Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies

A. Biastoch¹, C. W. Böning¹, F. U. Schwarzkopf¹ & J. R. E. Lutjeharms²

The transport of warm and salty Indian Ocean waters into the Atlantic Ocean—the Agulhas leakage—has a crucial role in the global oceanic circulation¹ and thus the evolution of future climate. At present these waters provide the main source of heat and salt for the surface branch of the Atlantic meridional overturning circulation (MOC)². There is evidence from past glacial-to-interglacial variations in foraminiferal assemblages³ and model studies⁴ that the amount of Agulhas leakage and its corresponding effect on the MOC has been subject to substantial change, potentially linked to latitudinal shifts in the Southern Hemisphere westerlies. A progressive poleward migration of the westerlies has been observed during the past two to three decades and linked to anthropogenic forcing⁵, but because of the sparse observational records it has not been possible to determine whether there has been a concomitant response of Agulhas leakage. Here we present the results of a high-resolution ocean general circulation model⁶,⁷ to show that the transport of Indian Ocean waters into the South Atlantic via the Agulhas leakage has increased during the past decades in response to the change in wind forcing. The increased leakage has contributed to the observed salinification⁸ of South Atlantic thermocline waters. Both model and historic measurements off South America suggest that the additional Indian Ocean waters have begun to invade the North Atlantic, with potential implications for the future evolution of the MOC.

The Agulhas leakage is the result of a complex, highly nonlinear interplay between the strong western boundary current (WBC) along the South African coast, the Agulhas Current⁹, and vigorous mesoscale activity arising in its source regions¹⁰ and south of Africa where the bulk of the Agulhas Current waters are retroflected back into the Indian Ocean. As part of the retroreflection process, the intermittent formation of intense oceanic eddy structures—Agulhas rings—carries warm and salty Indian Ocean water into the South Atlantic. The leakage can affect the MOC in two ways. (1) The mesoscale activity in the retroreflection regime induces wave processes in the South Atlantic that dynamically modulate the MOC on decadal timescales¹¹. (2) On longer timescales, it has been demonstrated in idealized studies¹² that the northward advection of salinity anomalies from the Agulhas regime influences deep-water formation in the northern North Atlantic.

Owing to its mean latitudinal position south of Africa, the zero line of the wind stress curl permits an interoceanic connection of the subtropical gyres of the South Indian and the Atlantic Ocean, a ‘super-gyre’¹³ (Fig. 1a). Studies of atmospheric observations and reanalyses have noted a poleward intensification of the westerly winds during the last decades⁴, a trend that is projected to continue during the twenty-first century¹⁴. How have these changes to the wind field affected the Agulhas system¹⁵, in particular interoceanic transport? We used a high-resolution (1/10°) model of the greater Agulhas region (green box in Fig. 2) that has been demonstrated to realistically simulate the complicated circulation around South Africa²,⁴,¹⁵. The model is nested into a global ocean/sea-ice model which by itself would significantly over-estimate the Agulhas leakage owing to its coarse (1/12°) resolution⁶. In addition to the reference experiment (AG01-R) which provides a hindcast simulation subject to the atmospheric forcing variability of the last decades¹⁶, two sensitivity experiments are considered: AG01-C is driven by a repeated-year forcing, so it inherently explicitly excludes any inter-annual (and anthropogenic) forcing trend; AG01-S uses a variant of the high-resolution nesting domain, exploring the sensitivity of the leakage behaviour to an omission of the mesoscale activity in the upstream regions of the Agulhas Current.

The model hindcast shows that during the past decades the super-gyre has extended poleward by about 2° of latitude, a direct consequence of the poleward shift of the westerlies (Fig. 1b). Such behaviour is not produced by the sensitivity experiment under

¹Leibniz-Institut für Meereswissenschaften, Düsternbrooker Weg 20, 24105 Kiel, Germany. ²Department of Oceanography, University of Cape Town, 7700 Rondebosch, South Africa.

Figure 1 | Large-scale circulation changes south of Africa. a, Time-mean (1995–2004) horizontal streamfunction in the Agulhas region (contours marked in Sverdrup) in AG01-R, with grey shading denoting anticyclonic circulation. The GoodHope section used for the quantification of Agulhas leakage is marked by the green line. b, Latitudinal dependence of zonal averages (20°–60° E) of the streamfunction (black) and zonally averaged wind stress curl over the Indian Ocean (20°–110° E, blue) for periods 1965–1974 (dashed) and 1995–2004 (solid). c, Latitude of zero sea surface height in AG01-R (0°–40° E zonal average, black) and a corresponding constant sea surface height line in satellite data (Aviso, red). Dashed lines indicate linear trends over full time range and over the past decade.
repeated-year forcing (AG01-C), confirming that we can neglect possible effects of spurious model trends and attribute the shift to the decadal changes in the external forcing. An observational test of the change in the geometry of the super-gyre is provided by satellite altimeter data, available since the beginning of the 1990s: the observed sea surface height pattern shows a southward migration, similar to that of the model simulation (Fig. 1c), with a clear increase in the past decade.

