and features.

2.1 Sample missions.

The ability to configure the float within a 20(plus) dimensional parameter space means that that
range of possible float behaviors is practically infinite. However, some general characteristics span
the whole parameter space while many potentially useful kinds of missions are excluded entirely.
Figures 1, 2, and 3 represent common mission cycles within the usable parameter space.

Figure 1 represents the most general kind of mission cycle and is referred to as Park-n-Profile (PnP).
The original motivation for PnP was as a mechanism to balance the competing objectives of energy
savings versus direct measurement of salinity drift in the deeper water. The basic idea was to collect
most profiles from the park level but occasionally execute a deep profile to facilitate evaluation of
CTD performance. The “n” in PnP refers to the cycle length of the PnP mechanism; every nt”

profile is a deep profile.
\/l LRk H/4 \

Figure 1: Schematic of a PnP mission with cycle length n = 4. The park level is the same for all
profiles. Every fourth profile is a deep profile. The shallow blip prior to the (special) first profile
represents pressure activation.

RCS file : IridiumApex.tex,v 1 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

The first profile is special because it is executed immediately after the mission prelude, does not
drift at the park level, and is also a deep profile. The first profile will be telemetered within
24 hours after the mission is activated. The exact timing will depend on the user’s specific parameter
selections. This feature was implemented to satisfy the often-heard request for a profile to be
executed immediately after deployment.

Figure 2 represents a PnP mission with n = 1 (ie., a P1P mission). In this way, PnP firmware can
be programmed to collect lagrangian data from a shallower level while still being able to collect deep
profiles. As with the P4P mission in Figure 1, the first profile is executed immediately after the

mission prelude.
\/l H/z H/ H/4 \

113546888.6153140

Figure 2: Schematic of a PnP mission with cycle length n = 1. Every profile parks shallow but
profiles deep. The shallow blip prior to the (special) first profile represents pressure activation.

Figure 3 represents a degenerate case of the PnP model where n is large and the park level has been
chosen to be deep. This mission cycle is so common amongst APEX users that it was implemented
as a special case. The value n = 254 is a special sentinel value that disables the PnP feature
so that only park-level mission parameters (ie., park pressure and park piston position) are used
for controlling the profile cycle; the profile-level parameters (ie., profile pressure and profile piston
position) are ignored.

As with the previous two examples, the first profile is executed immediately after the mission prelude.

2.2 Deconstructing the profile cycle.

Details of the firmware architecture and design are outside the scope of this user manual. However,
deconstructing the profile cycle into its constituent elements will give meaning to many of the
configuration parameters.

The Apf9i firmware design makes fundamental use of the concept of “sequence points” for controlling
the flow of the profile cycle. A sequence point is defined to be a point where one phase of the mission
cycle transitions to the next phase. Most of the sequence points are based on time but there are
several sequence points that are event-based. Given a properly functioning Apf9i controller, the
firmware guarantees the phase transition at each sequence point regardless of the health of any
other float component.

RCS file : IridiumApex.tex,v 2 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

113547181.3914420

Figure 3: Schematic of a degenerate PnP mission with cycle length n=254. Every cycle parks and
profiles from the park level. The shallow blip prior to the (special) first profile represents pressure
activation.

The schematics below illustrate different parts of the mission cycle:

1. The pressure-activation phase.

2. The mission prelude.

w

. A profile from the park level.

S

. A deep profile.

2.2.1 Pressure-activation phase (optional).

The pressure-activation feature is an optional phase of the mission that preceeds the mission prelude.
It was designed to accomodate requests from ship’s crew to be able to deploy the float without being
required to start it with a magnet. One event-based sequence point is implemented that activates
the mission prelude if the pressure exceeds the activation threshold (ie., 1500 dbars).

e L —=mmmmmmmmmmmmmmeee e |
—4————————————— +———— +——— +—— +- Time
Pl [.
rl I Sequence Points
el .. e
s| B . L = Mission prelude
s| B = Pressure-activation
ul
rl
el

Pressure activation mode is not “on” by default. The user must enable pressure activation mode via
the interactive user interface (see Section 3). Enabling the pressure activation mode immediately
induces the firmware to perform a self-test of the float.

RCS file : Iridium Apex.tex,v 3 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

In order for pressure activation to work the float has to be able to sink from the surface down to the
activation pressure (ie., 1500 dbars). Obviously, if the float is too buoyant to sink then it can never
self-activate. Enabling pressure activation mode causes the firmware to put the float into a state
of minimum buoyancy; the buoyancy pump is fully retracted to deflate the oil bladder and the air
solenoid valve is opened to deflate the air bladder. Then the firmware enters a nonterminating loop
where the the CTD is queried for pressure every two hours. If the pressure is less than the activation
pressure then the Apf9i controller puts itself back to sleep for another two hours. However, if the
pressure exceeds the activation threshold then the firmware launches the mission and enters the
mission prelude.

Warning: The float must be ballasted to become neutrally buoyant at a pressure that exceeds the
activation pressure (ie., 1500 dbars). Obviously, if the float can not sink to the activation pressure
then it can never self-activate.

2.2.2 The mission prelude.

The purpose of the mission prelude is mainly to allow the float to transmit a fix of its deployment
location and to telemeter its mission programming parameters. The mission prelude is the time
period between mission activation and the first descent. The sequence point 'L’ is time-based and is
the transition between the mission prelude and the first descent. The period of the mission prelude
is user-defined (see Section 3).

P|

r| Sequence Points

el mmemmemmmmm—m———e e
s| L = Mission prelude
sl

u|

r|

el

When the mission is launched either manually or else by the pressure activation mechanism, the
firmware puts the float into a state of maximum buoyancy by fully extending the buoyancy pump
to inflate the oil bladder and then inflating the air bladder.

2.2.3 Profile from park depth.

The profile cycle for a shallow profile consists of four phases (each associated with a time-based
sequence point): descent (F), park (K), profile (P), and telemetry (C). Two additional event-based
sequence points (S,T) ordinarily cause phase transition before their associated time-outs force the
phase transition.

RCS file : Iridium Apex.tex,v 4 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment

(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

| mm e VR —— |
| mmmm e P ~mmmmmmmmmmme- | |
e R | ! |
|--- F ----- | ! s | T

B e e et e +-———+- Time

P| I I

r| | | Sequence Points

el | U A

sl | I F = Descent

sl o I . K = Park

ul e e e e e e e e S = Surface detect

r| P = Profile

el T = Telemetry
I C = Cycle

This is the simplest kind of profile cycle which APEX floats have executed since their initial devel-
opment. The float sinks to its park depth, drifts for a period of time, profiles to the surface, and
then telemeters its data. However, unlike APEX with ARGOS telemetry, the length of time for
each profile cycle is not fixed. The profile cycle for Iridium APEX ends as soon as the telemetry is
successfully completed or the profile cycle time-out (C) expires, whichever happens first. Typically,
an Iridium float is on the surface for only 15 minutes or so before the next profile cycle begins.

For this kind of profile cycle, the end of the park phase (K) coincides with the end of the “down-time”
and the beginning of the “up-time”. The sequence point C coincides with the end of the up-time.
The (maximum) length of the profile cycle is the down-time plus the up-time.

Descent phase —The profile cycle starts with the descent phase. The float queries the CTD for
the surface pressure and then the buoyancy pump is retracted to the park position. The
float sinks until the descent period expires (ie., the firmware forces a phase transition at the
sequence-point F in the schematic above). Hourly pressure measurements are logged as well
as one at the completion of the buoyancy pump retraction. These pressure measurements are
referred to as descent marks and are telemetered as engineering data.

Park phase —Active ballasting is accomplished and park-level PT measurements are collected
during the park phase. The Apf9i wakes once each hour to accomplish these tasks. A PTS
sample is collected at the end of the park phase.

Active ballasting: The float wakes each hour to monitor the pressure and make buoyancy
adjustments if three consecutive measurements violate a 10 decibar dead-band on either
side of the user-specified park pressure. Measurements that are within the dead-band
or that completely cross the dead-band reset the violation counter and will not induce
buoyancy adjustments.

Park-level PT samples: The float collects hourly low-power PT measurements and teleme-
ters them as hydrographic data. Refer to Section 6.1.1 for their data format. Hourly
salinity data are not measured due to energy considerations.

Park-level PTS sample: The float collects one PTS sample at the end of the park phase
(K). Refer to Section 6.1.2 for its data format.

Profile phase —As might be expected, the profile phase is the most complicated of the profile
cycle. Three asynchronous processes are active during the profile cycle: Ascent rate control,

RCS file : IridiumApex.tex,v 5 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

hydrographic sampling, and surface detection. These processes operate on a 10 second heart-
beat; the Apf9i controller sleeps for 10 seconds then wakes to attend to these processes before
going back to sleep.

Ascent rate control: As an initialization step of the profile phase, the buoyancy engine
adds a user-specified initial increment of buoyancy to start the float ascending toward the
surface. Thereafter, the firmware monitors the pressure at 5 minute intervals to determine
if the average ascent rate has been maintained above 0.08 decibars/sec. If the ascent rate
falls below this threshold then the buoyancy engine adds a user-specified increment of
buoyancy.

Hydrographic sampling: Iridium APEX is designed to collect hydrographic profiles with
relatively high vertical resolution. The Sbed4lcp CTD has a continuous profiling (CP)
mode that runs asynchronously and autonomously from the float’s Apf9i controller. When
CP-mode is active, the CTD collects 1-Hz samples and stores them internally in non-
volatile memory.

The Apf9i shuts down CP-mode 4 decibars below the surface to avoid contaminating the
conductivity cell with ingested surface scum. To protect against pressure-sensor drift,
the Apf9i commands the Sbedlcp to shut down 4 decibars deeper than the most recent
surface pressure measurement. As a fail-safe measure, the Sbe4lcp will shut itself down
when its pressure sensor reaches 2 decibars (but no attempt is made to account for drift
of the pressure sensor).

After the float reaches the surface the Apf9i commands the Sbedlcp to sort the 1-Hz
samples into 2 decibar bins and compute the arithmetic mean of the samples in each
bin. The resulting bin-averaged profiles have 2 decibar resolution though we often refer
to them as “high resolution” or “continuous profiles”. These high resolution profiles are
telemetered using the format defined in Section 6.1.3.

The Sbe4lcp also has a spot-sampled mode that is roughly simlar to the Sbe4l used
on ARGOS APEX floats. This Iridium firmware implements an optional mixed-mode
sampling strategy in order to save energy in the deep water where gradients are small.
At the user’s discretion, the float can be programmed to collect spot samples in the deep
water and automatically transistion to continuous profiling when the float ascends to
the CP Activation Pressure. To disable this feature and force continuous profiling from
top to bottom then the user should specify the activation pressure to be deeper than
the float’s operating range. Spot-samples are formated according to Section 6.1.2 and
collected according to a pressure table that is hard-coded in firmware.

Surface detection: The surface detection algorithm terminates true when the float ascends
to a pressure that is within 4 decibars of the most recent surface pressure measurement®.
Surface detection causes the profile to be terminated, another increment of buoyancy to
be added by the buoyancy pump, and transition to the telemetry phase.

Telemetry phase —If the end of the antenna is even a centimeter below the water’s surface then
telemetry will not be possible. Therefore, the telemetry phase starts with precise surface
detection using its SkySearch algorithm. The heart of this algorithm involves attempting
to register the LBT with the Iridium system. If the algorithm terminates true then GPS
acquisition and telemetry can proceed; otherwise, the buoyancy engine adds another increment
of buoyancy and sleeps for one telemetry-retry period before repeating the attempt.

1 Actually, the surface detection algorithm is more complicated than this but the complications handle pathological
situations. Refer to the C source code (src/profile.c) in your distribution.

RCS file : Iridium Apex.tex,v 6 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

After determining that the float can see the sky then the LBT is shut down and the GPS engine
is used to acquire the float’s location. After acquiring the fix then the GPS is shut down and
the LBT is reregistered with the Iridium system. The float places a call via the Iridium system
to the remote host and logs in using the float’s username and password. Once logged into the
remote host, the float downloads its new configuration from the remote host and uploads its
hydrographic and engineering data to the remote host. Finally, the float logs out of the remote
host and reprograms its mission paramters according to the new configuration file that it just
received from the remote host.

2.2.4 Deep profile.

For PnP cycle lengths less than 254, the first profile cycle will be a deep one as will profile cycles
for which the internal profile counter (Prfld) is an integral multiple of the profile cycle length. For
example, a P4P mission will execute a deep profile cycle when the internal profile counter is 1, 4, 8,
12, and so on. The following C source code represents the test executed by firmware to determine
if the current profile cycle is a deep one:

(PnpCycleLength<254 && ((!(PrfId%PnpCyclelength)) || PrfId==1) ? Yes : No;

The profile cycle for a deep profile consists of five phases (each associated with a time-based sequence
point): descent (F), park (K), deep-descent (D), profile (P), and cycle (C). Three additional event-
based sequence points (Q,S,T) ordinarily cause phase transition before their associated time-outs
force the phase transition.

[—==m e C === |
[=== e e e P - | |
[-===mmmmm e D ———————- | | |
[-==--—- K ——————mm————- | | | |
|--= F -——-- | I I s | T I
Tt o e Tt o e Time
P| | | |
r| | | | Sequence Points
el | | ettt
sl | | | F = Descent
s| | | | K = Park
ul | Q = DeepProfile
r| | D = DeepDescent
el [. S = SurfaceDetect
[P = Profile
| . T = Telemetry
[Q C = Cycle

For this kind of profile cycle, the end of the deep-descent phase (D) coincides with the end of the
“down-time” and the beginning of the “up-time”. The sequence point C coincides with the end of
the up-time. The (maximum) length of the profile cycle is the down-time plus the up-time.

RCS file : IridiumApex.tex,v 7 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

Descent phase —Refer to description on page 5.

Park phase —Refer to description on page 5. The park phase is shortened for the deep profile
cycle in order to allow time to descend from the park level to the deep target pressure.

Deep descent phase —The purpose of the deep descent phase is to allow the float to descend
from the park level (eg., 1000 dbars) to the pressure where the deep profile should begin (eg.,
2000 dbars). The maximum time allowed for the deep descent phase is user specified (see
Section 3).

The deep descent phase begins by retracting the piston from the park piston position to the
profile piston position. During the descent, the pressure is monitored every five minutes to
determine of the target pressure has been reached (ie., sequence point Q).

Sequence point Q —If the float descends to its deep target pressure before the deep descent
phase times out then the profile piston position is incremented by one count (but no piston
extension occurs). The intent is to reduce the descent speed during the next deep profile
so that the float will reach the target pressure closer to the end of the down time (ie.,
sequence point D).

Sequence point D —If the deep descent period times out before the target pressure is
reached then the profile piston position is decremented by one count (but no piston
retraction occurs). The intent is to increase the descent speed during the next deep pro-
file so that the float will reach the target pressure before the end of the down time (ie.,
sequence point D).

