[Atlantic Oceanographic and Meteorological Laboratory]





About AOML
About HRD
Programs
 yellow triangle bulletHurr. Field Prog.
 yellow triangle bulletScientific Projs.
 yellow triangle bulletASOS
 yellow triangle bulletJoint Programs
Data Sets
Weather Info
What's New
Links

National Hurricane Center Logo
National Hurricane Center


NOAA Aircraft Operations Center Logo
NOAA Aircraft Operations Center

Site Map

Staff Data Center Contact  Information

Research Divisions


Hurricane Research Division
Back to Intensity Change projects | Back to Main Projects Page

Tropical cyclone wind radii estimation utilizing an empirical inland wind decay model

Principle Investigator: John Kaplan (NOAA/AOML/HRD)
Collaborating Scientists ::
Mark DeMaria (NOAA/NESDIS/ORA)
Jason Dunion (NOAA/AOML/HRD)
Peter Dodge (NOAA/AOML/HRD)
Jose Salazar (NOAA/NHC)
Nicholas Carrasco (AER)


Methodology

A technique for estimating the wind radii and maximum wind of landfalling tropical cyclones in the Atlantic and eastern North Pacific basins utilizing an empirical decay model (Kaplan and DeMaria 1995, 2001) has been developed as part of the NOAA Joint Hurricane Testbed (JHT) (Kaplan et al. 2007). The aforementioned technique employs a revised version of the decay model (DeMaria et al. 2006) to generate estimates of the maximum wind and 34,50 and 64 kt wind radii of landfalling storms where the input required to run the model is obtained from the latest official NHC interpolated forecast. This particular application of the decay model was accepted for operational use prior to the 2008 Hurricane season and is currently running on a server at NHC where the output is available for use by forecasters for landfalling Atlantic and eastern North Pacific basin storms. A more completed description of this particular application of the decay model can be found in Kaplan et al. (2007).

Figure 1 shows an example of the decay model forecasted maximum wind that was obtained for Hurricane Katrina (2005) using the operational NHC forecasted input information that was available at 1200 UTC 29 August. Although this forecast was not issued in real-time it is an independent example of the model's performance since the revised version of the decay model described above was derived using only landfalling cases from 1967-1993. As can been in Fig. 2, both the OFCI and decay model forecasted intensities were too high although the decay model values were in somewhat better agreement for this particular forecast. Since the overland intensity forecast is very sensitive to a stormÕs landfall intensity, the finding that the inland intensities were too high might be due, in part, to the fact that the initial intensity used to generate both the OCFI and decay models forecasts was about 10 kt higher that that which was observed.

Figure 3 shows the decay model forecast errors as a function of radius from the storm center where the decay model errors were computed for all available wind observations that were collected as part of the HRD Hurricane Field Program (HFP) landfall experiment. It is important to note that prior to computing the model errors all of the wind observations were first standardized to a 1-minute 10-m wind assuming open terrain exposure using the methods of Powell et al. (1996). Also, only observations that occurred during the time period when Katrina was still tropical were verified. Inspection of the figure indicates that the decay model forecasted wind speeds had a high bias of 2 to 7 kt and that the mean error was about 14 kt. The finding of a high bias at the individual observation locations appears to be consistent with the results in Fig. 2 that indicated that the decay model forecasted maximum winds were also higher than those that were observed. In the future, similar comparisons between the model forecasted and observed winds will also be made for the 3-D numerical models like HWRF and GFDL using other suitable landfall datasets that were collected during the HRD HFP to ascertain how well these models predict inland decay.

Results

Figure 1
Since the updated decay model was not available for real-time testing until the middle of the 2006 hurricane season, the model was verified for an independent sample of landfalling Atlantic and E. Pacific basin hurricanes. Figure 1 shows the errors between the National Hurricane Center best track maximum wind and 64, 50 and 34 kt wind radii estimates and those from the decay model for the 11 hurricanes that made landfall in the Atlantic and E. Pacific basin during the period from 2004 -2006. For comparison, the errors between the NHC best track maximum wind and wind radii estimates and those from the GFDL, AVNO and NGPS models are also depicted. The errors were obtained by comparing the model and NHC best track estimates for initial (t=0 h) forecast times that were within 12 h of landfall. Errors were computed every 6 h until each system either dissipated or became extratropical. The figure shows that the maximum and wind radii estimates obtained using the new version of the decay model were generally in better agreement with the NHC best track estimates than both the old version of the decay model and the other numerical guidance for this sample. The lone exception was the 34 kt wind radii for which the AVNO model estimates were in better agreement.