As a consequence of the trend in the atmospheric forcing, and consistent with studies of regional ocean observations17, the waters in the southwest Indian Ocean exhibit warming and salinification tendencies (Fig. 2; Supplementary Fig. 1). The model simulation captures the observed trends18, and indicates the regional changes as part of a larger pattern that zonally extends into the South Atlantic. The warming/salinification can be explained by a southward shift (Supplementary Fig. 2) of the boundary between the subtropical gyre circulation and the Antarctic Circumpolar Current, and thus considered to be part of the hemispheric-scale poleward migration of this frontal zone19. (Note that the warming pattern is absent in the sensitivity experiment under repeated-year forcing, AG01-C.)

Another, potentially even more important, consequence of the forcing trend occurs in the Agulhas leakage (Fig. 3). For a rigorous determination of Agulhas leakage we trace the amount of water originating in the Agulhas Current at 32°S and arriving at the GoodHope section (see ref. 20 and green line in Fig. 1a) using a Lagrangian tracking technique8,21,22. Partially masked by a strong frontal zone19. (Note that the warming pattern is absent in the sensitivity experiment under repeated-year forcing, AG01-C.)

The simulation suggests that this 10% reduction of the WBC can be attributed to a more consistent and stronger Agulhas leakage, and that this is therefore an expression of the large-scale frontal changes, rather than the decadal changes in the southern Indian Ocean. As suggested by theoretical arguments23, an increase (decrease) in the strength of the Agulhas Current should translate into a decrease (increase) of the leakage; a corresponding behaviour was noted for the present model22. It also holds for the long-term trend in which the increasing transport from the Indian to the Atlantic Ocean (1.2 Sv per decade) is linked to a multi-decadal decrease of the Agulhas Current transport (−1.4 Sv per decade). The observed warming south of Africa is therefore an expression of the large-scale frontal changes, rather than an advective effect of the Agulhas Current19 (Supplementary Fig. 4).

The sequence demonstrates that inter-annual transport variations in the Agulhas regime are largely decoupled from the large-scale wind field and governed primarily by the internal dynamics in the WBC regime. Only on longer, decadal timescales does the effect of these eddies appear to fade, and transport changes with (AG01-R) and without (AG01-S) Mozambique eddies begin to exhibit a clear correlation (r = 0.95, Supplementary Fig. 3). The model results have implications for ongoing ocean-monitoring efforts at the western boundary: they suggest that observations of a few years’ duration are of limited value as an index of inter-annual gyre-scale transport changes in the southern Indian Ocean.
transport to be isolated because the model includes other potential effects of changes in the westerlies, which may affect the MOC via changes in the Antarctic Circumpolar Current and its associated deep- and intermediate-water formation processes in the Southern Ocean. However, by using the Lagrangian tracking technique we can follow and inspect the properties of the waters that enter the South Atlantic across the GoodHope section (Fig. 5). Consistent with the comparison of Agulhas leakage in the stand-alone base model and the nested model, the net volume transport towards the North Atlantic did not change from the 1970s to the 2000s; the increased leakage instead led to an enhanced horizontal super-gyre. However, there has been a striking trend in the freshwater transport: the inter-hemispheric export of salt originating from Agulhas leakage has increased by 25% over the course of the integration.

In the South Atlantic, almost all of the inter-hemispheric, northward volume transport (that is, the upper-layer branch of the MOC) is channelled through the North Brazil Current. Corresponding to the increase in the northward salt transport, the model simulation reveals an increasing trend in the salinity of the North Brazil Current core. We have assessed this behaviour by performing an analysis of salinity profiles collected in historic ocean data archives (Fig. 5 inset). The observed records show a salinity increase in the North Brazil Current during the 1970s and 1980s, corresponding to the observed salinification of the subtropical thermocline waters during the past decade, which has been attributed to changes in the hydrological cycle. The model simulation suggests that the majority of this salinification can be traced to the increased invasion of Indian Ocean waters as a result of wind-driven changes.