Transition to the profile phase is forced at either sequence point Q or D.
Profile phase —Refer to description on page 5.

Telemetry phase —Refer to description on page 6.

3 Mission configuration.

The deconstruction of the profile cycle in Section 2.2 will provide the framework for understanding
how various parameter values determine the nature of the mission. The float’s mission is configured
according to the following mission parameters:

RCS file : Iridium Apex.tex,v 8 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment

(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)
User: £5048
Pwd: Oxafb3
Pri: ATDT0012065550123 Mhp
Alt: ATDT0012065551234 Mha
0420 ToD for down-time expiration. (Minutes) Mtc
01440 Down time. (Minutes) Mtd
00600 Up time. (Minutes) Mtu
00480 Ascent time-out. (Minutes) Mta
00359 Deep-profile descent time. (Minutes) Mtj
00360 Park descent time. (Minutes) Mtk
00360 Mission prelude. (Minutes) Mtp
00015 Telemetry retry interval. (Minutes) Mhr
00060 Host-connection time-out. (Seconds) Mht
1000 Continuous profile activation. (Decibars) Mc
1000 Park pressure. (Decibars) Mk
2000 Deep-profile pressure. (Decibars) Mj
065 Park piston position. (Counts) Mbp
012 Deep-profile piston position. (Counts) Mbj
010 Ascent buoyancy nudge. (Counts) Mbn
022 Initial buoyancy nudge (Counts) Mbi
004 Park-n-profile cycle length. Mn
124 Maximum air bladder pressure. (Counts) Mfb
096 0K vacuum threshold. (Counts) Mfv
250 Piston full extension. (Counts) Mff
100 Piston storage position. (Counts) Mfs
2 Logging verbosity. [0-5] D

A description of each mission parameter follows:

User & Pwd —The user-name and password used by the float to log into the remote host. The
display shows an encoded version of the password rather than the password itself.

Pri & Alt —The AT dialstrings used by the Iridium LBT (ie., modem) to dial the primary and
alternate remote hosts. Two remote hosts are needed—reliance on only one remote host is
dangerous and strongly discouraged.

TimeOfDay —This allows the user to specify that the down-time should expire at a specific time
of day (ToD). For example, the ToD feature allows the user to schedule profiles to happen at
night.

The ToD is expressed as the number of minutes after midnight (GMT). The valid range is
(0-1439 minutes. Any value outside this range will cause the ToD feature to be disabled.

Down-time —The total amount of time allowed for the descent and park phases of the profile cycle.
The sequence points K (Section 2.2.3) and D (Section 2.2.4) mark the end of the down-time.
The valid range is 1 minute to 30 days.

Note: If the TimeOfDay feature is enabled then the length of the whole profile cycle will turn
out to be an integral number of days. The user should specify the down-time to be precisely
1 day less than the desired length of the profile cycle. For example, if profiles are to be executed
every 10 days then the down-time should be specified to be 9 days (ie., 12960 minutes).

RCS file : Iridium Apex.tex,v 9 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

Up-time —The total amount of time allowed for the profile and telemetry phases of the profile
cycle. Sequence points K [C] (Section 2.2.3) and D [C] (Section 2.2.4) mark the beginning [end]
of the up-time. The valid range is 1 minute to 24 hours.

Ascent time-out —The maximum amount of time allowed for the profile phase to complete. Se-
quence points K [P] (Section 2.2.3) and D [P] (Section 2.2.4) mark the beginning [end] of the
ascent time-out period. The valid range is 1 minute to 10 hours.

Deep-profile descent time —The maximum amount of time allowed for the float to descend from
the park pressure to the deep target pressure. Sequence points K [D] (Section 2.2.4) mark the
beginning [end] of the deep-descent period. The valid range is 0-8 hours.

Park descent time —The amount of time allowed for the float to descend from the surface to the
park pressure before the park phase (and active ballasting) begins. The valid range is 1 minute
to 8 hours.

Mission prelude —The amount of time allowed after float activation before the float begins its
first descent. The valid range is 1 minute to 9 hours. However, the mission prelude should be
made at least 8 hours long in order to assure that the float has time to ascend all the way to
the surface before the prelude expires.

Telemetry retry interval —The amount of time after initiation of a telemetry attempt before
initiating the next attempt (ie,. if the former fails). The valid range is 1 minute to 6 hours.

Host-connection time-out —The maximum amount of time allowed (after sending the AT di-
alstring) to receive the “CONNECT” response from the remote modem. The valid range is
30 seconds to 5 minutes.

Continuous profile activation —The target pressure for activating the continuous profile. Dur-
ing the profile phase, the firmware will stop collecting spot samples and initiate continuous
profiling as soon as the float detects a pressure less than the target pressure. Any finite value
is valid.

Park pressure —The target pressure for the active ballasting mechanism. The float firmware
will seek to maintain the float at this pressure during the park phase. The valid range is
0-2000 decibars.

Deep-profile pressure —The target pressure for a deep profile. During the deep-descent phase,
the pressure is monitored a 5 minute intervals. The profile phase is initiated when the float
detects a pressure greater than this target pressure. The valid range is 0-2000 decibars.

Park piston position —An initialization value for the piston position at the park pressure. The
autoballasting mechanism will automatically adjust this value to drive the float to the park
pressure. The valid range is 1-254 counts.

Deep-profile piston position —An initialization value for the piston position at the deep-profile
pressure. The Apf9i firmware will automatically adjust this value to drive the float to the
deep-profile pressure in the time allowed. The valid range is 1-254 counts.

Ascent buoyancy nudge —The amount that the piston is extended when the ascent-control al-
gorithm determines that more buoyancy is needed to maintain the minimum ascent rate of
8 millibars/second. The valid range is 1-254 counts.

RCS file : IridiumApex.tex,v 10 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

Initial buoyancy nudge —The amount that the piston is extended at the beginning of the profile
phase to get the float to start ascending. This same extension is also applied when the surface
detection algorithm terminates. The valid range is 1-254 counts.

Park-n-profile cycle length —This parameter determines how often deep profiles should be exe-
cuted. For example, if this value is 4 then profiles 4, 8, 12, and so on will be deep profiles. The
valid range is 1-254. The value 254 is a special sentinel value that disables the park-n-profile
feature.

Maximum air bladder pressure —This parameter determines the cut-off pressure when inflat-
ing the air bladder. The valid range is 1-240 counts.

OK vacuum threshold —This parameter determines the threshold internal pressure during the
float’s self-test at the beginning of the mission. If the internal pressure exceeds this threshold
then the self-test will fail and the mission will be aborted. After the mission starts, this value
is never used again. The valid range is 1-254 counts.

Piston full extension —This parameter determines the maximum piston extension allowed to
prevent the buoyancy pump from self-destructing. The valid range is 1-254 counts.

Piston storage position —This parameter determines the preferred piston extension during stor-
age and shipment. The valid range is 1-254 counts.

Logging verbosity —An integer in the range [0,5] that determines the logging verbosity with
higher values producing more verbose logging. A verbosity of 2 yields standard logging.

The values of all mission parameters can be set via the firmware’s command-mode user interface. In
addition, a subset of these parameters can be set via the remote control user interface (see Section 4).

3.1 The Configuration Supervisor.

The objective of the Configuration Supervisor is to guard against various common classes of miscon-
figurations. When examining a given mission configuration, the Configuration Supervisor applies
~ 40 tests that seek to detect parameters or interactions between parameters that could be harmful
or fatal to a deployed float.

However, the Configuration Supervisor is not a substitute for a thinking human brain—
misconfigurations exist that can not be detected by firmware but which are effectively fatal to a
deployed float. Thorough laboratory simulations of new configurations are strongly encouraged and
careful predeployment testing of each float is essential.

Each of the ~ 40 tests is classified as either a constraint or a sanity check. Constraint violations
are likely fatal to a deployed float and the Configuration Supervisor will refuse to accept parameters
or combinations of parameters that violate a constraint. Sanity checks detect various suspicious
conditions that are not likely fatal but that are probably inadvisable or unintended.

Each time the Configuration Supervisor encounters a violation, a verbal description of the violation is
given together with the C-source code for the test that was violated. The C-source code is expressed
in terms of the mission configuration parameters and can be used to figure out how to correct the
problem.

RCS file : IridiumApex.tex,v 11 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

3.1.1 Missions impossible.

Constraint violations represent missions that are not possible or else potentially fatal to a deployed
float. The Configuration Supervisor will reject mission configurations that violate constraints. The
following is a description of each constraint:

Range constraints are applied to most mission parameters:

0 < Verbosity < 5

1 Count < AirBladderMaxP < 240 Counts

1 Count < OkVacuumCount < 254 Counts

1 Count < PistonBuoyancyNudge < 254 Counts

1 Count < DeepProfilePistonPos < 254 Counts

1 Count < PistonFullExtension < 254 Counts

1 Count < PistonlnitialBuoyancyNudge < 254 Counts

1 Count < ParkPistonPos < 254 Counts

1 Count < PistonStoragePosition < 254 Counts

1 < PnPCycleLen < 254

0 Decibars < ParkPressure < 2000 Decibars
0 Decibars < DeepProfilePressure < 2000 Decibars
0 Minute < DeepProfileDescent Time < 8 Hours

0 Minute < DownTime < 30 Days

1 Minute < AscentTimeOut < 10 Hours

0 Minute < ParkDescentTime < 8 Hours

0 Minute < TimePrelude < 6 Hours

5 Minutes < TelemetryRetry < 6 Hours

0 Minutes < UpTime < 24 Hours

30 Seconds < ConnectTimeOut < 5 Minutes

The up-time must allow for a deep profile plus 2 hours for telemetry:
mission.TimeUp >= (mission.PressureProfile/dPdt) + 2 x Hour

The up-time must allow for a park profile plus 2 hours for telemetry:
mission.TimeUp >= (mission.PressurePark/dPdt) + 2 x Hour

The up-time has to be greater than the ascent time-out period:
mission.TimeUp > mission. TimeOut Ascent

The down-time has to be greater than the park-descent time plus deep-profile descent time:
mission.TimeDown > mission.TimeParkDescent + mission.TimeDeepProfileDescent

The profile pressure must be greater than (or equal to) the park pressure:
mission.PressureProfile >= mission.PressurePark

The primary dial command must begin with AT:
Istrncmp(mission.at, AT,2)

The alternate dial command must begin with AT:
Istrnemp(mission.alt,AT,2)

RCS file : Iridium Apex.tex,v 12 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

3.1.2 Missions insane.

The Configuration Supervisor will warn the operator about violations of sanity checks but will not
reject the configuration. The following is a list of each sanity check:

SBE41CP not designed for spot-sampling the main thermocline - CP mode recommended.
mission.PressureCP >= 750

Ascent time should be sufficient for a deep profile:
mission.TimeQutAscent >= (mission.PressureProfile/dPdt) + 1 * Hour

Ascent time should be sufficient for a park profile:
mission.TimeOutAscent >= (mission.PressurePark/dPdt) + 1 x Hour

Up time should be sufficient to guarantee at least 2 hours for telemetry:
massion.TimeUp >= mission.TimeOut Ascent + 2 * Hour

Park descent period should be compatible with park pressure:
mission.TimeParkDescent >= mission.PressurePark/dPdt

Park descent period should not be excessive:
mission.TimeParkDescent <= 1.5 * mission.PressurePark/dPdt + 1 *+ Hour

Deep-profile descent period should be compatible with profile pressure:
mission.TimeDeepProfileDescent >= (mission.PressureProfile—mission.PressurePark)/dPdt)

Down time should be sufficient for active ballasting algorithm to adjust buoyancy:
massion.TimeDown > mission.TimeDeepProfileDescent + mission.TimeParkDescent + 2 x Hour

Deep-profile descent period should not be excessive:
mission.TimeDeepProfileDescent <= 1.5 * (mission.PressureProfile — mission.PressurePark)/dPdt + Hour

Profile piston position should be compatible with park piston position:
mission.PistonDeepProfile Position <= mission.PistonParkPosition

Maximum air-bladder pressure seems insane:
120 < mission.Max Air Bladder < 128

The float serial number should be greater than zero:
mission.FloatId > 0

4 Remote control (a.k.a 2-way commands).

The ability to accomplish 2-way communication and remote control via the Iridium system was the
major motivator for implementing remotely configurable operation.

WARNING: Remote control of Iridium floats is a new and advanced feature that requires a careful
and knowledgeable operator. For example, it is quite possible to send the float remote commands
that will render it incapable of re-establishing a communications session with the remote host.
Without physical possession of the float, this condition is not recoverable and therefore the float

RCS file : IridiumApex.tex,v 13 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

would be effectively killed. The Configuration Supervisor (see Section 3.1) attempts to protect
against some common classes of misconfigurations. However, there is no substitute for a careful,
knowledgeable, prudent, and conservative operator. Furthermore, it is my advice that new
mission configurations should always first be tried on a laboratory simulator before
being applied to a float in the field.

Remote control of the mission is accomplished by creating a configuration file, “mission.cfg”, on the
float’s remote-host computer. The name of the configuration file can not be changed and the syntax
of configuration files is tightly controlled and accomplished through the use of “configurators”. A
lexical analyzer is implemented in firmware to parse the configuration file and install the configurator
arguments as the float’s new mission configuration.

Strict syntax rules are rigidly enforced as a protective measure against accidental and perhaps fatal
misconfiguration. Every line in the configuration file must be either a blank line (ie., all white
space), a comment (first non-whitespace character must be '#’), or a well-formed configurator.
Configurators have a fixed syntax:

ParameterName (argument) [CRC]

where ParameterName satisfies the regex “[a-zA-Z0-9]{1,31}” (ie., maximum of 31 characters), argu-
ment satisfies the regex “.*”, and the [CRC] field is optional (but strongly encouraged) and, if present,
must satisfy the regex “[(0x[0-9a-fA-F]{1,4})]”. That is, the opening and closing brackets are literal
characters “[]” that bracket a string that represents a 4-16 bit hexidecimal number. If the CRC field
is present then it represents the 16-bit CRC of the configurator: “ParameterName(argument)”. The
CRC of the configurator is computed and checked against the CRC specified in the configurator.
The CRCs must have the same value or else the configuration attempt fails. The CRC is generated
by the CCITT polynomial?.

It is important to note that any white space in the argument is treated as potentially significant.
Every byte (including white space) between the parentheses is considered to be a non-negligible part
of the argument. In cases where the argument string is converted to a number then the presence of
extraneous white space won’t matter. However, if the argument represents, say, a login name or a
passord then extraneous space would be fatal.

Only one configurator per line is allowed and the configurator must be the left-most text on the
line except that it can be preceeded by an arbitrary amount of whitespace. No text, except for
an arbitrary amount of white space, is allowed to the right of the rightmost closing parenthesis.
The maximum length of a line (including white space) is 126 bytes and the maximum length of the
ParameterName is 31 bytes.

