Part A : Basic Definitions

By Christopher W. Landsea
NOAA AOML/Hurricane Research Division
4301 Rickenbacker Causeway
Miami, Florida 33149

Version 2.5
23 October, 1997


A1) What is a hurricane, typhoon, or tropical cyclone?
A2) What are "Cape Verde"-type hurricanes?
A3) What is a super-typhoon?
A4) Where do these easterly waves come from and what causes them?
A5) What is a sub-tropical cyclone?
A6) How are tropical cyclones different from mid-latitude storms?
A7) How are tropical cyclones different from tornadoes?
A8) What does the acronym "CDO" in a discussion of tropical cyclones mean?
A9) What is a TUTT?

A10) How do tropical cyclones form ?

A11) What is the "eye" ? How is it formed and maintained ?

Subject: A1) What is a hurricane, typhoon, or tropical cyclone?
Hurricane AndrewNOAA

The terms "hurricane" and "typhoon" are regionally specific names for a strong "tropical cyclone". A tropical cyclone is the generic term for a non-frontal synoptic scale low-pressure system over tropical or sub- tropical waters with organized convection (i.e. thunderstorm activity) and definite cyclonic surface wind circulation (Holland 1993).

Tropical cyclones with maximum sustained surface winds of less than 17 m/s (34 kt) are called "tropical depressions". (This is not to be confused with the condition mid-latitude people get during a long, cold and grey winter wishing they could be closer to the equator ;-)) Once the tropical cyclone reaches winds of at least 17 m/s they are typically called a "tropical storm" and assigned a name. If winds reach 33 m/s (64 kt), then they are called: a "hurricane" (the North Atlantic Ocean, the Northeast Pacific Ocean east of the dateline, or the South Pacific Ocean east of 160E); a "typhoon" (the Northwest Pacific Ocean west of the dateline); a "severe tropical cyclone" (the Southwest Pacific Ocean west of 160E or Southeast Indian Ocean east of 90E); a "severe cyclonic storm" (the North Indian Ocean); and a "tropical cyclone" (the Southwest Indian Ocean) (Neumann 1993).

Note that just the definition of "maximum sustained surface winds" depends upon who is taking the measurements. The World Meteorology Organization guidelines suggest utilizing a 10 min average to get a sustained measurement. Most countries utilize this as the standard. However the National Hurricane Center (NHC) and the Joint Typhoon Warning Center (JTWC) of the USA use a 1 min averaging period to get sustained winds. This difference may provide complications in comparing the statistics from one basin to another as using a smaller averaging period may slightly raise the number of occurrences (Neumann 1993).

Subject: A2) What are "Cape Verde"-type hurricanes?
Cape Verde

Cape Verde-type hurricanes are those Atlantic basin tropical cyclones that develop into tropical storms fairly close (<1000km or so) of the Cape Verde Islands and then become hurricanes before reaching the Caribbean. (That would be my definition, there may be others.) Typically, this may occur in August and September, but in rare years (like 1995) there may be some in late July and/or early October. The numbers range from none up to around five per year - with an average of around 2.

Subject: A3) What is a super-typhoon?

A "super-typhoon" is a term utilized by the U.S. Joint Typhoon Warning Center in Guam for typhoons that reach maximum sustained 1-minute surface winds of at least 130 kt (240 km/h). This is the equivalent of a strong Saffir-Simpson category 4 or category 5 hurricane in the Atlantic basin or a category 5 severe tropical cyclone in the Australian basin.

Subject: A4) Where do these easterly waves come from and what causes them?
Easterly waves

It has been recognized since at least the 1930s (Dunn 1940) that lower tropospheric (from the ocean surface to about 5 km with a maximum at 3 km) westward traveling disturbances often serve as the "seedling" circulations for a large proportion of tropical cyclones over the North Atlantic Ocean. Riehl (1945) helped to substantiate that these disturbances, now known as African easterly waves, had their origins over North Africa. While a variety of mechanisms for the origins of these waves were proposed in the next few decades, it was Burpee (1972) who documented that the waves were being generated by an instability of the African easterly jet. (This instability - known as baroclinic-barotropic instability - is where the value of the potential vorticity begins to decrease toward the north.) The jet arises as a result of the reversed lower-tropospheric temperature gradient over western and central North Africa due to extremely warm temperatures over the Saharan Desert in contrast with substantially cooler temperatures along the Gulf of Guinea coast.