FY06-07 Achievements

  • Finalized the software routines that are required to run the decay model in real-time
  • Developed code to run an updated version of the Kaplan/DeMaria decay model to obtain real-time estimates of the maximum wind and the radii of 64,50 and 34 kt winds
  • Ran the updated version of the decay model in real-time during the 2006 hurricane season
  • Evaluated decay model performance on an independent sample of 11 hurricanes that made landfall in the Atlantic and E. Pacific basins during the 2004-2006 hurricane seasons
  • Presented decay model results at the 61st Interdeparmental Hurricane Conference

FY10-11 Achievements

  • Provided revised version of the inland decay model to JHT facilitator for operational implementation.
  • Developed software for stratifying decay model errors by radial and azimuthal distance and time after landfall.
  • Developed method for overlaying decay model maximum wind forecast on geography for real-time display purposes.

    FY12-13 Milestones

    • Test the decay model in real-time for landfalling cases during the 2011 and 2012 Atlantic and eastern North Pacific hurricane seasons.
    • Evaluate decay model performance for suitable landfalling storms.
    • Develop method for evaluating the overland wind forecasts of three-dimensional numerical models.

    Key References:

    DeMaria, M., J. A. Knaff, and J. Kaplan, 2006: On the decay of tropical cyclone winds crossing narrow landmasses., J. Appl. Meteor. and Clim., 45, 491-499.

    Kaplan, J. , and M. DeMaria, 1995: A simple empirical model for predicting the decay of tropical cyclone winds after landfall. J. Appl. Meteor., 34, 2499-2512.

    Kaplan, J., and M. DeMaria, 2001: On the decay of tropical cyclone winds after landfall in the New England region. J. Appl. Meteor., 40, 280-286.

    Kaplan , J, J. Dunion, and N. Carrasco, 2007: Estimating tropical cyclone wind radii utilizing an empirical inland wind decay model. Joint Hurricane Tesbed Final report.

    Powell, D., P.P. Dodge, and M.L. Black, 1996: Hurricane Andrew's landfall in south Florida. Part I: Standardizing measurements for documentation of surface wind fields. Wea. Forecasting, 11, 304-328.


    Back to Intensity Change projects | Back to Main Projects Page


    Last modified: 7/14/2011
    @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ Captions. Fig. 1. Decay model estimated maximum sustained wind estimated (green) obtained based upon input from the 1200 UTC 29 August NHC official interpolated forecast cycle for Hurricane Katrina (2005). Fig. 2. Decay model (Decay) and official interpolated (OFCI) maximum sustained wind estimates for the 1200 UTC 29 August forecast cycle for Hurricane Katrina. The NHC best track estimates (Best) for this time period are also depicted. Fig. 3. Decay model wind error (blue) and biases (red) as a function of radial distance from the storm center. The number of observations in each of the two radial bins (N) is also depicted along the x-axis. The mean time after landfall of all of the observations that were verified was about 6 h.

[Horizontal Rule]

[OAR/DOC/NOAA Logos] Atlantic Oceanographic and Meteorological Laboratory Logo [United States Department of Commerce] [Atlantic Oceanographic and Meteorological Laboratory] Atlantic Oceanographic and Meteorological Laboratory Logo [National Oceanic and Atmospheric Administration] [Office of Oceanic and Atmospheric Research] Department of Commerce Logo National Oceanic and Atmospheric Administration Logo Ocean and Atmospheric Research Logo

  Disclaimer | Privacy Policy
  DOC/NOAA/AOML/
HRD

aoml.hrdwebmaster@noaa.gov