The order that configurators are given in the file does not matter except that if configurators are
repeated then only the last one is relevant. The ParameterName of the configurator is not case
sensitive. However, the argument is potentially case sensitive as, for example, a user name or
password.

If any syntax error is detected in the configuration file or if the argument of a configurator fails a range
check then the configuration attempt fails in its entirety. In this case then the new configuration
attempt is completely disregarded and the previous configuration remains active.

2Ssee the comment section of the C source file, “crc16bit.c”, for details of the CRC generator.

RCS file : Iridium Apex.tex,v 14 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

Configurators virtually never come in complete sets. It is normal to adjust the values of some mission
parameters while leaving others unchanged. However, certain mission parameters interact with each
other and it is very important that the float operator understand the details of these interactions
because float operation can be significantly affected. Moreover, be mindful that the float itself will
change the values of some mission parameters (eg., park piston position, deep profile piston position)
during the course of the mission.

The following is an example of a valid configuration file, mission.cfg:

Activate continuous profiling at 1000dbars (spot sampling in deep water).
CpActivationP (1000) [0xF2CC]

Allow 5 hours to descend from the surface to the park pressure.
ParkDescentTime (300) [0xB880]

Set the park pressure to be 1000dbars.
ParkPressure(1000) [0x899C]

Set the park-n-profile cycle length to 4.
PnPCycleLen(4) [0x2825]

Set the down-time to 5 days
DownTime (7200) [0xBC7F]

A description of each configurator follows:

ActivateRecoveryMode() —This configurator induces the float into recovery mode and initiate
telemetry at regular intervals given by the telemetry retry period. This configurator requires
no argument.

AirBladderMaxP (Counts) —The cut-off pressure (in A/D counts) for air-bladder inflation. The
air pump will be deactivated when the air bladder pressure exceeds the cut-off. The valid range
of the argument is 1-240 counts. This configurator is for disaster recovery only and should
rarely be necessary.

AscentTimeOut(Minutes) —The initial segment of the uptime that is designated for profiling
and vertical ascent. If the surface has not been detected by the time this timeout expires then
the profile will be aborted and the telemetry phase will begin. The valid range of the argument
is 1 minute to 10 hours.

AtDialCmd() —The modem AT dialstring used to connect to the primary host computer. Be
sure to include “ATDT” as the leading part of the string. Changing both AtDialCmd() and
AltDialCmd() at the same time is dangerous and strongly discouraged.

AltDialCmd() —The modem AT dialstring used to connect to the alternate host computer. Be
sure to include “ATDT” as the leading part of the string. Changing both AtDialCmd() and
AltDialCmd() at the same time is dangerous and strongly discouraged.

ConnectTimeOut(Seconds) —The number of seconds allowed after dialing for a connection to
be established with the host computer. The valid range of the argument is 30-300 sec.

RCS file : IridiumApex.tex,v 15 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

CpActivationP (Decibars) —The pressure where the Apf9i firmware transitions from subsam-
pling the water column (in the deep water) to where the continuous profiling mode of the
SBE41CP is activated for a high resolution profile to the surface.

WARNING: The SBE41CP is not designed for subsampling in the presence of significant
temperature gradients. The pump period for spot samples is insufficient to drive thermal mass
errors down to an acceptable level and will result in degraded hydrographic data. An activation
pressure deeper than the main thermocline is strongly encouraged. A minimum activation
pressure of 1000 dbar is recommended and a sanity-check violation will be encountered if the
activation pressure is less than 750 dbars.

DeepProfileDescentTime(Minutes) —This time determines the maximum amount of time al-
lowed for the float to descent from the park pressure to the deep profile pressure. The deep
profile is initiated when the deep profile descent time expires or else the float reaches the deep
profile pressure, whichever occurs first. The valid range of the argument is 0-8 hours.

DeepProfilePistonPos(Counts) —The Apf9i firmware retracts the piston to the deep profile
piston position in order to descend from the park pressure to the deep profile pressure. The
deep profile piston position should be set so that the float can reach the deep profile pressure
before the deep profile descent period expires. The valid range of the argument is 1-254 counts.

DeepProfilePressure(Decibars) —This is the target pressure for deep profiles. The valid range
of the argument is 0-2000 decibars.

DownTime(Minutes) —This determines the length of time that the float drifts at the park pres-
sure before initiating a profile. The valid range of the argument is 1 minute to 30 days.

Note: If the TimeOfDay feature is enabled then the length of the whole profile cycle will turn
out to be an integral number of days. The user should specify the down-time to be precisely
1 day less than the desired length of the profile cycle. For example, if profiles are to be executed
every 10 days then the down-time should be specified to be 9 days (ie., 12960 minutes).

FlashErase() —This command requires no argument and causes the FLASH memory chip to be
reformatted. WARNING: All contents of the FLASH file system will be destroyed.

FlashCreate() —This command requires no argument and causes the FLASH file system to be
rebuilt. This command is time consuming (~30 minutes) and energy-expensive. The process
involves writing a test pattern to each 8KB block of the FLASH ram and then re-reading the
contents to ensure that the test pattern matches what was written. If bad blocks are discovered
then they are added to a bad-block list. Blocks identified in the bad block list are not used for
storage. WARNING: All contents of the FLASH file system will be destroyed.

FloatId() —The 4-digit float identifier. This configurator is for disaster recovery only and should
never be necessary.

MaxLogKb(Kilobytes) —The maximum size of the logfile in kilobytes. Once the log grows
beyond this size, logging is inhibited and the logfile will be automatically deleted at the start
of the next profile. The valid range of the argument is 5-60 kilobytes.

ParkDescentTime(Minutes) —This time determines the maximum amount of time allowed for
the float to descent from the surface to the park pressure. The active ballasting phase is
initiated when the park descent time expires. The valid range of the argument is 0-8 hours.

RCS file : IridiumApex.tex,v 16 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

ParkPistonPos(Counts) —The Apf9i firmware retracts the piston to the park piston position in
order to descend from the surface to the park pressure. The park piston position should be
set so that the float will become neutrally buoyant at the park pressure. The valid range of
the argument is 1-254 counts.

ParkPressure(Decibars) —This is the target pressure for the active ballasting algorithm during
the park phase of the mission cycle. The valid range of the argument is 0-2000 decibars.

PnPCycleLen() —A deep profile is initiated when the internal profile counter is an integral mul-
tiple of park-n-profile cycle length. All other profiles will be collected from the park pressure
to the surface.

Pwd() —The password used to login to the host computer. This configurator is dangerous and
intended for disaster recovery only—its use is strongly discouraged.

TelemetryRetry(Minutes) —This determines the time period between attempts to successfully
complete telemetry tasks after each profile. The valid range of the argument is 5 minutes to
6 hours.

TimeOfDay —This allows the user to specify that the down-time should expire at a specific time
of day (ToD). For example, the ToD feature allows the user to schedule profiles to happen at
night.

The ToD is expressed as the number of minutes after midnight (GMT). The valid range is
(0-1439 minutes. Any value outside this range will cause the ToD feature to be disabled.

UpTime(Minutes) —This determines the maximum amount time allowed to execute the profile
and complete telemetry. The valid range of the argument is 1 minute to 1 day.

User() —The login name on the host computer that the float uses to upload and download data.
This configurator is dangerous and intended for disaster recovery only—its use is strongly
discouraged.

Verbosity() —An integer in the range [0,4] that determines the logging verbosity with higher
values producing more verbose logging. A verbosity of 2 yields standard logging. Increased
verbosity will probably require increased logging capacity via the MaxLogKb() configurator.

4.1 The (linux) chkconfig utility.

The ocean is very skilled at finding and exploiting the weaknesses of both the float and its opera-
tor. The remote control feature offers new and useful applications for floats but it also necessarily
introduces new weaknesses.

One particularly worrisome weakness is the potential for accidental misconfiguration of a float via
2-way commands as described in Secion 4. The chkconfig utility helps to protect against common
kinds of misconfigurations by subjecting a mission configuration file to the Configuration Supervisor
(see Section 3.1). The chkconfig utility reads a proposed mission configuration file and merges its
parameters with the float’s existing configuration. The merged configuration is then subjected to
the Configuration Supervisor to determine if the merged configuration is valid.

For example, suppose that the float’s current configuration is represented by the configurators in
mission.current:

RCS file : IridiumApex.tex,v 17 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

AscentTimeOut (540)
AtDialCmd (ATDT0012066859312)
AtDialCmd (ATDT0012066163256)
ConnectTime0Out (60)
CpActivationP (1000)
DeepProfileDescentTime (300)
DeepProfilePistonPos(16)
DeepProfilePressure (2000)
DownTime (1440)

MaxLogKb (40)
ParkDescentTime (300)
ParkPistonPos (24)
ParkPressure(1000)
PnPCyclelLen(1)
TelemetryRetry (15)

UpTime (660)

Verbosity(2)

Next suppose that the mission is to be configured for rapid cycling by applying a single configurator
in mission.cfg:

Configure the down-time for 8 hours
DownTime(480) [0x2493]

To check the validity of the proposed configuration for rapid cycling, execute the command:

chkconfig if=mission.cfg cfg=mission.current

(Apr 14 2006 22:17:37) chkconfig Validating the float’s current configuration.

[snippagel

(Apr 14 2006 22:17:37) chkconfig The float’s current configuration is accepted.

(Apr 14 2006 22:17:37) chkconfig Validating the float’s new configuration.

(Apr 14 2006 22:17:37) configure() Parsing configurators in "mission.cfg".

(Apr 14 2006 22:17:37) configure() DownTime (480) [0x605A] [DownTime(480)].

(Apr 14 2006 22:17:37) configure() Configuration CRCs and syntax OK.

(Apr 14 2006 22:17:37) ConfigSupervisor() Constraint violated: cfg->TimeDown > cfg->TimePar! t+cfg->TineDeepProfil t
(Apr 14 2006 22:17:37) ConfigSupervisor() Sanity check violated: cfg->TimeDown > cfg->TimeDeepProfil + cfg->TimeP + 2xHour
(Apr 14 2006 22:17:37) ConfigSupervisor() Configuration rejected.

(Apr 14 2006 22:17:37) configure() Configuration rejected by configuration supervisor.

(Apr 14 2006 22:17:37) chkconfig Configuration file invalid.

The Configuration Supervisor detected violations of one constraint and one sanity check—the pro-
posed configuration is rejected on the basis of the constraint violation.

The constraint violation indicates that the down-time must be (strictly) greater than the park descent
period plus the deep-profile descent period. The definition of the sequence points in Section 2.2
requires that the down-time includes the park-descent phase, the park phase, and the deep-descent
phase. Since 480 minutes of down-time does not allow for 300 minutes for each of the two descent
periods then the proposed configuration is an example of an impossible mission.

If the down-time is lengthed to 601 minutes to make the mission possible then the chkconfig command
responds with

(Apr 14 2006 22:54:22) chkconfig Validating the float’s current configuration.

RCS file : Iridium Apex.tex,v 18 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment

(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)
[snippagel
(Apr 14 2006 22:54:22) chkconfig The float’s current configuration is accepted.
(Apr 14 2006 22:54:22) chkconfig Validating the float’s new configuration.
(Apr 14 2006 22:54:22) configure() Parsing configurators in "mission.cfg".
(Apr 14 2006 22:54:22) configure() DownTime (601) [CRC=0x17A2] [DownTime(601)].
(Apr 14 2006 22:54:22) configure() Configuration CRCs and syntax OK.
(Apr 14 2006 22:54:22) ConfigSupervisor() Sanity check violated: cfg->TimeDown > cfg->TimeDeepProfileDescent + cfg->TimeParkDescent + 2%Hour
(Apr 14 2006 22:54:22) ConfigSupervisor() Configuration accepted.
[snippagel
(Apr 14 2006 22:54:22) ../bin/chkconfig Configuration file OK.

This fixed the constraint violation but the Configuration Supervisor still warns of a sanity check
violation. The sanity check indicates that the proposed configuration does not allow sufficient time
for the active ballasting mechanism to make any buoyancy adjustments. This condition is not likely
to be fatal to the float. However, the float will not likely to be able to perform the intended mission
because the active ballasting mechanism will not drive the float to the programmed park pressure.

4.2 Group-wise or fleet-wise remote control.

As an advanced technique, it is possible to write configurations suitable for uniform control of groups
or fleets of floats. Such techniques facilitate some kinds of field experiments while obviously limiting
some kinds of flexibility or individualization. This technique is still experimental and beyond the
scope of this manual (for now). Contact the author for more details.

5 Recovery mode.

As its name suggests, recovery mode is intended primarily to facilitate post-deployment recovery
of the float from the ocean. However, its operational behaviors are general enough to allow for
many other useful applications, too. Recovery mode is fundamentally a remote control feature.
Section 4 describes the facilility for remote control of Iridium floats using 2-way commands. The
ActivateRecoveryMode() command is used to both initiate and maintain recovery mode for as
long as the operator desires.

The recovery mode cycle operates on the telemetry-retry period. Each cycle starts by ensuring that
the piston is fully extended and the air bladder is fully inflated. Then a GPS fix is obtained and
telemetry is initiated to upload the GPS fix and a small amount of engineering data to the remote
host. The pathname for the file has the pattern Floatld. YYMMDDhhmm where Floatld is the 4-
digit float identifier and YYMMDDhhmm represents the date & time when the recovery cycle was
initiated. It is a simple matter to arrange for the remote host to automatically relay the GPS fix
to an Iridium handset on-board the ship. This allows recovery operations to be conducted without
on-shore aid.

The new mission configuration file will also be downloaded from the remote host. If the new mission
configuration file contains the ActivateRecoveryMode() command then the float will go to sleep
for one telemetry-retry period and then wake up to repeat the recovery mode cycle. If the new mission
configuration file does not contain the ActivateRecoveryMode() command then subsequent float
behavior depends upon what the float was doing before recovery mode was initiated. If the float
was in its mission prelude then the mission prelude is re-initiated3.

3The mission prelude is not merely continued where it left off when recovery mode was activated; the mission
prelude is completely restarted

RCS file : IridiumApex.tex,v 19 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

On the other hand, if the float’s mission was in progress when recovery mode was initiated then upon
termination of recovery mode the mission resumes where it left off. That is, if profile N had been
telemetered just prior to initiation of recovery mode then the descent phase of profile cycle N+1 will
begin as soon as recovery mode is terminated.

6 Telemetered data.

Iridium floats telemeter two kinds of data for each profile cycle and these data are transferred
as separate files: message files and log files. Message files contain hydrographic data and follow
a naming convention Floatld.Profileld.msg where Floatld is the 4-digit serial number of the float
controller and Profileld is the 3-digit profile counter. Log files contain detailed engineering data
with time-stamped diagnostics of float operations. Examples of message files and log files from
actual floats can be found in Appendixes A and C. It will be helpful to refer to these examples as
you read this section.

