Tag: Meridional Overturning Circulation

AOML Researchers Monitor Important Boundary Currents in the North Atlantic Ocean Through Direct Measurements at Sea

Researchers from the Physical Oceanography Division of AOML conduct regular hydrographic surveys to monitor the western boundary current system in the subtropical North Atlantic Ocean. These cruises are a part of the laboratory’s long-running Western Boundary Time Series (WBTS) project and are designed to monitor both the Florida Current, east of Florida in the Florida Straits, and the North Atlantic Deep Western Boundary Current east of the Bahamas in the North Atlantic Ocean. These western boundary currents are important parts of the Atlantic Meridional Overturning Circulation (AMOC).

Read More

AOML Scientists Develop First-ever Daily Estimates of the Heat Transport in the South Atlantic Ocean

In a recent article published in the Journal of Geophysical Research – Oceans, scientists at AOML evaluate the variability of the heat transport in the South Atlantic by developing a new method to measure its changes on a daily basis. This study presents, for the first time, full‐depth, daily measurements of the volume and heat transported by the Meridional Overturning Circulation (MOC) in the South Atlantic at 34.5°S based on direct observations.

Read More

AOML Scientists Monitor How Heat and Water are Transported Through the Atlantic Ocean Using Field and Satellite Observations

In a recently published study, scientists at AOML present 28-year long (1993-2020) estimates of the Atlantic Meridional Overturning Circulation (AMOC) volume and heat transports at multiple latitudes by merging in-situ oceanographic and satellite observations. By combining ocean observations with satellite data, they were able to estimate the AMOC volume and heat transports in near real time. These data can be used to validate ocean models, to detect climate variability, and to investigate their impact on extreme weather events.

Read More

Scientists at AOML Awarded Ocean Observing Team Award for Western Boundary Time Series Project

NOAA’s Western Boundary Time Series (WBTS) project, alongside partner projects RAPID and MOCHA, have been awarded the inaugural “Ocean Observing Team Award” by The Oceanography Society (TOS). This award recognizes innovation and excellence in sustained ocean observing for scientific and practical applications. The WBTS/RAPID/MOCHA team is recognized for significantly improving our understanding of Atlantic circulation through the breakthrough design of a basin-wide observing system using endpoint measurements to measure the variability of the overturning circulation across wide areas of the ocean. This design provided continuous, cost-effective measurements that led to a transformation in ocean observing and advances in scientific knowledge.

Read More

First-ever Daily Time Series Reveals the Strength of the Deep Ocean Circulation in the South Atlantic

In a recent study published in the journal Science Advances, oceanographers at AOML and the Cooperative Institute for Marine and Atmospheric Studies for the first time describe the daily variability of the circulation of key deep currents in the South Atlantic Ocean that are linked to climate and weather. The study found that the circulation patterns in the upper and deeper layers of the South Atlantic often vary independently of each other, an important new result about the broader Meridional Overturning Circulation (MOC) in the Atlantic.

Read More

Pods Away! New Autonomous Data Pods Will Provide Low-Cost, Reliable Data Retrieval

AOML is preparing to deploy two autonomous data pod systems with Pressure Inverted Echo Sounders near the eastern boundary of the North Atlantic during March 2020.  This will be the first full scale operational deployment of data pods, with a goal of providing a low-cost solution for the sustained Atlantic Meridional Overturning Circulation monitoring without the continuous use of a research vessel. 

Read More

New Study Shows Atlantic Meridional Overturning Circulation and Mediterranean Sea Level are Connected

The global mean sea level rise caused by ocean warming and glacier melting over landforms such as Greenland is one of the most alarming aspects of a shifting global climate. However, the dynamics of the ocean and atmosphere further influence sea level changes region by region and over time. For example, along the U.S. East Coast, a pronounced acceleration of sea level rise in 2010-2015 was observed south of Cape Hatteras, while a deceleration occurred up North.  These patterns provide background conditions, on top of which shorter-period (and often stronger) weather-driven sea level fluctuations compound what coastal communities directly experience day by day. Therefore, to develop or improve regional sea level predictions, it’s important to identify these patterns and explore how they change over time.

Read More

RAPID-MOCHA-WBTS array suggests that the Atlantic circulation has changed

AOML oceanographers Christopher Meinen and Molly Baringer participated in the development of a new thirteen-year-long record of the daily Atlantic ocean overturning that has recently been released. This project is a collaboration between a large team of researchers at NOAA, at the University of Miami ,and at the National Oceanography Centre in Southampton, United Kingdom.

Read More

Decadal Modulations of Global Monsoons and Extreme Weather Events by SAMOC

There have been many efforts to understand the role of the Atlantic Meridional Overturning Circulation (AMOC) as a potential predictor of decadal climate variability, motivated partly by its inherent relationship with North Atlantic sea surface temperature. In contrast, there is currently limited knowledge about the underlying mechanisms that govern the South Atlantic Meridional Overturning Circulation (SAMOC) variability and how it might feedback into climate, partly due to the small number of direct observations in this ocean basin.

Read More