The waves move generally toward the west in the lower tropospheric tradewind flow across the Atlantic Ocean. They are first seen usually in April or May and continue until October or November. The waves have a period of about 3 or 4 days and a wavelength of 2000 to 2500 km, typically (Burpee 1974). One should keep in mind that the "waves" can be more correctly thought of as the convectively active troughs along an extended wave train. On average, about 60 waves are generated over North Africa each year, but it appears that the number that is formed has no relationship to how much tropical cyclone activity there is over the Atlantic each year.

While only about 60% of the Atlantic tropical storms and minor hurricanes (Saffir-Simpson Scale categories 1 and 2) originate from easterly waves, nearly 85% of the intense (or major) hurricanes have their origins as easterly waves (Landsea 1993). It is suggested, though, that nearly all of the tropical cyclones that occur in the Eastern Pacific Ocean can also be traced back to Africa (Avila and Pasch 1995).

It is currently completely unknown how easterly waves change from year to year in both intensity and location and how these might relate to the activity in the Atlantic (and East Pacific).

Subject: A5) What is a sub-tropical cyclone?

A sub-tropical cyclone is a low-pressure system existing in the tropical or subtropical latitudes (anywhere from the equator to about 50N) that has characteristics of both tropical cyclones and mid-latitude (or extratropical) cyclones. Therefore, many of these cyclones exist in a weak to moderate horizontal temperature gradient region (like mid-latitude cyclones), but also receive much of their energy from convective clouds (like tropical cyclones). Often, these storms have a radius of maximum winds which is farther out (on the order of 60-125 miles [100-200 km] from the center) than what is observed for purely "tropical" systems. Additionally, the maximum sustained winds for sub-tropical cyclones have not been observed to be stronger than about 64 kt (33 m/s).

Many times these subtropical storms transform into true tropical cyclones. A recent example is the Atlantic basin's Hurricane Florence in November 1994 which began as a subtropical cyclone before becoming fully tropical. Note there has been at least one occurrence of tropical cyclones transforming into a subtropical storm (e.g. Atlantic basin storm 8 in 1973).

Subtropical cyclones in the Atlantic basin are classified by the maximum sustained surface winds: less than 34 kt (18 m/s) - "subtropical depression", greater than or equal to 34 kt (18 m/s) - "subtropical storm". Note that while these are not given names, they are warned on and forecasted for by the National Hurricane Center similar to the treatment received by tropical cyclones in the region.

Subject: A6) How are tropical cyclones different from mid-latitude storms?

The tropical cyclone is a low-pressure system which derives its energy primarily from evaporation from the sea in the presence of high winds and lowered surface pressure and the associated condensation in convective clouds concentrated near its center (Holland 1993). Mid-latitude storms (low pressure systems with associated cold fronts, warm fronts, and occluded fronts) primarily get their energy from the horizontal temperature gradients that exist in the atmosphere.

Structurally, tropical cyclones have their strongest winds near the earth's surface (a consequence of being "warm-core" in the troposphere), while mid-latitude storms have their strongest winds near the tropopause (a consequence of being "warm-core" in the stratosphere and "cold-core" in the troposphere). "Warm-core" refers to being relatively warmer than the environment at the same pressure surface ("pressure surfaces" are simply another way to measure height or altitude).

Subject: A7) How are tropical cyclones different from tornadoes?

While both tropical cyclones and tornadoes are atmospheric vortices, they have little in common. Tornadoes have diameters on the scale of 100s of meters and are produced from a single convective storm (i.e. a thunderstorm or cumulonimbus). A tropical cyclone, however, has a diameter on the scale of 100s of *kilometers* and is comprised of several to dozens of convective storms. Additionally, while tornadoes require substantial vertical shear of the horizontal winds (i.e. change of wind speed and/or direction with height) to provide ideal conditions for tornado genesis, tropical cyclones require very low values (less than 10 m/s or 20 kt) of tropospheric vertical shear in order to form and grow. These vertical shear values are indicative of the horizontal temperature fields for each phenomenon: tornadoes are produced in regions of large temperature gradient, while tropical cyclones are generated in regions of near zero horizontal temperature gradient. Tornadoes are primarily an over-land phenomena as solar heating of the land surface usually contributes toward the development of the thunderstorm that spawns the vortex (though over-water tornadoes have occurred). In contrast, tropical cyclones are purely an oceanic phenomena - they die out over-land due to a loss of a moisture source. Lastly, tropical cyclones have a lifetime that is measured in days, while tornadoes typically last on the scale of minutes.