6.1 Format specification for APF9i firmware.

This section summarizes the format specification for hydrographic data telemetered by Iridium
floats. The “official” format specification can be found in the “src¢” directory of your distribution.
Any discrepancy between src/FormatNotes and the information in this manual should be resolved
in favor of the former.

Iridium message files end with a ”.msg” extension. Each iridium message file consists of blocks of
similar data presented in the order that they were collected during the profile cycle. This firmware
revision includes five blocks of data:

1. Park-phase PT samples: These are hourly low-power PT samples collected during the park
phase of the profile cycle.

2. Low resolution PTS samples: The deep parts of the profile can be represented using low-
resolution spot samples collected at predetermined pressures. Low resolution spot sampling in
the deep water was implemented as an energy savings measure.

3. High resolution PTS samples: The shallower parts of the profile can be represented with high
resolution (ie., 2 decibar) bin-averaged PTS samples. In continuous profiling mode, the CTD
samples at 1Hz and stores the data for later binning and averaging.

4. GPS fixes: After the profile is executed and the float reaches the surface, the location of the
profile is determined via GPS.

5. Biographical and engineering data: Various kinds of biographical and engineering data are
collected at various times during the profile cycle.

Usually, only one telemetry cycle is required to upload the data to the remote host computer.
However, sometimes the iridium connection is broken or the quality of the connection is so poor that
the float will abort the telemetry attempt, wait a few minutes, and then try again. Data blocks 4
and 5 will be repeated for each telemetry cycle of a given profile.

RCS file : IridiumApex.tex,v 20 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

A description of the format for each of these blocks of data follows. A sample Iridium-message file
is available in Appendix A.

6.1.1 Format for park-phase PT samples.

Hourly low-power PT samples are collected during the park phase of the profile cycle. The park
phase is also when active ballasting is done. Each sample includes the date and time of the sample,
the unix epoch (ie., the number of seconds since 00:00:00 on Jan 1, 1970), the mission time (ie.,
the number of seconds since the start of the current profile cycle), the pressure (decibars), and the
temperature (°C). For example:

[-—————- date ----- | UnixEpoch MTime P T
ParkPt: Jul 03 2006 18:37:34 1151951854 14414 988.18 7.4971
ParkPt: Jul 03 2006 19:37:31 1151955451 18011 992.15 7.3613
ParkPt: Jul 03 2006 20:37:31 1151959051 21611 998.23 7.3428
ParkPt: Jul 03 2006 21:37:31 1151962651 25211 1000.38 7.2806
ParkPt: Jul 03 2006 22:37:31 1151966251 28811 1003.01 7.2844

6.1.2 Format for low resolution PTS samples.

The SBE41CP that is used on iridium floats has features that enable subsampling of the water
column (similar to the SBE41) as well as the ability to bin-average a continuous sampling of the
water column. For subsampled data, the values of pressure, temperature, and salinity are not
encoded but are given in conventional units (decibars, °C, PSU). For example:

$ Discrete samples: 6

$ P t s
1002.59 3.912 34.4573 (Park Sample)
1000.11 3.929 34.4547
947 .36 4.035 34.4454
897 .56 4.163 34.4303
847.54 4.344 34.4104
798.09 4.478 34.3934

6.1.3 Format for high resolution PTS samples.

For conintuously sampled data, 2-decibar bins are used for bin-averaging. These data are encoded
as three 16-bit integers (PTS) and then an 8-bit integer that represents the number of samples in
the bin:

Nov 05 2006 23:38:59 Sbed4lcpSerNo[1520] NSample[11134] NBin[495]
00000000000000[2]

RCS file : Iridium Apex.tex,v 21 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

002B5CE0885115
003C5CE188511F
00505CE088511E
00645CE088511D
00785CDF88521C
008C5CDF88521B
00OAO5CDF88511A
00B45CDC88511A
00C85CAD885A1A
00DC5C8D886418
00F05C88886919
01045C88886A19
01185C74887618
012C5C4E88BB15
[snippage. . .]

2684144D874814
2698145C874D14

The first 4-bytes of the encoded sample represents the pressure in centibars. The second 4-bytes
represents the temperature in millidegrees. The third 4-bytes represent the salinity in parts per
million. The final 2-bytes represent the number of samples collected in the 2dbar pressure bin.

For example, the encoding: 26980EDES86A014 represents a bin with (0x14=) 20 samples where
the mean pressure was (0x2698=) 988.0dbars, the mean temperature was (0OxOEDE=) 3.806C, and
the mean salinity was (0x86A0=) 34.464PSU. The PTS values were encoded as 16-bit hex integers
according to the C-source code found in Appendix D.

Integers in square brackets ’[]’ indicate replicates of the same encoded line. For example, a line that
looks like: 00000000000000[2] indicates that there were 2 adjacent lines with the same encoding....all
zeros in this case.

6.1.4 Format for GPS fixes.

Each telemetry cycle begins with the float attempting to acquire a GPS fix. The fix includes the
amount of time required to acquire the fix, the longitude and latitude (degrees), the date and time
of the fix, and the number of satellites used to determine the fix. For example:

GPS fix obtained in 98 seconds.
lon lat mm/dd/yyyy hhmmss nsat
Fix: -152.945 22.544 09/01/2005 104710 8

Positive values of longitude, latitude represent east, north hemispheres, respectively. Negative values
of longitude, latitude represent west, south hemispheres, respectively. The date is given in month-
day-year format and the time is given in hours-minutes-seconds format.

If no fix was acquired then the following note is entered into the iridium message:

RCS file : Iridium Apex.tex,v 22 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

Attempt to get GPS fix failed after 600 seconds.

6.1.5 Format for biographical and engineering data.

These data have the format, "key” ="value”, as shown in the following examples:

ActiveBallastAdjustments=5
AirBladderPressure=119
AirPumpAmps=91
AirPumpVolts=192
BuoyancyPumpOnTime=1539

Interpretation of these data requires detailed knowledge of firmware implementations and is beyond
the scope of this manual.

6.2 Engineering log files.

The engineering log files contain time-stamped entries of what the float was doing at any given time.
Every nook and cranny of the float firmware has self-monitoring features built in that are a synthesis
of self-adaptive and user-controlled behaviors. The self-adaptive nature stems from the fact that
if the float firmware detects problems or difficulties then engineering log entries are automatically
generated as an aid to on-shore diagnostics. The user-controlled nature stems from the fact that the
user can remotely adjust the verbosity of the engineering logs using the 2-way Verbosity command.
Refer to Section 4 for information about 2-way (ie., remote) float configuration.

7 Processed data.

Decoding and processing the message files from this Iridium implementation is relatively easy because
the data are ASCII and mostly self-describing. Only the high resolution hydrographic data are
encoded although some of the engineering data must be processed through calibration equations.
Appendix D contains the C source code used to encode the high resolution data and Appendix B
contains an example profile after decoding and processing has been applied.

8 The remote UNIX host.

This Iridium implementation uses a modem-to-modem communications model. The float initiates a
telephone call to a remote host computer, logs into the remote host with a username and password,
executes a sequence of commands to transfer data, and then logs out. The communications session
is float-driven

RCS file : IridiumApex.tex,v 23 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

With respect to the remote host, there is no difference between the float logging in and a human
logging in. The communications session is initiated and fully controlled by the float. On the other
hand, the float is not naturally adaptable or interactive like a human would be and so an unusual
amount of fault tolerance has been built into both sides of the communications session.

An important fault tolerance measure is redundancy in the form of two similarly configured remote
hosts each with its own dedicated telephone line. This is optional but recommended. Ideally, these
two remote hosts should be separated far enough from each other that power outages or telephone
outages are not likely to simultaneously affect both remote hosts. The float firmware is designed to
automatically switch to the alternate remote host if with the primary remote host appears to be out
of service.

8.1 System requirements.

This Iridium implementation is strongly tied to the use of a UNIX computer as the remote host (ie.,
Microsoft operating systems are not suitable). The most important “system requirement”
is a system administrator that is familiar, comfortable, and competent in a UNIX
environment. While many different flavors of UNIX could be made to work, development was done
using RedHat Linux (versions 7-9). RedHat Linux (version 9) will be assumed for the remainder of
this section.

The mgetty package must be installed and configured to monitor a Hayes-compatible external
modem attached to one of the serial ports. For information on how to install and configure the
mgetty package, refer to the mgetty documentation supplied with RedHat Linux. If you customize
the login prompt, make sure that it includes the phrase “login:”. Similarly, make sure that the
password prompt includes the phrase “Password:”. The float will not successfully log in if these two
phrases are not present.

Once mgetty is installed and configured properly, you should be able to log into the remote host
via a modem-to-modem connection from another computer. You should test this using the following
communications parameters: 4800baud, no parity, 8-bit data, 1 stop-bit.

8.2 Remote host set up.

Once each telemetry cycle, the float downloads “mission.cfg” from the home directory where the float
logs in and this new mission configuration becomes active as the last step before the telemetry cycle
terminates (see Section 4). In the context of a UNIX environment, this simple mechanism allows for
great flexibility for remotely controlling floats individually, in groups, or fleet-wise. It is also flexible
in that it is possible to switch which model is used even after floats have been deployed. Finally, a
UNIX-based remote host facilitates easy speciation of floats as well as for new float developments
with no requirement for backward compatibility.

8.2.1 Setting up the default user on the remote host.

Another fault tolerance measure requires creation of a default user on the remote host. Begin by
creating a new iridium group to which the default user and all floats will belong. As root, execute
the command:

RCS file : Iridium Apex.tex,v 24 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

groupadd -g1000 iridium
Next, create an account for the default user using iridium as the username:

adduser -s/bin/tcsh -¢”Iridium Apex Drifter” -g”iridium” -ul000 -d/home/iridium iridium
Then give the new user a password by executing (as root):

passwd iridium

For the convenience of the float manager, you might also want to change the permissions on the
float’s home directory:

chmod 750 “iridium.
The file, /etc/passwd, will contain the following entry:
iridium:x:1000:1000:Iridium Apex Drifter:/home/iridium:/bin/tcsh

The remainder of the set-up for this float should be done while logged into the remote host as the
default user (ie., iridium). Create two directories:

mkdir ~/bin ~/logs
and populate the ~/bin directory with the Swift Ware xmodem utilities rx and sx as well as the
chkconfig utility. These three files are in the support directory of your distribution.
Finally, use emacs to create the following three ascii files: .cshrc, .rxrc, and .sxrc:
.cshrc: This file configures the t-shell at login time. You can modify the configuration to suit yourself
so long as your customizations do not interfere with the effects that the three commands below
have. In particular, it is important that the float’s bin directory be in the path before any of

the system directories. This will ensure that the float’s version of the utilities chkconfig, rx,
and sx will be used rather than the system’s utilities with these same names.

set the hostname
set hostname=‘hostname*

add directories for local commands
set path = (. “/bin /bin /sbin /usr/sbin /usr/local/bin)

set the prompt
set prompt=""$hostname": [$cwd]> "

RCS file : Iridium Apex.tex,v 25 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

.rxrc: This is the configuration file for the Swift Ware implementation the xmodem receive utility.
Swift Ware rx implements the standard xmodem protocol except that a nonstandard 16-bit
CRC is used. Beware that the float will not be able to transfer any hydrographic or engineering
data to the remote host using the system version of rx. Make sure that the LogPath references
the default user’s logs directory or else potentially valuable logging/debugging information will
be irretrievably lost.

This is the configuration file for ’rx’, the
SwiftWare xmodem receive utility.

set the default debug level (range: 0-4)
Verbosity=>5

specify the name of the log file
LogPath=/home/iridium/logs/rxlog

enable (AutolLog!=0) or disable (AutoLog==0) the auto-log feature
AutoLog=1

specify ascii mode (BinaryMode==0) or binary mode (BinaryMode!=0)
BinaryMode=0

specify CRC mode (16bit or 8bit)
CrcMode=16bit

.sxrc: This is the configuration file for the Swift Ware implementation the xmodem send utility.
Swift Ware sx implements the standard xmodem protocol except that a nonstandard 16-bit
CRC is used. Beware that new mission configurations will not be downloaded from the remote
host to the float if system version of sx is used. Make sure that the LogPath references the
default user’s logs directory or else potentially valuable logging/debugging information will
be irretrievably lost.

This is the configuration file for ’sx’, the
SwiftWare xmodem send utility.

set the default debug level (range: 0-4)
Verbosity=5

specify the name of the log file
LogPath=/home/iridium/logs/sxlog

enable (Autolog!=0) or disable (AutolLog==0) the auto-log feature
AutoLog=1

specify fixed packet type (128b or 1k)
PktType=1k

RCS file : Iridium Apex.tex,v 26 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

8.2.2 Setting up the remote host for individualized remote control.

The ability to individualize each float is implemented by each float having its own account on the
remote host. The steps to set up the remote host are analagous to those for setting up the default
user (see Section 8.2.1). For example, to create an account for float 5047 then make sure the iridium
group exists (see Section 8.2.1) and then execute the following command (as root):

adduser -s/bin/tcsh -¢”Iridium Apex Drifter” -g”iridium” -ul5047 -d/home/f5047 5047

Then give the new user a password and change the permissions of the float’s home directory as shown
for the default user. Be sure to configure the float to use this username and password (see
Section 3). The file, /etc/passwd, will contain the following entry:

£5047:x:15047:1000: Iridium Apex Drifter:/home/f5047:/bin/tcsh

The remainder of the set-up for this float follows very closely that of the default user and should be
done while logged into the remote host as the float (ie., f5047). Create bin and logs directories in
the float’s home directory and populate the bin directory with the Swift Ware xmodem utilities rx
and sx as well as the chkconfig utility.

Finally, copy the three ascii files .cshre, .rxrc, and .sxrc from the default user’s home directory to
the float’s home directory. Be sure to edit these files so that the LogPath points to the float’s logs
directory or else potentially valuable logging/debugging information will be irretrievably lost.

8.2.3 Setting up the remote host for fleet-wise remote control.

The flexibility inherent with individualized float control necessarily increases the level of operational
management required—each float has to be considered and controlled individually. However, fleet-
wise management of floats is also made possible by configuring the float to use a fleet-wise username.
This is in contrast to Section 8.2.2 where each float was configured with a unique username (based
on the float serial number). The steps to set up the remote host for fleet-wise control are virtually
the same as those in Sections 8.2.1 & 8.2.2 except that the username and password are fleet-wise
parameters. Be sure to configure each float in the fleet with the fleet-wise username and password.

A Sample: Iridium message file.

The following is an example Iridium-message file (5135.009.msg) from profile 9 of UW float 5135.
The blocks with park-phase PT data and high resolution PTS data have been snipped to save space.
The actual message file is included in the manual directory your distribution.

ParkPt: Oct 27 2006 09:12:21 1161940341 21614 991.13 5.0624
ParkPt: Oct 27 2006 10:12:18 1161943938 25211 997.14 5.0385
ParkPt: Oct 27 2006 11:12:18 1161947538 28811 994.93 5.0252
[snippage...]