The suite of model experiments highlights a far-reaching consequence of the anthropogenic shifts in the Southern Hemisphere westerlies—the salinity increase described above—which is projected to continue and accelerate during the twenty-first century. An increased import of salty water into the northward branch of the inter-hemispheric MOC could eventually become a significant factor for the freshwater budget of the deep-water formation regions in the subpolar North Atlantic. To what degree it could help to stabilize a potentially declining ‘Gulf Stream system’ caused by subarctic freshening in a warming climate needs to be investigated using coupled

Figure 4 | Inter-annual to decadal variability in the Agulhas Current.

a. Inter-annual variability of the Sverdrup transport at 32° S, calculated from the atmospheric wind stress (CORE), for AG01-R (black), AG01-C (blue) and AG01-S (green). b. Agulhas Current transport at 32° S, calculated across the WBC and its first recirculation (line colours as in a), and filtered with a 23-month (thin curves) and 121-month Hanning window (bold). Long-term linear trend (dashed) of the strength of the WBC. (For alternative calculations of the WBC transport, see Supplementary Fig. 3.)

Attributed to a combination of decreased transport through the Mozambique Channel (Supplementary Fig. 5), which is sensitive to shifts in the wind fields and a reduced recirculation in the Southwest Indian Ocean sub-gyre.

What are the consequences of the increased Agulhas leakage for the large-scale circulation in the Atlantic Ocean? The present model series does not permit the effect of the leakage trend on the MOC transport to be isolated because the model includes other potential effects of changes in the westerlies, which may affect the MOC via changes in the Antarctic Circumpolar Current and its associated deep- and intermediate-water formation processes in the Southern Ocean. However, by using the Lagrangian tracking technique we can follow and inspect the properties of the waters that enter the South Atlantic across the GoodHope section (Fig. 5). Consistent with the comparison of Agulhas leakage in the stand-alone base model and the nested model, the net volume transport towards the North Atlantic did not change from the 1970s to the 2000s; the increased leakage instead led to an enhanced horizontal super-gyre. However, there has been a striking trend in the freshwater transport: the inter-hemispheric export of salt originating from Agulhas leakage has increased by 25% over the course of the integration.

In the South Atlantic, almost all of the inter-hemispheric, northward volume transport (that is, the upper-layer branch of the MOC) is channelled through the North Brazil Current. Corresponding to the increase in the northward salt transport, the model simulation reveals an increasing trend in the salinity of the North Brazil Current core. We have assessed this behaviour by performing an analysis of salinity profiles collected in historic ocean data archives (Fig. 5 inset). The observed records show a salinity increase in the North Brazil Current during the 1970s and 1980s, corresponding to the observed salinification of the subtropical thermocline waters during the past decade, which has been attributed to changes in the hydrological cycle. The model simulation suggests that the majority of this salinification can be traced to the increased invasion of Indian Ocean waters as a result of wind-driven changes.

The suite of model experiments highlights a far-reaching consequence of the anthropogenic shifts in the Southern Hemisphere westerlies—the salinity increase described above—which is projected to continue and accelerate during the twenty-first century. An increased import of salty water into the northward branch of the inter-hemispheric MOC could eventually become a significant factor for the freshwater budget of the deep-water formation regions in the subpolar North Atlantic. To what degree it could help to stabilize a potentially declining ‘Gulf Stream system’ caused by subarctic freshening in a warming climate needs to be investigated using coupled

Figure 5 | Pathways of the Agulhas leakage into the North Atlantic.

Example trajectories of virtual floats released with temperature \(T \approx 10 ^\circ C \) along the GoodHope section and leaving the South Atlantic towards the Indian Ocean (green), the Southern Ocean (blue) or the North Atlantic (red). For statistical numbers see Supplementary Table 1. Volume (V) and freshwater (F) transports (negative numbers indicate salt advection to the north) are shown for the full 6° S (red-black dashed line) and GoodHope (black dashed) sections for the indicated periods, and the mean salinity (S) of floats leaving the domain in the core of the North Brazil Current (depth range 100–600 m). The inset shows an analysis of historic salinity profiles (in practical salinity units, p.s.u.) averaged over the same depth range off the east coast of South America (yellow box). The error bars depict 2σ errors (95% confidence intervals). The shading and the contour lines depict the streamfunction as in Fig. 1a.

©2009 Macmillan Publishers Limited. All rights reserved
ocean–atmosphere models and dedicated sensitivity studies. Our model results emphasize the need to capture realistically the mesoscale processes of the Agulhas leakage regime in climate model projections of future MOC evolution, and the importance of ocean-monitoring programmes in key areas for inter-ocean and inter-hemispheric transports.