An interesting side note is that tropical cyclones at landfall often provide the conditions necessary for tornado formation. As the tropical cyclone makes landfall and begins decaying, the winds at the surface die off quicker than the winds at, say, 850 mb. This sets up a fairly strong vertical wind shear that allows for the development of tornadoes, especially on the tropical cyclone's right side (with respect to the forward motion of the tropical cyclone). For the southern hemisphere, this would be a concern on the tropical cyclone's left side - due to the reverse spin of southern hemisphere storms. (Novlan and Gray 1974)

Subject: A8) What does the acronym "CDO" in a discussion of tropical cyclones mean?
CDO delimitedNOAA

"CDO" is an acronym that stands for "central dense overcast". This is the cirrus cloud shield that results from the thunderstorms in the eyewall of a tropical cyclone and its rainbands. Before the tropical cyclone reaches hurricane strength (64 kt or 33 m/s), typically the CDO is uniformly showing the cold cloud tops of the cirrus with no eye apparent. Once the storm reaches the hurricane strength threshold, usually an eye can be seen in either the infrared or visible channels of the satellites. Tropical cyclones that have nearly circular CDO's are indicative of favorable, low vertical shear environments.

Subject: A9) What is a "TUTT"?
TUTT2 map

A "TUTT" is a Tropical Upper Tropospheric Trough. A TUTT low is a TUTT that has completely cut-off. TUTT lows are more commonly known in the Western Hemisphere as an "upper cold low". TUTTs are different than mid- latitude troughs in that they are maintained by subsidence warming near the tropopause which balances radiational cooling. TUTTs are important for tropical cyclone forecasting as they can force large amounts of harmful vertical wind shear over tropical disturbances and tropical cyclones. There are also suggestions that TUTTs can assist tropical cyclone genesis and intensification by providing additional forced ascent near the storm center and/or by allowing for an efficient outflow channel in the upper troposphere. For a more detailed discussion on TUTTs see the article by Fitzpatrick et al. (1995).

Subject: A10) How do tropical cyclones form ?

To undergo tropical cyclogenesis, there are several favorable precursor environmental conditions that must be in place (Gray 1968,1979) :

  1. Warm ocean waters (of at least 26.5°C [80°F]) throughout a sufficient depth (unknown how deep, but at least on the order of 50 m [150 ft]). Warm waters are necessary to fuel the heat engine of the tropical cyclone.

  2. An atmosphere which cools fast enough with height such that it is potentially unstable to moist convection. It is the thunderstorm activity which allows the heat stored in the ocean waters to be liberated for the tropical cyclone development.

  3. Relatively moist layers near the mid-troposphere (5 km [3 mi]). Dry mid levels are not conducive for allowing the continuing development of widespread thunderstorm activity.

  4. A minimum distance of at least 500 km [300 mi] from the equator. For tropical cyclogenesis to occur, there is a requirement for non-negligible amounts of the Coriolis force to provide for near gradient wind balance to occur. Without the Coriolis force, the low pressure of the disturbance cannot be maintained.

  5. A pre-existing near-surface disturbance with sufficient vorticity and convergence. Tropical cyclones cannot be generated spontaneously . To develop, they require a weakly organized system with sizable spin and low level inflow.

  6. Low values (less than about 10 m/s [20 mph]) of vertical wind shear between the surface and the upper troposphere. Vertical wind shear is the magnitude of wind change with height. Large values of vertical wind shear disrupt the incipient tropical cyclone and can prevent genesis, or, if a tropical cyclone has already formed, large vertical shear can weaken or destroy the tropical cyclone by interfering with the organization of deep convection around the cyclone center.

Having these conditions met is necessary, but not sufficient as many disturbances that appear to have favorable conditions do not develop. Recent work (Velasco and Fritsch 1987, Chen and Frank 1993, Emanuel 1993) has identified that large thunderstorm systems (called mesoscale convective complexes [MCC]) often produce an inertially stable, warm core vortex in the trailing altostratus decks of the MCC. These mesovortices have a horizontal scale of approximately 100 to 200 km [75 to 150 mi], are strongest in the mid-troposphere (5 km [3 mi]) and have no appreciable signature at the surface. Zehr (1992) hypothesizes that genesis of the tropical cyclones occurs in two stages:

Subject: A11) What is the "eye"? How is it formed and maintained?