ParkPt: Nov 05 2006 12:12:18 1162728738 810011 999.88 5.0748

RCS file : IridiumApex.tex,v 27 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment

(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)
ParkPt: Nov 05 2006 13:12:18 1162732338 813611 999.87 5.0815
ParkPt: Nov 05 2006 14:12:18 1162735938 817211 1001.27 5.1691

$ Profile 5135.009 terminated: Sun Nov 5 23:33:42 2006
$ Discrete samples: 22
$ 1Y t s

999.76 5.1389 34.6385 (Park Sample)
1995.95 2.4262 34.7183
1947.22 2.5096 34.7160
1898.18 2.5933 34.7124

[snippage...]
1098.41 4.7406 34.6413
1047.72 4.9210 34.6328
997.88 5.1765 34.6345
Nov 05 2006 23:38:59 SbedicpSerNo[1520] NSample[11134] NBin[495]
00000000000000[2]
002B5CE0885115
003C5CE188511F
00505CEO088511E
00645CE088511D
00785CDF88521C
008C5CDF88521B
00AO5CDF88511A
00B45CDC88511A
[snippage...]
2670144B874714
2684144D874814
2698145C874D14
GPS fix obtained in 65 seconds.
lon lat mm/dd/yyyy hhmmss nsat
Fix: 106.738 -19.100 11/05/2006 234740 7
Apf9iFwRev=051906
ActiveBallastAdjustments=0
AirBladderPressure=124
AirPumpAmps=69
AirPumpVolts=191
BuoyancyPumpOnTime=1899
BuoyancyPumpAmps=216
BuoyancyPumpVolts=172
CurrentPistonPosition=199
DeepProfilePistonPosition=16
GpsFixTime=65
FloatId=5135
ParkDescentPCnt=7
ParkDescentP[0]=5
ParkDescentP [1]=45
ParkDescentP[2]=78
ParkDescentP [3]=95
ParkDescentP[4]=98
ParkDescentP [5]1=99
ParkDescentP [6]1=99
ParkPistonPosition=71
Park0Obs={ 999.8dbar, 5.139C, 34.6385PSU }

RCS file : IridiumApex.tex,v 28 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment

(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

ProfileId=009
ObsIndex=21
QuiescentAmps=6
QuiescentVolts=198
RtcSkew=8
Sbe41cpAmps=12
Sbed41cpVolts=190
Sbe41cpStatus=0x0000
status=0x0001
SurfacePistonPosition=177
SurfacePressure=0.01
Vacuum=77

<EQT>

B Sample: Decoded and processed data.

The following is an example of decoded and processed data for profile 9 of UW float 5135. The
blocks with park-phase PT data and PTS data have been snipped to save space.

$Revision: 1.2 $§ $Date: 2006/11/24 23:58:15 $

E lat lon date time zbot 2zmax sh co
H -19.10 106.74 11/05/2006 23.794 * 1996 * %

Processed engineering data:
BatteryVoltage=15.7V VoltCount=198
AirBladderPressure=7.0"Hg AirBladderPressureCount=124
Vacuum=-7.0"Hg VacuumCount=77
BottomPistonPosition=16

IAirPump=266mA AmpCount=69
IHighPressurePump=858mA AmpCount=216
IQuiescent=12.4mA AmpCount=6
ISbed41cp=37mA AmpCount=12
VAirPump=15.2V VoltCount=191
VHighPressurePump=13.7V VoltCount=172
VLoad=13.7V VoltCount=172
VQuiescent=15.7V VoltCount=198
VSbed41cp=15.1V VoltCount=190
PumpMotorSeconds=1899 sec
DeepProfilePistonPosition=16
ParkPistonPosition=71
SurfacePistonPosition=177
SurfacePressure=0 dbar
ProfileTermination=0x0001 : Deep profile.
Sbe41cpStatus=0x0000

P P P P P PP PP DD PP P D P DD L PP PP PP L L L L P

Raw engineering meta data:

RCS file : Iridium Apex.tex,v 29

stnid
5135.009

n
515

APEX-Seabird (051906) Iridium Message Parser & Calibration Applicator [SwiftWarel]

Cmd Line: /www/argo/bin/ApexSbelr051906-parser if=5135.009.msg of=5135.009.edf

Rewvision : 1.7

—~
(o))
N
»
~—

P P P P P P PP DD PD PP P PP P DD PD PP PP D P D DL PR P PP PP L L PR P

T

o0 O

RCS file : Iridium Apex.tex,v

NFix=1
Fix(First):
F 47.2f 47.4f %7.4f §7.4f)7.4f 5.1f Y4u

p

.30
.00
.00
10.

12.

14.

16.

18.

20.
[snippage. ..
986.
988.
997.

00
00
00
00
00
00

00
00
88

//

23.
23.
23.
23.
23.
L7750
.7750
L7720
. 7250

t
7760
7770
7760
7760
7750

.1970
.2120
.1765

lon

34.
34.
34.
34.
34.
34.
34.
34.
34.

34.
34.
34.

ActiveBallastAdjustments=0
AirBladderPressure=124
AirPumpAmps=69
AirPumpVolts=191
Apf9iFwRev=051906
BuoyancyPumpAmps=216
BuoyancyPumpOnTime=1899
BuoyancyPumpVolts=172
CurrentPistonPosition=199
DeepProfilePistonPosition=16
FloatId=5135
GpsFixTime=65
ObsIndex=21
ParkDescentPCnt=7
ParkDescentP[0]=5
ParkDescentP[1]=45
ParkDescentP[2]=78
ParkDescentP [3]=95
ParkDescentP [4]=98
ParkDescentP[5]=99
ParkDescentP [6]=99
ParkObs={ 999.8dbar,
ParkPistonPosition=71
ProfileId=009
QuiescentAmps=6
QuiescentVolts=198
RtcSkew=8
Sbed41cpAmps=12
Sbe41cpStatus=0x0000
Sbed41cpVolts=190
SurfacePistonPosition=177
SurfacePressure=0.01
Vacuum=77
status=0x0001

s
8970
8970
8970
8970
8980
8980
8970
8970
9060

6320
6370
6345

Amy Bower’s Dandelion Experiment
(Firmware Revision: Apf9iSbed4lcpDandelion-062907)

23.
23.
23.
23.
23.
23.
23.
23.
23.

a

User Manual: Iridium Apex

5.139C,

theta
7751
7757
7743
7739
7725
7721
7717
7682
7208

.1133
.1280
.0919

23.
23.
23.
23.
23.
23.
23.
23.
23.

27.
27.
27.

lat Julian-sec

sigma
6314
6313
6317
6318
6330
6331
6325
6335
6542

3705

3727
3749

30

34.6385PSU }

date
106.738 -19.100 1162799260 11-05-2006

%]
el
© 0
- O
o}

10.
10.

NNN~N~NO OO

N NN RO N

o

hour nsat FixTime

23.794

21
31
30
29
28
27
26
26
26

20
20

7

65

Rewvision : 1.7

(0%s)

999.76 5.1389
1047.72 4.9210
1098.41 4.7406

[snippage...]
1898.18 2.5933
1947 .22 2.5096
1995.95 2.4262

P B P P P P L B

@ P #H P

Park-phase PT t

ParkPt [001]:
ParkPt [002]:
ParkPt [003]:
ParkPt [004]:
ParkPt [005]:
[snippage...]

ParkPt [219]:
ParkPt [220]:
ParkPt [221]:
ParkPt [222]:

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment

(Firmware Revision: Apf9iSbed4lcpDandelion-062907)
34.6385 5.0544 27.3825 * 1
34.6328 4.8338 27.4034 * 1
34.6413 4.6502 27.4308 * 1
34.7124 2.4563 27.7037 * 1
34.7160 2.3696 27.7140 * 1
34.7183 2.2832 27.7230 * 1
ime-series: 222 samples
UnixEpoch MTime t |-—--—- Date —-—————--

P
1161940341 21614 991.1
1161943938 25211 997.1
1161947538 28811 994.9
1161951138 32411 997.3
1161954738 36011 988.9

1162725138 806411 1001.
1162728738 810011 999.
1162732338 813611 999.
1162735938 817211 1001.

.0624 Fri Oct 27 02:12:21 2006
.0385 Fri Oct 27 03:12:18 2006
.02562 Fri Oct 27 04:12:18 2006
.1130 Fri Oct 27 05:12:18 2006
.0522 Fri Oct 27 06:12:18 2006

(S22 B¢ J NG Gy

03:12:18 2006
04:12:18 2006
05:12:18 2006
06:12:18 2006

.1068 Sun Nov
.0748 Sun Nov
.0815 Sun Nov
.1691 Sun Nov

oo o1 o
[S20S 1 L ISy

C Sample: Iridium engineering log file.

The following is an example engineering log file (5135.009.1og) from profile 9 of UW Iridium float 5135.
You will note that the log file starts with entries of the telemetry of profile 8 and then continues with
entries of the execution of profile 9. Obviously, engineering data regarding telemetry is collected
while telemetry is happening and therefore knowledge of these data aren’t completely known until
the telemetry has finished. This explains why the engineering telemetry data for profile cycle 8 is
included in the engineering logs of profile cycle 9.

(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct
(Oct

27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27

RCSfile

851789 sec) TelemetryInit()
852215 sec) AirSystem()

852249 sec) GpsServices()
852249 sec) GpsServices()

, 852265 sec) gga()

, 852275 sec) gga()

, 852285 sec) gga()

, 852295 sec) gga()

, 852305 sec) gga()

, 852315 sec) gga()

, 852325 sec) gga()

, 852349 sec) gga()

, 852350 sec) GpsServices()

, 852350 sec) GpsServices()

, 852350 sec) GpsServices()

, 852377 sec) gga()

, 852383 sec) gga()

, 852383 sec) GpsServices()

, 852383 sec) LoghmeaSentences()
, 852383 sec) LoghmeaSentences()
, 852384 sec) LogNmeaSentences()
, 852384 sec) LogNmeaSentences()
, 852393 sec) LogNmeaSentences()
, 852393 sec) LogNmeaSentences()
, 852394 sec) LogNmeaSentences()
, 852394 sec) LogNmeaSentences()
, 852394 sec) LogNmeaSentences()
, 852395 sec) LogNmeaSentences()
, 852395 sec) LogNmeaSentences()
, 852403 sec) LogNmeaSentences()
, 852403 sec) LoghmeaSentences()
, 852404 sec) LoghmeaSentences()
, 852404 sec) LoghmeaSentences()
, 852405 sec) LoghmeaSentences()
, 852405 sec) LoghmeaSentences()

: Iridium Apex.tex,v

Profile 8. (Apf9i FuRev: 051906)

Battery [186cnt, 14.4V] Current [78cnt, 31.4mA] Barometer [122cnt, 5.4"Hgl Run-Time [51s]
GPS almanac is current.

Initiating GPS fix acquisition.

$GPGGA 030657 ,1957.2228,S, 10647.7051,E,0,00, , M, ,H, , x40
$GPGGA 030707 ,1957.2228,S, 10647.7051,E,0,00, , M, 4, , x44
$GPGGA,030717,,1957.2228,S, 10647.7051,E,0,00, , M, 4, , %45
$GPGGA 030727 ,1957.2228,S, 10647.7051,E,0,00, , M, 4, , x46
$GPGGA,030737,1957.2228,S, 10647.7051,E,0,00, , M, M, , 47
$GPGGA 030747 ,1957.2228,S, 10647 ..7051,E,0,00, , M, ,H, , x40
$GPGGA 030757 ,1957.2228,S, 10647.7051,E,0,00, , M, ,H, , 41
$GPGGA 030340, 1932.7209,S,10643.1988,E,1,10,0.9, ,H,-30.5 4, , #5B

Profile 8 GPS fix obtained in 101 seconds.

lon lat mm/dd/yyyy hhmmss nsat
Fix: 106.720 -19.545 10/27/2006 030340 10
$GPGGA ,030410,1932.7103,S,10643.1936,E,1,10,0.9, ,M,-30.5,M, ,#55
$GPGGA ,030440, 1932.7006,S,10643.1882,E,1,10,0.9, ,M,-30.5,M, ,#54
APF9 RTC skew (6s) OK.
E,4.3,M,,M,6.5,M%04
$PGRMT,GPS 15-L Ver. 2.80,P,P,R,R,P,,,R,P*74
$PGRMB,0.0,200, ,,,K, ,N,N*31
$PGRMM,WGS 84%06
$GPRMC,030450,A,1932.6972,S, 10643 .1875,E,001.0,334.7,271006,001 . 1,W*73
$GPGGA ,030450, 1932.6972,5,10643.1875,E,1,10,0.9, ,M,-30.5,H, ,#58
$GPGSA ,M,2,01,03,07,11,14,19,20,,23,25,31,,1.3,0.9, %14
$GPGSV,3,3,11,23,11,338,43,25,15,047,44,31,11,054,44%44
$PGRME,4.3,M, ,H,6.5,H+04
$PGRMB,0.0,200, , ,,K, ,N,N*31
$PGRMM ,WGS 84*06
$GPRMC,030500,4,1932.6954,S, 10643 . 1857 ,E,000.8,311.3,271006,001.1,W*79
$GPGGA 030500, 1932.6954,S,10643.1857 ,E,1,10,0.9, ,M,-30.5,H, ,#58
$GPGSA ,M,2,01,03,07,11,14,19,20,,23,25,31,,1.3,0.9, %14
$GPGSV,3,1,11,01,64,070,47,03,55,017,46,07,11,032,40,11,33,218,43475
$PGRME,4.3,M, ,M,6.5,H%04
$PGRMB,0.0,200, ,,,K,,N,N*31

31 Rewvision :

1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

(Oct 27 2006 03:05:09, 852405 sec) LogNmeaSentences() $PGRMM,WGS 84*06

(Oct 27 2006 03:05:16, 852413 sec) LogNmeaSentences() $GPRMC,030510,A,1932.6926,S,10643.1829,E,003.3,332.2,271006,001.1,W*7C
(Oct 27 2006 03:05:17, 852413 sec) LogNmeaSentences() $GPGGA,030510,1932.6926,S,10643.1829,E,1,10,0.9,,H,-30.5,H, ,%55

(Oct 27 2006 03:05:17, 852414 sec) LogNmeaSentences() $GPGSA,M,2,01,03,07,11,14,19,20,,23,25,31,,1.3,0.9,*14

(Oct 27 2006 03:05:18, 852414 sec) GpsServices() GPS services complete.

(Oct 27 2006 03:05:42, 852439 sec) CLogin() Connecting to primary host.

(Oct 27 2006 03:05:56, 852453 sec) CLogin() Connection 1 established in 14 seconds.

(Oct 27 2006 03:06:11, 852467 sec) login() Login successful.