METHODS SUMMARY

For a realistic model simulation of the Agulhas Current system the horizontal resolution is a critical factor. Here we use a high-resolution (1/10°) model (green box in Fig. 2) nested into a coarser (1/2°) global ocean/sea-ice model based on the NEMO code (v2.3)30, developed by the DRAKKAR collaboration. Previous studies demonstrated the success of this set-up in reproducing the salient circulation features of the Agulhas system41 and its dynamic impact on the Atlantic MOC7. In addition to the reference experiment (AG01-R) in which surface floats, each seeded as a fraction of the Agulhas Current transport at 32°S, were advected by the time-dependent three-dimensional flow field, summing up their individual transports at the GoodHope section26 resulted in a total number for the leakage transport. Another float integration elucidated the longer-term paths of the leakage towards the North Atlantic by seeding at the GoodHope section and advecting with the velocities of two different pentads (five-year periods) from the model. The model fields are compared with gridded time series of sea surface height (http://www.aviso.oceanobs.com) based on satellite altimeter data, produced by Salto/Duacs and distributed by Aviso, with support from CNES. The mean dynamic topography Rio05 was produced by the CLS Space Oceanography Division. To assess temporal changes in salinity fields in the North Brazil Current near 6°S, we used an extensive compilation of historical observations by BLUElink (ftp://ftp.marine.csiro.au/pub/omas/BOA) and CARS (http://www.marine.csiro.au/~dunn/cars2006).

Full Methods and any associated references are available in the online version of the paper at www.nature.com/nature.

Received 15 July; accepted 16 September 2009.

Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

Acknowledgements The integrations of the experiments have been performed at the Hochstehreibungsstgenzentrum Stuttgart (HLRS) and the Computing Centre at Kiel University. We thank the NEMO, AGRIF and Ariane System Teams for their technical support. The analysis was supported by the DFG projects BO 907/2-2 and SFB 754 (TP A2, http://www.sfb754.de). J.R.E.L. received support from the International Bureau of the BMBF (SUA 07/004) and from the South African National Research Foundation.

Author Contributions A.B. and C.W.B. conceived the experimental concept, A.B. implemented and conducted the experiments, and carried out the analysis. F.U.S. performed the observational analysis. All authors discussed the results and jointly wrote the manuscript.

Author Information Reprints and permissions information is available at www.nature.com/reprints. Correspondence and requests for materials should be addressed to A.B. (abiastoch@ifm-geomar.de).
METHODS

For a realistic model simulation of the greater Agulhas Current system the horizontal resolution is essential. The nested model configurations used here build on the ocean/sea-ice numerical framework of the ‘Nucleus for European Modelling of the Ocean’ (NEMO, v2.3)30 and ‘Adaptive Grid Refinement in Fortran’ (AGRIF)31, developed in the framework of the DRAKKAR collaboration.

The base model uses the global ORCA05 configuration, a tri-polar, quasi-isotropic grid with a nominal resolution of 1/2°; its cell size of 45–50 km in the Agulhas region is not resolving the mesoscale. In the vertical dimension 46 levels (with ten levels in the upper 100 m, and 250-m resolution at the deepest levels) are used, whereby the bottom cells are allowed to be partially filled. This improved representation of topographic slopes, in combination with a refined, energy- and enstrophy-conserving advection scheme, has led to marked improvements in the global circulation features31. Additional subgrid-scale mixing parameterizations include a representation of mixed layer dynamics by a 1.5-level turbulent kinetic energy closure, a bi-Laplacian viscosity, and an iso-neutral Laplacian scheme. For tracer advection a total variance dissipation scheme32—a second-order, two-step monotonic scheme with moderate numerical diffusion—is used.

The model is driven at the surface by a consistent data set, CORE16, which is a combination of the NCEP/NCAR atmospheric reanalysis33 and independent observations used to correct known biases, and to globally balance the heat and freshwater budgets. Turbulent fluxes are computed via bulk formulae, allowing some feedback of the ocean on the atmospheric fluxes34,35. Data are prescribed at six-hourly (wind speed, humidity and atmospheric temperature), daily (short- and long-wave radiation) and monthly (rain and snow) resolution, with inter-annual variability over the time range 1958–2004. To avoid an artificial model drift due to an excess of freshwater36, the CORE precipitation field has been replaced north of 30° N by observational values37; in addition common practice38 has been followed by damping sea surface salinity towards monthly-mean climatological values with a piston velocity of 50 m per 300 days (about a one-month timescale) poleward of 70° N and 30° S. Equatorward of these latitudes (and in the high-resolution nest) a very weak damping (more than a one-year timescale) was used, leaving the evolution within the Agulhas area almost unaffected. Several studies have demonstrated the fidelity of this ORCA05 set-up in simulating the salient features of the Atlantic MOC39,40.