The "eye" is a roughly circular area of comparatively light winds and fair weather found at the center of a severe tropical cyclone. Although the winds are calm at the axis of rotation, strong winds may extend well into the eye. There is little or no precipitation and sometimes blue sky or stars can be seen. The eye is the region of lowest surface pressure and warmest temperatures aloft - the eye temperature may be 10 C [18 F] warmer or more at an altitude of 12 km [8 mi] than the surrounding environment, but only 0-2 C [0-3 F] warmer at the surface (Hawkins and Rubsam 1968) in the tropical cyclone. Eyes range in size from 8 km [5 mi] to over 200 km [120 mi] across, but most are approximately 30-60 km [20-40 mi] in diameter (Weatherford and Gray 1988). The eye is surrounded by the eyewall, the roughly circular area of deep convection which is the area of highest surface winds in the tropical cyclone. The eye is composed of air that is slowly sinking and the eyewall has a net upward flow as a result of many moderate - occasionally strong - updrafts and downdrafts. The eye's warm temperatures are due to compressional warming of of the subsiding air. Most soundings taken within the eye show a low-level layer which is relatively moist, with an inversion above - suggesting that the sinking in the eye typically does not reach the ocean surface, but instead only gets to around 1-3 km of the surface.

The general mechanisms by which the eye and eyewall are formed are not fully understood, although observations have shed some light on the problem. The calm eye of the tropical cyclone shares many qualitative characteristics with other vortical systems such as tornadoes, waterspouts, dust devils and whirlpools. Given that many of these lack a change of phase of water (i.e. no clouds and diabatic heating involved), it may be that the eye feature is a fundamental component to all rotating fluids. It has been hypothesized (e.g. Gray and Shea 1973, Gray 1991) that supergradient wind flow (i.e. swirling winds that are stronger than what the local pressure gradient can typically support) present near the radius of maximum winds (RMW) causes air to be centrifuged out of the eye into the eyewall, thus accounting for the subsidence in the eye. However, Willoughby (1990b, 1991) found that the swirling winds within several tropical storms and hurricanes were within 1-4% of gradient balance. It may be though that the amount of supergradient flow needed to cause such centrifuging of air is only on the order of a couple percent and thus difficult to measure.

Another feature of tropical cyclones that probably plays a role in forming and maintaining the eye is the eyewall convection. Convection in tropical cyclones is organized into long, narrow rainbands which are oriented in the same direction as the horizontal wind. Because these bands seem to spiral into the center of a tropical cyclone, they are sometimes called spiral bands. Along these bands, low-level convergence is a maximum, and therefore, upper-level divergence is most pronounced above. A direct circulation develops in which warm, moist air converges at the surface, ascends through these bands, diverges aloft, and descends on both sides of the bands. Subsidence is distributed over a wide area on the outside of the rainband but is concentrated in the small inside area. As the air subsides, adiabatic warming takes place, and the air dries. Because subsidence is concentrated on the inside of the band, the adiabatic warming is stronger inward from the band causing a sharp contrast in pressure falls across the band since warm air is lighter than cold air. Because of the pressure falls on the inside, the tangential winds around the tropical cyclone increase due to increased pressure gradient. Eventually, the band moves toward the center and encircles it and the eye and eyewall form (Willoughby 1979, 1990a, 1995).

Thus the cloud-free eye may be due to a combination of dynamically forced centrifuging of mass out of the eye into the eyewall and to a forced descent caused by the moist convection of the eyewall. This topic is certainly one that can use more research to ascertain which mechanism is primary.

Some of the most intense tropical cyclones exhibit concentric eyewalls, two or more eyewall structures centered at the circulation center of the storm (Willoughby et al. 1982, Willoughby 1990a). Just as the inner eyewall forms, convection surrounding the eyewall can become organized into distinct rings. Eventually, the inner eye begins to feel the effects of the subsidence resulting from the outer eyewall, and the inner eyewall weakens, to be replaced by the outer eyewall. The pressure rises due to the destruction of the inner eyewall are usually more rapid than the pressure falls due to the intensification of the outer eyewall, and the cyclone itself weakens for a short period of time.

Top of Page
FAQ Home Page