(Oct 27 2006 03:06:13, 852470 sec) CLogin() Logged in to host. [Login required 17 seconds]

(Oct 27 2006 03:06:18, 852474 sec) RxConfig() Downloading "mission.cfg" from host.

(Oct 27 2006 03:06:18, 852474 sec) Rx() Initiating transfer. [0x43]

(Oct 27 2006 03:06:24, 852480 sec) Rx() Truncated packet received - retrying

(Oct 27 2006 03:06:24, 852480 sec) LogPacket() 0x02 0x01 Oxfe [] 0x00 0x00

(Oct 27 2006 03:06:25, 852481 sec) RxStartByte() Sync errors encountered: 370

(Oct 27 2006 03:06:30, 852487 sec) Rx() Pad character [0x1a] found in ascii mode - truncating packet

(Oct 27 2006 03:06:34, 852490 sec) Rx() Received EOT - transfer complete. [1 packets, 1024 bytes, 16 sec, 64.0 bps]

(Oct 27 2006 03:06:34, 852490 sec) RxConfig() Download successful.

(Oct 27 2006 03:06:34, 852490 sec) WriteVitals() Writing vitals to "5135.008.msg"

(Oct 27 2006 03:06:38, 852494 sec) UpLoadFile() Uploading "5135.008.msg" to host as "5135.008.msg".

(Oct 27 2006 03:06:39, 852496 sec) Tx() CRC negotiation successful. [16-bit CRC]

(Oct 27 2006 03:06:45, 852502 sec) GetReceiverResponse(Return value: 21

(Oct 27 2006 03:06:46, 852502 sec) TxPacket() NAK received - resending packet. [PktNum=0x01]

(Oct 27 2006 03:06:46, 852502 sec) TxPacket() History of packet transmission failures: [01110001] (O:xmit-ok, 1:xmit-failed).
(Oct 27 2006 03:06:46, 852502 sec) LogPacket() 0x02 0x01 Oxfe [] 0x68 Ox3a

(Oct 27 2006 03:07:20, 852537 sec) GetReceiverResponse(Return value: 21

(Oct 27 2006 03:07:21, 852537 sec) TxPacket() NAK received - resending packet. [PktNum=0x07]

(Oct 27 2006 03:07:21, 852637 sec) TxPacket() History of packet transmission failures: [10000001] (O:xmit-ok, 1:xmit-failed).
(Oct 27 2006 03:07:21, 852537 sec) LogPacket() 0x02 0x07 0xf8 [] Oxae 0x27

(Oct 27 2006 03:08:25, 852601 sec) GetReceiverResponse(Return value: 21

(Oct 27 2006 03:08:25, 852601 sec) TxPacket() NAK received - resending packet. [PktNum=0x12]

(Oct 27 2006 03:08:25, 852601 sec) TxPacket() History of packet transmission failures: [00000001] (O:xmit-ok, 1:xmit-failed).
(Oct 27 2006 03:08:25, 852601 sec) LogPacket() 0x02 0x12 Oxed [] Oxe4 0x0d

(Oct 27 2006 03:08:51, 852627 sec) GetReceiverResponse(Return value: 21

(Oct 27 2006 03:08:51, 852627 sec) TxPacket() NAK received - resending packet. [PktNum=0x16]

(Oct 27 2006 03:08:51, 852627 sec) TxPacket() History of packet transmission failures: [00100001] (O:xmit-ok, 1:xmit-failed).
(Oct 27 2006 03:08:51, 852627 sec) LogPacket() 0x02 0x16 Oxe9 [] Oxcb Ox2f

(Oct 27 2006 03:09:14, 852651 sec) Tx() Transmission completed successfully [25 packets, 23949 bytes, 155 sec, 159.4 bps]
(Oct 27 2006 03:09:15, 852651 sec) UpLoadFile() Upload successful.

(Oct 27 2006 03:09:18, 852655 sec) UpLoadFile() Uploading "5135.008.log" to host as "5135.008.log".

(Oct 27 2006 03:09:20, 852656 sec) Tx() CRC negotiation successful. [16-bit CRC]

(Oct 27 2006 03:09:25, 852662 sec) GetReceiverResponse(Return value: 21

(Oct 27 2006 03:09:26, 852662 sec) TxPacket() NAK received - resending packet. [PktNum=0x01]

(Oct 27 2006 03:09:26, 852662 sec) TxPacket() History of packet transmission failures: [00100001] (O:xmit-ok, 1:xmit-failed).
(Oct 27 2006 03:09:26, 852662 sec) LogPacket() 0x02 0x01 Oxfe [] 0x9d 0x82

(Oct 27 2006 03:09:29, 852666 sec) GetReceiverResponse(Return value: 21

(Oct 27 2006 03:09:29, 852666 sec) TxPacket() NAK received - resending packet. [PktNum=0x01]

(Oct 27 2006 03:09:30, 852666 sec) TxPacket() History of packet transmission failures: [01000011] (O:xmit-ok, 1:xmit-failed).
(Oct 27 2006 03:09:30, 852666 sec) LogPacket() 0x02 0x01 Oxfe [1 0x9d Ox82

(Oct 27 2006 03:10:38, 852734 sec) GetReceiverResponse(Return value: 21

(Oct 27 2006 03:10:38, 852734 sec) TxPacket() NAK received - resending packet. [PktNum=0x0d]

(Oct 27 2006 03:10:38, 852734 sec) TxPacket() History of packet transmission failures: [00000001] (O:xmit-ok, 1:xmit-failed).
(Oct 27 2006 03:10:38, 852734 sec) LogPacket() 0x02 0x0d Oxf2 [1 0x37 0x24

(Oct 27 2006 03:10:45, 852742 sec) GetReceiverResponse(Return value: 21

(Oct 27 2006 03:10:46, 852742 sec) TxPacket() NAK received - resending packet. [PktNum=0x0d]

(Oct 27 2006 03:10:46, 852742 sec) TxPacket() History of packet transmission failures: [00000011] (O:xmit-ok, 1:xmit-failed).
(Oct 27 2006 03:10:46, 852742 sec) LogPacket() 0x02 0x0d Oxf2 [1 0x37 0x24

(Oct 27 2006 03:11:06, 852763 sec) GetReceiverResponse(Return value: 21

(Oct 27 2006 03:11:07, 852763 sec) TxPacket() NAK received - resending packet. [PktNum=0x10]

(Oct 27 2006 03:11:07, 852763 sec) TxPacket() History of packet transmission failures: [00110001] (O:xmit-ok, 1:xmit-failed).
(Oct 27 2006 03:11:07, 852763 sec) LogPacket() 0x02 0x10 Oxef [] 0xf6 0x41

(Oct 27 2006 03:11:23, 852780 sec) GetReceiverResponse(Return value: 21

(Oct 27 2006 03:11:24, 852780 sec) TxPacket() NAK received - resending packet. [PktNum=0x12]

(Oct 27 2006 03:11:24, 852780 sec) TxPacket() History of packet transmission failures: [10001001] (O:xmit-ok, 1:xmit-failed).
(Oct 27 2006 03:11:24, 852780 sec) LogPacket() 0x02 0x12 Oxed [] 0x24 Ox19

(Oct 27 2006 03:11:52, 852809 sec) Tx() Transmission completed successfully [22 packets, 22148 bytes, 152 sec, 148.2 bps]
(Oct 27 2006 03:11:53, 852809 sec) UpLoadFile() Upload successful.

(Oct 27 2006 03:11:53, 852809 sec) UpLoad() Files successfully uploaded: 2

(Oct 27 2006 03:11:53, 852809 sec) UpLoad() Upload complete.

(Oct 27 2006 03:11:55, 852812 sec) logout() Log-out successful.

(Oct 27 2006 03:11:56, 852813 sec) Telemetry() Telemetry cycle complete: PrfId=8 ConnectionAttempts=1 Comnections=1

(Oct 27 2006 03:11:57, 852813 sec) TelemetryTerminate() Parsing new mission configuration.

(Oct 27 2006 03:11:57, 852814 sec) configure() Parsing configurators in "mission.cfg".

(Oct 27 2006 03:12:02, 852818 sec) configure() TelemetryRetry(15) [0x7BBC] [TelemetryRetry(15)].

(Oct 27 2006 03:12:06, 852823 sec) configure() DownTime (14000) [0x5593] [DownTime(14000)].

(Oct 27 2006 03:12:07, 852823 sec) configure() Configuration CRCs and syntax OK.

(Oct 27 2006 03:12:07, 852823 sec) ConfigSupervisor() Configuration accepted.
(Oct 27 2006 03:12:07, 852823 sec) TelemetryTerminate() Reconditioning the file system.

(Oct 27 2006 03:12:07, 1 sec) DescentInit() Deep profile 9 initiated at mission-time 852823sec.

(Oct 27 2006 03:12:10, 3 sec) DescentInit() Surface pressure: 0.0dbars.

(Oct 27 2006 03:12:15, 8 sec) PistonMoveAbsWTO() 195->071 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 1
(Oct 27 2006 03:22:35, 629 sec) Descent() Pressure: 46.1

(Oct 27 2006 04:12:10, 3604 sec) Descent() Pressure: 445.1

(Oct 27 2006 05:12:10, 7204 sec) Descent() Pressure: 779.0

(Oct 27 2006 06:12:10, 10804 sec) Descent() Pressure: 952.3

(Oct 27 2006 07:12:10, 14404 sec) Descent() Pressure: 982.4

(Oct 27 2006 08:12:10, 18004 sec) Descent() Pressure: 987.7

(Oct 27 2006 09:12:10, 21604 sec) Descent() Pressure: 991.1

(Oct 27 2006 09:12:11, 21604 sec) ParkInit()

(Nov 05 2006 14:32:42, 818435 sec) CtdPower() [999.68, 5.1401, 34.6389]

(Nov 05 2006 14:32:42, 818436 sec) CtdPower() CTD Power consumption [180VCnt 12ACnt]: 14.728Volts * 0.048Amps = 0.71Watts.
(Nov 05 2006 14:32:42, 818436 sec) ParkTerminate() Piston Position:71 Vacuum:77 Vq:198 Aq:6 Vsbe:190 Asbe:12

(Nov 05 2006 14:33:14, 818468 sec) ParkTerminate() PTS: 999.8dbars 5.1389C 34.6385PSU

(Nov 05 2006 14:33:15, 818468 sec) GoDeepInit() Moving piston.

(Nov 05 2006 14:33:15, 818469 sec) PistonMoveAbsWTO() 071->015 070 069 068 067 066 065 064 063 062 061 060 059 058 057 056 055 054 053 052 051 050 049 048 047 046 045 044 043 042 041 040 039 038 037 0
(Nov 05 2006 17:22:10, 828604 sec) GoDeep() Sequence point detected at 2003.1dbar.

RCS file : Iridium Apex.tex,v 32 Revision : 1.7

(Nov 05 2006 17:22:13, 828607 sec) ProfileInit() PrfId:009 Pressure:2003.1dbar pTable[0]:2000dbar

(Nov 05 2006 17:22:24, 828617 sec) PistonMoveAbsWTO() 015->037 016 017 018 019 020 [30sec, 13.7Volts, 0.874Amps, CPT:916sec]

(Nov 05 2006 17:23:04, 828657 sec) PistonMoveAbsWTO() 020->037 021 022 023 024 025 [30sec, 13.4Volts, 0.822Amps, CPT:946sec]

(Nov 05 2006 17:23:44, 828697 sec) PistonMoveAbsWTO() 025->037 026 027 028 029 [30sec, 13.3Volts, 0.890Amps, CPT:976sec]

(Nov 05 2006 17:24:24, 828737 sec) PistonMoveAbsWTO() 029->037 030 031 032 033 034 [30sec, 13.3Volts, 0.862Amps, CPT:1006sec]

(Nov 05 2006 17:25:35, 828809 sec) Profile() Sample O initiated at 1998.9dbars for bin 0 [2000dbars]. PTS: 1996.0dbars 2.4262C 34.7183PSU
(Nov 05 2006 17:25:36, 828809 sec) PistonMoveAbsWTO() 034->037 035 036 037 [17sec, 13.3Volts, 0.870Amps, CPT:1023sec]

(Nov 05 2006 17:33:24, 829278 sec) Profile() Sample 1 initiated at 1950.1dbars for bin 1 [1950dbars]. PTS: 1947.2dbars 2.5096C 34.7160PSU
(Nov 05 2006 17:42:09, 829803 sec) Profile() Sample 2 initiated at 1900.8dbars for bin 2 [1900dbars]. PTS: 1898.2dbars 2.5933C 34.7124PSU
(Nov 05 2006 17:52:37, 830431 sec) Profile() Sample 3 initiated at 1850.8dbars for bin 3 [1850dbars]. PTS: 1848.7dbars 2.6898C 34.7063PSU
(Nov 05 2006 17:52:40, 830434 sec) AscentControlAgent() Bouyancy nudge to 47 (v=0.074dbar/sec).

(Nov 05 2006 17:52:40, 830434 sec) PistonMoveAbsWTO() 037->047 038 039 040 041 042 [30sec, 13.6Volts, 0.782Amps, CPT:1053sec]

(Nov 05 2006 17:53:22, 830475 sec) PistonMoveAbsWTO() 042->047 043 044 045 046 [30sec, 13.4Volts, 0.802Amps, CPT:1083sec]

(Nov 05 2006 17:54:02, 830515 sec) PistonMoveAbsWTO() 046->047 047 [3sec, 13.5Volts, 0.810Amps, CPT:1086sec]

(Nov 05 2006 18:01:19, 830953 sec) Profile() Sample 4 initiated at 1800.8dbars for bin 4 [1800dbars]. PTS: 1798.0dbars 2.8293C 34.6978PSU
(Nov 05 2006 18:10:17, 831491 sec) Profile() Sample 5 initiated at 1750.8dbars for bin 5 [1750dbars]. PTS: 1748.0dbars 2.9263C 34.6937PSU
(Nov 05 2006 18:19:25, 832039 sec) Profile() Sample 6 initiated at 1700.9dbars for bin 6 [1700dbars]. PTS: 1698.2dbars 3.0365C 34.6872PSU
(Nov 05 2006 18:28:53, 832607 sec) Profile() Sample 7 initiated at 1650.2dbars for bin 7 [1650dbars]. PTS: 1647.6dbars 3.1362C 34.6827PSU
(Nov 05 2006 18:38:19, 833173 sec) AscentControlAgent() Bouyancy nudge to 57 (v=0.079dbar/sec).

