Vortex Motion and Evolution Experiment

This document is divided into 4 sections:


Summary

This multi-option, dual-aircraft experiment is designed to observe the structure and evolution of the inner core wind field of developing or mature hurricanes. True dual-doppler data are obtained within 45 nmi (75 km) of the center with a horizontal grid spacing of 0.5 nmi (1 km). Three such data sets over 7 h, 2.3 h apart, are obtained during the mission, along with 9 pseudo-dual-Doppler data sets, to examine the evolution of the inner vortex. These data are supplemented by five rings of 6 or more GPS-so ndes, from 50-160 nmi (95-300 km). This dropwindsonde coverage will provide azimuthal wave number 0 and 1 outside the inner core of the vortex, thus specifying the overall strength of the vortex and its three-dimensional "steering" asymmetry. Satellite in formation from NCEP and the University of Wisconsin will supplement the dropwindsonde coverage above flight level.

[Return to table of contents above]


Program Significance

Recent research suggests that important environmental controls on TC motion are active in the region surrounding the cyclone's inner core, within about 160 nmi (300 km) of the center. Studies of Hurricane Gloria from Doppler radar and Omega dropwindsonde (ODW) data suggest that the environmental influence on vortex motion was maximized in an envelope near 35 nmi (65 km) radius from the center. The region from 35-160 nmi (65-300 km) has been poorly sampled during other experiments, which have either emphas ized the vortex core or more distant environment. A primary goal of the VME experiment is to improve our understanding of how the environmental "steering" flow is communicated to the vortex.

Analyses of the core regions of TCs based on the pseudo-dual-Doppler approach have increased our understanding of TC structure and evolution. However, recent studies using true dual-doppler data collected from simultaneous passes by two aircraft through the center of hurricanes, have shown that significant changes in storm intensity and structure can take place over periods of 30 min or less. This implies that the pseudo-dual-Doppler analyses obtained from a single aircraft's "figure 4" pattern may be su bject to significant aliasing. Additional true dual-doppler data sets are required to properly document the evolution of the vortex core region over periods of several hours.

In 1995, two successful VME experiments were conducted in Hurricanes Iris and Luis, using the previous (Omega) generation of dropwindsonde. In 1996, new instrumentation and techniques will substantially improve the capabilities of the WP-3Ds and motivate the collection of additional data sets. With the new GPS-sondes it will be possible to double the horizontal sounding resolution in the radial direction to 25 nmi (46 km). In the inner core, improvements over dual-doppler data sets can be obtained by alt ering the antenna scanning mode to yield triple-Doppler wind fields.

[Return to table of contents above]


Objectives

The immediate goal of the experiment is to document the three-dimensional wind field within 160 nmi (300 km) of hurricanes. Data sets obtained from the experiment will be used to relate asymmetries in the wind field to short and long-term vortex motion. T he data sets will also be used to determine the utility of the pseudo- and true-dual-Doppler approach, and in further studies of the role of inner core asymmetries in hurricane motion, structure, and evolution.

Doppler radar and GPS-sondes will be used to document the 3-dimensional wind field within 160 nmi (300 km) of hurricanes. True dual-doppler data are obtained within 45 nmi (83 km) of the center with a horizontal grid spacing of 0.6 nmi (1 km). Three such data sets over 7 hours, 2.3 hours apart, are obtained during the mission, along with 9 pseudo-dual-Doppler data sets, to examine the evolution of the inner vortex. These data are supplemented by five rings of 6 or more GPS-sondes, at 50, 75, 100, 130, an d 160 nmi (93, 139,185, 241, and 300 km). This GPS-sonde coverage will provide azimuthal wave numbers 0 and 1 at these radii, to specify the overall strength of the vortex and its basic "steering" asymmetry. Satellite information from NCEP and University of Wisconsin will supplement the GPS-sonde coverage above flight level.

[Return to table of contents above]


Mission Description

The experiment involves both WP-3D aircraft flying simultaneous, pre determined and coordinated patterns. One aircraft will fly at maximum altitude and release dropwindsondes; the second aircraft will fly at a lower, fixed altitude. Both aircraft will col lect Doppler radar data. The upper aircraft will also collect cloud physics and atmospheric electric field data on an opportunity basis for use by other investigators. The experiment requires a strong tropical storm or hurricane, with unsheared convection near the center to provide Doppler targets. The length of the flight patterns requires that the cyclone be within about 540 nmi (1,000 km) of the base of operations, and it must be far enough from land to allow drops 160 nmi (300 km) from the center. Th e experiment requires only one day of flying, but may be repeated on subsequent days if desired.

Subject to safety and operational constraints, takeoff time will be 1800 UTC, to coordinate with the NCEP analysis cycle at 0000 UTC. The flight pattern for the dropwindsonde (upper) aircraft is shown in Fig. 7.

During the ferry to the initial position (IP), the aircraft will climb to the 500-mb level (about FL 180) or above. The 400 mb level (about FL 250) should be reached as soon as possible and maintained throughout the pattern, unless icing conditions dicta te a lower level for safety. GPS-sondes will be released at the indicated locations in Fig. 7, and pseudo-dual Doppler data will be taken during the three "figure 4" portions of the pattern. If there is active convection in the outer triangle portions of the pattern, Doppler data should be taken there as well. All drop and turn points in the pattern are relative to the moving center of the storm. Mandatory and significant level information from selected GPS-sondes will be transmitted in real time back to NCEP and TPC/NHC.

The flight pattern for the lower aircraft is given in Fig. 8. Subject to safety and operational constraints, the lower aircraft should take off first. Flight level for the lower aircraft will be FL 100. The lower aircraft will drop no GPS-sondes. In orde r to ensure that true-dual-Doppler data are obtained, communication and coordination between the two aircraft are essential. Both aircraft must begin their patterns at their respective IP's simultaneously. Once the patterns are underway, all coordination maneuvers should be performed by the lower aircraft; except for changes in air-speed, the upper aircraft will fly its pattern as drawn. In addition to the IP's, the start of each inbound Doppler leg should be coordinated.

VME Coordination Points

Upper Aircraft Nav Pt Upper Aircraft Nav Pt

1 (IP) 1 2 2 4 4 8 10 10 12 14 18 16 20
The lower aircraft is responsible for delaying to ensure that the CP's are reached simultaneously by both aircraft. The patterns are designed so that the lower aircraft will reach the CP's shortly before the upper aircraft; however, if necessary, the low er aircraft may cut the corners at points 9 and 17 in order to reach points 10 and 18 on time.

The lower aircraft at times may fly an optional "circle" pattern just outside the eyewall. This would occur just after the coordinated figure 4 pattern (i.e., immediately following nav points 5, 13, or 21 [Fig. 8]). The aircraft flies a nearly circular p attern (actually numerous short straight-line segments) just outside the eyewall while the tail radar scans in a fore/aft sequence. The circle must be as small as possible, since no data are obtained from the inner 40% (by radius) of the circle. The lowe r aircraft would re-coordinate with the upper aircraft at nav point 10 or nav point 18 (Fig. 8).

Special Notes

The VME pattern can be coordinated with the Hurricane Surveillance Mission flown by the G-IV. The VME pattern is unchanged while the G-IV drops sondes in the hurricane's large-scale environment.

[Return to table of contents above]


Back to the Hurricane Field Program Experiment page.