The experiments were initialized from rest using temperatures and salinities from a global climatology41,42 and integrated over 20 years using the repeated-year version of the CORE forcing data. After that time all prognostic model fields were interpolated onto the 1/10° nest in the greater Agulhas region (20° W–70° E, 47° S–7° S, green box in Fig. 2). The fivefold refinement of the original ORCA05 grid, with an average grid cell of 9.5 km at 30° S, resolves the baroclinic Rossby radius of ~30 km in this regime. Apart from some resolution-dependent scaling the same parameterizations have been used. Both base and nested model were then integrated over the full period of 1958–2004. The nesting approach acts in two ways so that not only is the regional model continually receiving information from the outside ocean, but also it feeds the effect of the mesoscale dynamics in the leakage regime back to the base model at all timescales. This feature enabled us to isolate the effect of the Agulhas dynamics onto the Atlantic MOC43.

Previous studies demonstrated the success of the model set-up in reproducing all the important circulation features of the greater Agulhas Current system, including a realistic WBC structure off Africa31, the upstream perturbations arising from the Mozambique Channel31, and their interplay with the shedding of Agulhas rings32. In addition to the reference experiment (AG01-R) using the inter-annually varying CORE forcing fields, two sensitivity experiments have been performed: AG01-C, without inter-annual variability in the forcing fields, allows us to isolate the internal variability and a possible spurious model drift from the changes due to the forcing fields by comparison with AG01-R. In AG01-S the high-resolution nest terminates at 27° S, thus excluding the mesoscale eddies in the source regions of the Agulhas Current from the model solution34.

Similar to a previous analysis35 a Lagrangian method36 was used, in which a large number (typically 106–107) of virtual floats was seeded continuously over a year into the Agulhas Current at 32° S. Each float represents a fraction (~0.1 Sv) of the total volume transport, is advected by the time-dependent flow field and is counted when crossing the GoodHope section37 (green line in Fig. 1a) in the Atlantic within three years of release. The algorithm uses all velocity components and analytically calculates a three-dimensional streamfunction for any given five-day averages, thereby avoiding spurious diffusion. A second float integration elucidated the longer-term paths of the Agulhas leakage towards the North Atlantic by seeding fractional transports (~0.01 Sv) crossing the GoodHope section with temperatures exceeding 10 °C and advecting those with the five-day base model flow fields for two different pentads (1968–1972 and 2000–2004). About a third of the floats do not reach one of the control sections within five years (especially the ones looping in the subtropical gyre); so to draw out the path differences, the float integration was elongated by repeatedly cycling through these pentads until ~95% of the floats had crossed one of the sections (Fig. 5). Comparison with float experiments over ten-year periods and different repetitions led to similar conclusions for the volume and freshwater transports arriving at 6° S (Supplementary Table 1).

The model fields were compared with gridded time series of sea surface height (http://www.aviso.oceanobs.com) based on satellite altimeter data, produced by Ssalto/Duacs and distributed by Aviso, with support from CNES. The mean dynamic topography Rio05 was produced by the CSL Space Oceanography Division.

To assess temporal changes in salinity fields in the North Brazil Current near 6° S, we used an extensive compilation of historical shipboard hydrographic cast and high-quality buoy data provided by the BLUElink Ocean Archive (BOA, ftp://ftp.marine.csiro.au/pub/omas/BOA). Our model-data comparison focused on the region 40° W–30° W, 5° S–10° S. The irregularly distributed BOA profiles constitute the basis for the high-resolution, gridded ‘CSIRO Atlas of Regional Seas’ (CARS, http://www.marine.csiro.au/~dunn/cars2006) climatology. Following previous studies38 we minimized the potential spatial aliasing arising from the temporally varying distributions of sampling points by subtracting the climatological mean from the individual BOA profiles. The resulting salinity values were averaged over the individual pentads and the depth range of the North Brazil Current (100–600 m). Error bars were drawn using 95% confidence intervals, given by doubling the population standard deviation divided by the square root of the number of degrees of freedom.

©2009 Macmillan Publishers Limited. All rights reserved