(Nov 05 2006 18:38:19, 833173 sec) PistonMoveAbsWTO() 047->057 048 049 050 051 052 [30sec, 13.6Volts, 0.729Amps, CPT:1116sec]

(Nov 05 2006 18:39:32, 833246 sec) Profile() Sample 8 initiated at 1598.1dbars for bin 8 [1600dbars]. PTS: 1595.3dbars 3.2713C 34.6748PSU
(Nov 05 2006 18:39:33, 833246 sec) PistonMoveAbsWTO() 052->057 053 054 055 056 057 [29sec, 13.6Volts, 0.677Amps, CPT:1145sec]

(Nov 05 2006 18:47:06, 833700 sec) Profile() Sample 9 initiated at 1550.1dbars for bin 9 [1550dbars]. PTS: 1547.1dbars 3.3872C 34.6718PSU
(Nov 05 2006 18:55:44, 834218 sec) Profile() Sample 10 initiated at 1500.8dbars for bin 10 [1500dbars]. PTS: 1498.2dbars 3.5018C 34.6652PSU
(Nov 05 2006 19:03:40, 834694 sec) AscentControlAgent() Bouyancy nudge to 67 (v=0.079dbar/sec).

(Nov 05 2006 19:03:40, 834694 sec) PistonMoveAbsWTO() 057->067 058 059 060 061 062 [30sec, 13.7Volts, 0.697Amps, CPT:1175sec]

(Nov 05 2006 19:04:22, 834735 sec) PistonMoveAbsWTO() 062->067 063 064 065 066 067 [29sec, 13.6Volts, 0.616Amps, CPT:1204sec]

(Nov 05 2006 19:05:42, 834816 sec) Profile() Sample 11 initiated at 1450.7dbars for bin 11 [1450dbars]. PTS: 1447.5dbars 3.6770C 34.6643PSU
(Nov 05 2006 19:13:27, 835281 sec) Profile() Sample 12 initiated at 1400.8dbars for bin 12 [1400dbars]. PTS: 1397.8dbars 3.8251C 34.6594PSU
(Nov 05 2006 19:21:45, 835779 sec) Profile() Sample 13 initiated at 1350.4dbars for bin 13 [1350dbars]. PTS: 1347.5dbars 4.0108C 34.6557PSU
(Nov 05 2006 19:30:33, 836307 sec) Profile() Sample 14 initiated at 1300.5dbars for bin 14 [1300dbars]. PTS: 1297.9dbars 4.1146C 34.6515PSU
(Nov 05 2006 19:40:11, 836885 sec) Profile() Sample 15 initiated at 1250.8dbars for bin 15 [1250dbars]. PTS: 1248.5dbars 4.2443C 34.6510PSU
(Nov 05 2006 19:44:14, 837128 sec) AscentControlAgent() Bouyancy nudge to 77 (v=0.078dbar/sec).

(Nov 05 2006 19:44:14, 837128 sec) PistonMoveAbsWTO() 067->077 068 069 070 071 072 [30sec, 13.8Volts, 0.616Amps, CPT:1234sec]

(Nov 05 2006 19:44:56, 837169 sec) PistonMoveAbsWTO() 072->077 073 074 075 076 077 [27sec, 13.7Volts, 0.556Amps, CPT:1261sec]

(Nov 05 2006 19:49:24, 837438 sec) Profile() Sample 16 initiated at 1200.9dbars for bin 16 [1200dbars]. PTS: 1197.8dbars 4.3623C 34.6440PSU
(Nov 05 2006 19:58:02, 837956 sec) Profile() Sample 17 initiated at 1150.3dbars for bin 17 [1150dbars]. PTS: 1147.7dbars 4.5327C 34.6408PSU
(Nov 05 2006 20:08:10, 838564 sec) Profile() Sample 18 initiated at 1100.6dbars for bin 18 [1100dbars]. PTS: 1098.4dbars 4.7406C 34.6413PSU
(Nov 05 2006 20:09:43, 838657 sec) AscentControlAgent() Bouyancy nudge to 87 (v=0.077dbar/sec).

(Nov 05 2006 20:09:43, 838657 sec) PistonMoveAbsWTO() 077->087 078 079 080 081 082 [30sec, 13.8Volts, 0.568Amps, CPT:1291sec]

(Nov 05 2006 20:10:25, 838698 sec) PistonMoveAbsWTO() 082->087 083 084 085 086 087 [27sec, 13.7Volts, 0.552Amps, CPT:1318sec]

(Nov 05 2006 20:16:46, 839080 sec) Profile() Sample 19 initiated at 1050.8dbars for bin 19 [1050dbars]. PTS: 1047.7dbars 4.9210C 34.6328PSU
(Nov 05 2006 20:24:51, 839565 sec) Profile() Sample 20 initiated at 1000.9dbars for bin 20 [1000dbars]. PTS: 997.9dbars 5.1765C 34.6345PSU
(Nov 05 2006 20:26:19, 839652 sec) Sbe4icpStartCP() Continuous profile started.

(Nov 05 2006 20:46:43, 840877 sec) AscentControlAgent() Bouyancy nudge to 97 (v=0.079dbar/sec).

(Nov 05 2006 20:46:44, 840877 sec) PistonMoveAbsWTO() 087->097 088 089 090 091 092 [30sec, 13.8Volts, 0.504Amps, CPT:1348sec]

(Nov 05 2006 20:47:24, 840917 sec) PistonMoveAbsWTO() 092->097 093 094 095 096 097 [26sec, 13.6Volts, 0.532Amps, CPT:1374sec]

(Nov 05 2006 21:18:26, 842780 sec) AscentControlAgent() Bouyancy nudge to 107 (v=0.079dbar/sec).

(Nov 05 2006 21:18:27, 842780 sec) PistonMoveAbsWTO() 097->107 098 099 100 101 102 [30sec, 13.9Volts, 0.419Amps, CPT:1404sec]

(Nov 05 2006 21:19:07, 842820 sec) PistonMoveAbsWTO() 102->107 103 104 105 106 107 [25sec, 13.7Volts, 0.459Amps, CPT:1429sec]

(Nov 05 2006 21:50:07, 844681 sec) AscentControlAgent() Bouyancy nudge to 117 (v=0.074dbar/sec).

(Nov 05 2006 21:50:08, 844681 sec) PistomMoveAbsWTO() 107->117 108 109 110 111 112 [30sec, 14.0Volts, 0.371Amps, CPT:1459sec]

(Nov 05 2006 21:50:48, 844721 sec) PistonMoveAbsWTO() 112->117 113 114 115 116 117 [24sec, 13.9Volts, 0.379Amps, CPT:1483sec]

(Nov 05 2008 22:16:42, 846276 sec) AscentControlAgent() Bouyancy nudge to 127 (v=0.074dbar/sec).

(Nov 05 2006 22:16:43, 846276 sec) PistonMoveAbsWTO() 117->127 118 119 120 121 122 [30sec, 14.0Volts, 0.342Amps, CPT:1513sec]

(Nov 05 2006 22:17:23, 846316 sec) PistonMoveAbsWTO() 122->127 123 124 125 126 127 [23sec, 14.0Volts, 0.326Amps, CPT:1536sec]

(Nov 05 2008 22:43:15, 847869 sec) AscentControlAgent() Bouyancy nudge to 137 (v=0.079dbar/sec).

(Nov 05 2006 22:43:16, 847869 sec) PistonMoveAbsWTO() 127->137 128 129 130 131 132 [30sec, 14.1Volts, 0.286Amps, CPT:1566sec]

(Nov 05 2006 22:43:55, 847909 sec) PistonMoveAbsWTO() 132->137 133 134 135 136 137 [22sec, 14.0Volts, 0.282Amps, CPT:1588sec]

(Nov 05 2006 22:54:30, 848544 sec) AscentControlAgent() Bouyancy nudge to 147 (v=0.078dbar/sec).

(Nov 05 2006 22:54:31, 848544 sec) PistonMoveAbsWTO() 137->147 138 139 140 141 142 [30sec, 14.1Volts, 0.262Amps, CPT:1618sec]

(Nov 05 2006 22:55:10, 848584 sec) PistonMoveAbsWTO() 143->147 144 145 146 147 [22sec, 14.1Volts, 0.266Amps, CPT:1640sec]

(Nov 05 2006 23:05:44, 849218 sec) AscentControlAgent() Bouyancy nudge to 157 (v=0.077dbar/sec).

(Nov 05 2006 23:05:45, 849218 sec) PistonMoveAbsWTO() 147->157 148 149 150 151 152 153 [30sec, 14.2Volts, 0.246Amps, CPT:1670sec]

(Nov 05 2006 23:06:24, 849258 sec) PistonMoveAbsWTO() 163->157 154 155 156 157 [20sec, 14.1Volts, 0.246Amps, CPT:1690sec]

(Nov 05 2006 23:16:56, 849890 sec) AscentControlAgent() Bouyancy nudge to 167 (v=0.051dbar/sec).

(Nov 05 2006 23:16:57, 849890 sec) PistonMoveAbsWTO() 1567->167 158 159 160 161 162 [30sec, 14.2Volts, 0.234Amps, CPT:1720sec]

(Nov 05 2006 23:17:36, 849930 sec) PistonMoveAbsWTO() 163->167 164 165 166 167 [20sec, 14.2Volts, 0.234Amps, CPT:1740sec]

(Nov 05 2006 23:23:02, 850256 sec) AscentControlAgent() Bouyancy nudge to 177 (v=0.074dbar/sec).

(Nov 05 2006 23:23:03, 850256 sec) PistonMoveAbsWTO() 167->177 168 169 170 171 172 [30sec, 14.2Volts, 0.218Amps, CPT:1770sec]

(Nov 05 2006 23:23:42, 850296 sec) PistonMoveAbsWTO() 172->177 173 174 175 176 177 [21sec, 14.2Volts, 0.218Amps, CPT:1791sec]

(Nov 05 2006 23:31:48, 850782 sec) SurfaceDetect() SurfacePressure:0.0dbars Pressure:3.8dbars PistonPosition:177

(Nov 05 2006 23:31:49, 850783 sec) Sbe41cpStopCP() Continuous profile stopped.

(Nov 05 2006 23:31:53, 850787 sec) PistonMoveAbsWTO() 177->199 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 [108sec, 14.2Volts, 0.181Amps, CPT:1899sec]
(Nov 05 2006 23:38:28, 851181 sec) Sbe4icpBinAverage() Finished averaging 11134 samples in 281 seconds.

(Nov 05 2006 23:38:33, 851186 sec) Sbe4icpUploadCP() Sbe4icpSerNo[1520] NSample[11134] NBin[495]

(Nov 05 2006 23:39:32, 851246 sec) Sbe4icpUploadCP() Continuous profile uploaded [495 lines].

<EOT>

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(Firmware Revision: Apf9iSbed4lcpDandelion-062907)

D Encoding of hydrographic data.

The C source code below is used in APEX firmware to encode the hydrographic data before it is

telemetered to the remote host.

RCS file : Iridium Apex.tex,v

33

Rewvision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

#ifndef ENCODE_H
#define ENCODE_H

VA aiaieiiiieiniuiiaiieiniein it iataiaieiaintaiiataiiaintateie i iaiaiaieiaintiatataiaieiatutaiuialaiateintntnte ittt
* $Id: EncodeCSourceCode.tex,v 1.1 2006/11/03 19:08:57 swift Exp $
A Y */

/** RCS log of revisions to the C source code.

*

* \begin[verbatim]

* $Log: EncodeCSourceCode.tex,v $

* Revision 1.1 2006/11/03 19:08:57 swift

* Added user manual to CVS control.

*

* Revision 1.2 2006/07/10 22:24:49 swift

* Modifications to bring the manual up to date with

* changes to the SeaBird CTD firmware (vi.ic).

*

* Revision 1.3 2006/02/08 20:17:28 swift

* Modifications to shorten PTS encoding from 20-bits down to 16-bits and
* to shorten the encoding of the number of samples from 16-bits to 8-bits.
*

* Revision 1.2 2003/09/10 16:50:04 swift

* Added change-log tracking macro.

*

* Revision 1.1 2003/09/10 16:47:17 swift

* Initial revision

* \end[verbatim]

L kit iiaieiiaiaiatiaieiatiaiaiatiatatatatetatatatatatatatat i */

#define encodeChangelLog "$RCSfile: EncodeCSourceCode.tex,v $ $Revision: 1.1 § $Date: 2006/11/03 19:08:57 $"

/* function prototypes */

unsigned char EncodeN(unsigned int NSample) ;
unsigned int EncodeO(float 02);

unsigned int EncodeP(float p);

unsigned int EncodeS(float s);

unsigned int EncodeT(float t);

#endif /* ENCODE_H */

#include <assert.h>
#include <nan.h>

/*—- -—— —————————————————————————————————— */
/* function to encode the number of samples as an 8-bit unsigned integer */
[*—- -—— ——_—_——————————————————————————————— */
VAL

This function encodes the number samples in the bin average as an 8-bit
unsigned integer with protection against overflow. The encoding accounts
for the full range of 16-bit unsigned integers but only values in the
open range: O<NSample<255 are representable. This encoding makes full
use of all 8-bits.

RCS file : Iridium Apex.tex,v 34 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment

(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)
\begin[verbatim]
input:
NSample ... The number of samples in the bin-average.
output:

1) Values greater than or equal to 255 are mapped to Oxff.

2) All other values are expressed as an 8-bit unsigned integer.

\end [verbatim]
*/
unsigned char EncodeN(unsigned int NSample)
{

/* prevent overflow of the sample counter */
unsigned int N = (NSamp1e>=255) ? Oxff : NSample;

return N;

[/ *—- -—— et -%/
/* function to encode oxygen as a 2-byte unsigned integer */
[*—— —-—— B i -%/
VAL
This function implements the hex-encoding of IEEE-formattted floating
point oxygen data into 16-bit unsigned integers with 2’s-complement
representation. The encoding formula accounts for the full range of
32-bit IEEE floating point values but only values in the open range:
-4095<02<61439 are representable. This encoding makes full use of all
16-bits.

\begin[verbatim]
input:
02 ... The oxygen (o02-freq) expressed as a floating point value.

output:
1) Nonfinite values (Inf, -Inf, NaN) are mapped to the sentinel hex
value: 0xf000.

2) Oxygen frequency values less than -4095 are mapped to the
sentinel hex value: 0xf001.

3) Oxygen frequency values greater than 61439 are mapped to the
sentinel hex value: Oxefff.

4) All other values are to the nearest integer and expressed as a
16-bit signed integer in 2’s-complement form.
\end [verbatim]

Important Note: This function is not portable to C-implementations for
which unsigned integers do not have exactly two bytes. For the APF9
controller, this function has been fully tested over the full range of
oxygen.

