Comments on "Tropical Cyclone Destructive Potential by Integrated Kinetic Energy" by Powell and Reinhold (2007)

S. A. Hsu and Brian W. Blanchard Coastal Studies Institute Louisiana State University Baton Rouge, Louisiana 70803

Using the concept of integrated kinetic energy, Powell and Reinhold (2007a) proposed two ranking scales: one for wind destructive potential (W_{dp}) and the other for surge/waves (S_{dp}). In order to compute these ratings, they provided many statistical equations. As shown in Fig. 1, approximately 70% of the variation of W_{dp} can be explained by a single parameter, V_{ms} , the maximum sustained wind speed. Similarly, about 84% of the S_{dp} variation is contributed by the radius of tropical storm, R_{18} , as shown in Fig. 2.

The maximum open-ocean surge along the storm track induced by the wind stress (S_x) is related linearly with the maximum significant wave height (H_{smax}) such that (Hsu, 2004)

$$S_{x\max} \propto H_{s\max}$$
 (1)

and from the Shore Protection Manual (USACE, 1984, p. 3-48)

$$H_{s\max} \propto V_{ms} \sqrt{R_{18}}$$
 (2)

where V_{ms} (m/s) is the maximum sustained wind speed at 10 m and R_{18} (m) is the fetch (as a surrogate). In addition, the wave setup is also linearly related to H_{smax} (see, e.g., Dean and Dalrymple (2002)). From Eqs. (1) and (2), we postulate that the combined destructive potential by wind, wave, and surge is

$$\frac{1}{2} \left(W_{dp} + S_{dp} \right) \propto V_{ms} \sqrt{R_{18}}$$
⁽³⁾

The result is shown in Fig. 3, indicating about 85% of the variation of the combined destructive potential including wind, wave, and surge can be explained by Eq. (3). Since in Fig. 3 the x-axis

takes into account the contribution of both hurricane intensity (represented by V_{ms}) and its size (by R_{18}) and the y-axis of both wind and surge, it may be a foundation toward the evaluation of the enhanced Saffir-Simpson (SS) Scale as suggested by Powell and Reinhold (2007b).

Figure 4 shows that one can not rule out the relationship between this combined destructive potential by wind, wave, and surge and the SS Scale. More data are needed to substantiate this relationship (Simpson and Saffir, 2007).

Finally, the hurricane intensity index (HII) as proposed in the literature can also be related to the SS Scale. Fig. 5 shows the comparison. Apparently, from an operational standpoint, the HII and SS Scale are nearly the same.

References

- Dean, R. G., and R. A. Dalrymple, 2002: Coastal Processes With Engineering Applications. Cambridge University Press, p. 84.
- Hsu, S. A., 2004: A wind-wave interaction explanation for Jelesnianski's open-ocean storm surge estimation using Hurricane Georges' (1998) measurements. National Weather Digest, Vol. 28, December 2004, pp. 25-31.
- Powell, M. D., and T. A. Reinhold, 2007a: Tropical cyclone destructive potential by integrated kinetic energy. Bull. Amer. Meteor. Soc., 88, 513-526.

Powell, M. D., and T. A. Reinhold, 2007b: Reply. Bull. Amer. Meteor. Soc., 88, 1800-1801.

- Simpson, R., and H. Saffir, 2007: Comments on tropical cyclone destructive potential by integrated kinetic energy. Bull. Amer. Meteor. Soc., 88, 1799-1800.
- U.S. Army Corps of Engineers (USACE), 1984: Shore Protection Manual. 4th Ed. US Government Printing Office, 1088 pp.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Cutlines

- Figure 1. Variation of W_{dp} with respect to V_{ms} .
- Figure 2. Variation of S_{dp} with respect to R_{18} .
- Figure 3. The combined destructive potential of wind, wave and surge as a function of wind and

fetch (see Eq. 3).

- Figure 4. Variations of the combined W_{dp} and S_{dp} with respect to the SS Scale.
- Figure 5. Variations of the HII with respect to the SS Scale.