*/

RCS file : Iridium Apex.tex,v 35 Revision :

1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment

(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)
unsigned int Encode0O(float 02)
{
/* initialize with the mapping for a nonfinite oxygen */
long int 02 = 0xf000;
/* make sure long ints are at least 3 bytes long */
assert(sizeof (long int)>=3);
if (finite(o02))
{
/* assign out-of-range values to sentinel values */
if (02>=61439) 02=0xefff; else if (02<=-4095) 02=0xf001;
/* encode the oxygen frequency (rounded) */
else 02 = (unsigned int) (02 + ((02<0) 7 -0.5 : 0.5));
/* express in 16-bit 2’s-complement form */
if (02<0) 02+=0x10000L;
}
return 02;
}
[*—— —-—— e -%/
/* function to encode pressure as a 2-byte unsigned integer */
[/ *—- —_—— e - -%/
VAL

This function implements the hex-encoding of IEEE-formattted floating
point pressure data into 2-byte signed integers with 2’s complement
representation. The encoding formula accounts for the full range of
32-bit IEEE floating point values but only values in the open range:
—-3276.7<p<3276.7 are representable. This encoding makes full use of all
16-bits.

\begin[verbatim]
input:

P ... The pressure (decibars) expressed as a floating point value.
output:

1) Nonfinite values (Inf, -Inf, NaN) are mapped to the sentinel hex
value: 0x8000.

2) Pressure values less than -3276.7 are mapped to the sentinel
value: 0x8001.

3) Pressure values greater than 3276.7 are mapped to the sentinel
value: Ox7fff.

4) All other values are expressed in millibars rounded to the
nearest integer and expressed as a 16-bit signed integer in
2’s-complement form.

\end [verbatim]

RCS file : Iridium Apex.tex,v 36

Rewvision :

1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment

(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)
*/
unsigned int EncodeP(float p)
{
/* initialize with the mapping for a nonfinite pressure */
long int P = 0x8000L;
/* make sure long ints are at least 3 bytes long */
assert(sizeof (long int)>=3);
if (finite(p))
{
/* assign out-of-range values to sentinel values */
if (p>=3276.7) P=0x7fffL; else if (p<=-3276.7) P=0x8001L;
/* encode the pressure as the number of centibars (rounded) */
else P = (long int) (10*%(p + ((p<0) ? -0.05 : 0.05)));
/* express in 16-bit 2’s-complement form */
if (P<0) P+=0x10000L;
}
return P;
}
= — S %/
/* function to encode salinity as a 2-byte unsigned long integer */
[/ *—- —_—— R -%/

VAL

This function implements the hex-encoding of IEEE-formattted floating
point salinity data into 16-bit unsigned integers with 2’s complement
representation. The encoding formula accounts for the full range of
32-bit IEEE floating point values but only values in the open range:
-4.095<s<61.439 are representable. This encoding makes full use of all

16-bits.
\begin[verbatim]
input:
s ... The salinity (PSU) expressed as a floating point value.
output:
1) Nonfinite values (Inf, -Inf, NaN) are mapped to the sentinel hex
value: 0xf000.
2) Salinity values less than -4.095 are mapped to the sentinel
value: 0xf001.
3) Salinity values greater than 61.439 are mapped to the sentinel
value: Oxefff.
4) All other values are expressed in parts-per-ten-million

rounded to the nearest integer and expressed as a 16-bit
signed integer in 2’s-complement form.

RCS file : Iridium Apex.tex,v 37

Revision :

1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment

(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)
\end [verbatim]
*/
unsigned int EncodeS(float s)
{
/* initialize with the mapping for a nonfinite salinity */
long int S = 0xfOOOL;
/* make sure that long integers have at least three bytes */
assert(sizeof (long int)>=3);
if (finite(s))
{
/* assign out-of-range values to sentinel values */
if (s>=61.439) S=0xefffl; else if (s<=-4.095) S=0xf001L;
/* encode the salinity as the number of parts-per-ten-million (rounded) */
else S = (long int) (1000%(s + ((s<0) 7 -0.0005 : 0.0005)));
/* express in 16-bit 2’s-complement form */
if (S<0) S+=0x10000L;
}
return S;
}
[/ *—= —_—— B -%/
/* function to encode temperature as a 2-byte unsigned integer */
= — - - %/
VAL

RCS file : Iridium Apex.tex,v 38 Revision :

This function implements the hex-encoding of IEEE-formattted floating
point temperature data into 16-bit unsigned integers with 2’s complement
representation. The encoding formula accounts for the full range of
32-bit IEEE floating point values but only values in the open range:
-4.095<t<61.439 are representable. This encoding makes full use of all
16-bits.

\begin[verbatim]
input:

t ... The temperature (C) expressed as a floating point value.
output:

1) Nonfinite values (Inf, -Inf, NaN) are mapped to the sentinel hex
value: 0xf000.

2) Temperature values less than -6.5535 are mapped to the sentinel
value: 0xf001.

3) Temperature values greater than 98.3039 are mapped to the sentinel
value: Oxefff.

4) All other values are expressed in tenths of millidegrees Celsius
rounded to the nearest integer and expressed as a 16-bit signed

1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

integer in 2’s-complement form.
\end [verbatim]
*/
unsigned int EncodeT(float t)
{

/* initialize with the mapping for a nonfinite temperature */
long int T = 0xfOOOL;

/* make sure that long integers have at least three bytes */
assert(sizeof (long int)>=3);

if (finite(t))

{
/* assign out-of-range values to sentinel values */
if (£>=61.439) T=0xefffL; else if (t<=-4.095) T=0xf0O01L;
/* encode the temperature as the number of tenths of millidegrees (rounded) */
else T = (long int) (1000*(t + ((t<0) 7 -0.0005 : 0.0005)));
/* express in 16-bit 2’s-complement form */
if (T<0) T+=0x10000L;
}
return T;

E Implementation notes for Amy Bower’s dandelion floats.

This section is only a guide and it should not be misconstrued as a reference or specification of details
peculiar to firmware for dandelion floats. The actual reference is the source code itself. These notes
are cast in the terminology and context of this user manual (especially Section 2).

I think this experiment constitutes a nearly ideal use of Iridium profiling drifters. It is a small
self-contained process study involving small numbers of floats. You will be able to make effective
use of 2-way (ie., remote) control of the drifters. The experiment sounds well conceived and I very
much hope you can pull-off a successful implementation. I would love to hear how it goes after
deployment and will generally be available to answer questions about the floats.

E.1 Thumbnail description of the dandelion mooring.

A mooring that includes a float carousel (located at ~500 dbar) will be deployed in the Labrador
Sea. The mooring acts like a dandelion releasing seeds into a breeze. The floats will remain dormant
in pressure activation mode waiting for an energetic ring to be advected past the mooring. As the
ring passes, the strong currents will cause the mooring to bend over which will induce the carousel
to eject a float into each of 12 rings as they pass. The floats then freely drift with the ring’s currents
as they execute periodic profiles.

RCS file : IridiumApex.tex,v 39 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

E.2 Self-activation and operation of dandelion floats.

Important Warning: Pressure activation is an optional modal feature that must be manually
enabled by communicating with the float. If a float is deployed without the pressure activation
feature being enabled then the float will never self-activate. Once ejected from the mooring, it will
irretrievably become useless flotsam.

Once ejected from the carousel, each float will sink below the activation threshold (ie., 1500 dbars)
of the float’s pressure activation mechanism. The float monitors pressure on a 2-hour heartbeat.
When the pressure exceeds the activation threshold then a second pressure sample is collected (after
a 5-second pause) to confirm that the float mission should begin.

The pressure activation mechanism induces the float into the mission prelude. The purpose of the
mission prelude is so that the float can telemeter when and where it was ejected from the mooring.
The piston is fully extended in order to drive the float to the surface to begin prelude telemetry.
The float can sink up to two more hours after reaching its activation pressure (ie., 1500 dbars). The
length of the mission prelude is user-specified (within the range 1-540 minutes) but should be at
least 8 hours long in order to ensure that the float has time to ascend all the way to the surface
before the prelude period ends.

Standard iridium floats stay on the surface and transmit until the mission prelude expires. However,
this firmware (FwRev: 062907) has been specially modified to satisfy Amy’s request to terminate the
prelude immediately upon successful telemetry. My recommendation would be to set the mission
prelude to timeout after 9 hours since the prelude will automatically terminate upon first successful
completion of telemetry.

When the mission prelude is terminated, the descent for the first profile begins. The first profile
will be executed and telemetered within 24 hours after the end of the prelude. The exact timing de-
pends on user-specified mission parameters. Subsequent profiles will be executed at regular intervals
according to the description in Section 2.

Hence, upon release from the mooring, these floats will self-activate, then ascend to the surface, then
announce their deployment, and then immediately execute the first profile. Subsequent profiles are
executed at regular intervals.

E.3 Disorganized Miscellanea.

Recommended mission parameters:

Based on my understanding of your mission, here is the set of recommended mission parameters:

APEX version 062907 sn 7777
User: £7777

Pwd: Oxafb3

Pri: ATDTO017?7777?77777 Mhp
Alt: ATDTO017?77777777 Mha
INACTV ToD for down-time expiration. (Minutes) Mtc
07200 Down time. (Minutes) Mtd
00420 Up time. (Minutes) Mtu

RCS file : IridiumApex.tex,v 40 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment

(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)
00299 Ascent time-out. (Minutes) Mta
00210 Deep-profile descent time. (Minutes) Mtj
00150 Park descent time. (Minutes) Mtk
00540 Mission prelude. (Minutes) Mtp
00015 Telemetry retry interval. (Minutes) Mhr
00060 Host-connect time-out. (Seconds) Mht

1500 Mission activation pressure. (Decibars) Ma
2000 Continuous profile activation. (Decibars) Mc

300 Park pressure. (Decibars) Mk
1000 Deep-profile pressure. (Decibars) Mj
077 Park piston position. (Counts) Mbp
030 Deep-profile piston position. (Counts) Mbj
010 Ascent buoyancy nudge. (Counts) Mbn
022 Initial buoyancy nudge. (Counts) Mbi
001 Park-n-profile cycle length. Mn
7?77 Maximum air bladder pressure. (Counts) Mfb
777 0K vacuum threshold. (Counts) Mfv
777 Piston full extension. (Counts) Mff
009 Piston storage position. (Counts) Mfs
2 Logging verbosity. [0-5] D
0002 DebugBits. D

The question marks indicate quantities that are specific to each float (and to be determined by
WRC) or that must be specified by you.

Nonstandard features: The following nonstandard features were implemented in response to
Amy’s requests:

e Deep pressure activation—The pressure activation threshold is user-specified within the closed
interval of 25 to 1500 dbars (rather than the standard 25 dbars). This parameter can be
adjusted via the console only—it is not subject to remote control.

Even with the float ballasted to allow this deep activation, you can still configure the float to
park at 300 dbars and profile from 1000 dbars, according to your expressed wish.

Important Warning: In order to provide various kinds of safety margins, I would recommend
that the float be ballasted to become neutrally buoyant at 1900 decibars with the piston fully
retracted (ie., at 9 counts). This will ensure that the float can descend far enough to be
pressure activated. Simultaneously, the 1900 decibar target is shallow enough that the float
can not descend to its crush depth even with the piston fully retracted (as it is in pressure
activation mode).

e Ring retention—The park piston position (77 counts) and profile piston position (30 counts)
were carefully computed based on hydrographic data collected by IFM float 0570 (profile
074) which is deployed in the Labrador Sea. All simulations were done with the simulator
programmed with this hydrography:

http://flux.ocean.washington.edu/ifm/homographs/TP/0570/0570.074.html

RCS file : IridiumApex.tex,v 41 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

These counts initialize the active ballasting algorithm and were chosen to immediately target
the float for the correct park pressure (300 dbars) and profile pressure (1000 dbars). No active-
ballasting adjustments will be necessary if the float is correctly ballasted for 1900 dbars at full
piston retraction. The goal here is to facilitate retention of the float in the ring.

e Telemetry-based termination of mission prelude—The mission prelude will terminate upon
first successful completion of telemetry or when the prelude period expires, whichever happens
first.

The standard behavior is for the float to stay at the surface and execute periodic telemetry
cycles until the prelude period expires. Amy requested that the prelude be truncated upon the
first successful telemetry so that the float would spend as little time at the surface as possible.

Successful telemetry requires two conditions to be satisfied. First, the mission configuration
file must be successfully downloaded to the float from the remote host—so be sure that a
mission configuration file exists on the remote host for the float to download. Second, the data
files generated during the ascent must be successfully uploaded from the float to the remote
host.

Caution: Early termination of the mission prelude makes sense in the context of pressure
activation but it is probably unacceptable in the context of a deployment where the float
mission is activated on-board a ship prior to deployment.

Questions: The answers to the following questions may have direct effects on float operations. In
order to run relevant and effective simulations to test the firmware here in our SimLab, would you
please provide me with answers to the following questions?

e How many floats per mooring? Will all of the floats be released from the carousel at the same
time or will the seeding be only one or two floats per ring? There may be telemetry issues to
solve here regarding too many LBTs transmitting simultaneously. We have solved these before
S0 it’s not a problem if we know to expect it.

Amy’s answer: There will be one mooring with two 6-pack racks. One float will be seeded
into each of 12 passing rings. The seeding might happen over the course of 2 years.

e What is the maximum depth that the mooring carousel could be expected to reach in a strong
current? The activation pressure of the self-activation mechanism should probably be deeper
than this in order to avoid potential self-activation before the float is ejected from the carousel.

Amy’s answer: There is some uncertainty here because actual field measurements are scarce.
Available data indicate that the carousel may dip down as far as 900 dbars. The activation
pressure should be 1500 dbars dbar.

e What does the carousel use to trigger the float release? Is it a mechanical pressure-induced
trigger? Or is it a computer controlled release mechanism?

Amy’s answer: The trigger is computer controlled and uses a synthesis of pressure and tem-
perature to release the float into the core of the ring.

e If you wish, the floats can drift at one depth and then sink deeper before beginning the profile.
T’ve been told that you want to park the floats at 1500 dbars. Is this correct? Do you want
the profiles to start deeper?

RCS file : IridiumApex.tex,v 42 Revision : 1.7

User Manual: Iridium Apex
Amy Bower’s Dandelion Experiment
(0?5) (Firmware Revision: Apf9iSbe4lcpDandelion-062907)

Amy’s answer: The floats should park at 300 dbars and profile to 1000 dbars on every profile.

e I realize that you will probably use 2-way remote control to change the time between profiles.
But can you tell me what your likely typical period between profiles might be?

Amy’s answer: Initial profile period will be 5 days.

System requirements:

e These floats will require one stability ring.

e These floats should be ballasted for neutral buoyancy at 1900 dbar with the piston fully re-
tracted (ie., 9 counts). For ballasting purposes, the temperature 3.07°C and salinity 34.88PSU
are representative of the hydrography at 1900 dbars in the Labrador Sea.

e These floats will require 2000 dbar hulls to provide enough safety margin to support a 1500 dbars
activation pressure. Neither 1200 dbar hulls nor 1500 dbar hulls are adequate in the presence
of the 2-hour pressure-activation heartbeat.

e Remote hosts: Two linux PCs, modems, and phone lines will be required. Someone that is
competent and comfortable as a Linux administrator will be needed to set up and configure
the remote hosts.

RCS file : Iridium Apex.tex,v 43 Revision : 1.7

