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Typhoon Haiyan. The nature and 
climatology of Haiyan was unique 
and Sidebar 4.2 is included to bet-
ter document this event.

2)	Atlantic Basin—G. D. Bell, C. 
W. Landsea, S. B. Goldenberg, R. J. 
Pasch, E. S. Blake, J. Schemm, and 
T. B. Kimberlain

(i)	 2013 Seasonal activity
The 2013 Atlantic hurricane 

season produced 13 na med 
storms, of which only 2 became 
hurricanes, and none became ma-
jor hurricanes. The HURDAT2 
1981–2010 seasonal averages are 
11.8 tropical storms, 6.4 hurri-
canes, and 2.7 major hurricanes 
(Landsea and Franklin 2013). 
The 2013 season ties 1982 for the 
fewest hurricanes in the recent historical record from 
1950 to present, and is the first season since 1994 
with no major hurricanes. The entire life cycle of 
both hurricanes occurred within the period of 9–16 
September.

The seasonal accumulated cyclone energy (ACE) 
value (Bell et al. 2000) was only 39% of the 1981–2010 
median (Fig. 4.8)2. This is the 10th lowest value since 
records began in 1950 and satisfies NOAA’s criteria 
for a below-normal season (see http://www.cpc.ncep 
.noaa.gov/products/outlooks/background_information 
.shtml).

The 2013 ACE value, as well as the numbers of 
hurricanes and major hurricanes, are the lowest of the 
current high-activity era for Atlantic hurricanes that 
began in 1995 (Landsea et al. 1998; Goldenberg et al. 
2001; Bell and Chelliah 2006; Bell et al. 2013). Thir-
teen seasons since 1995 (68%) have been above normal 
and only three (16%) have been below normal. Only 
one of these below-normal seasons (2013) occurred in 
the absence of El Niño, which is an indicator of how 
unusual the 2013 season was. In fact, the 2013 values 
for every parameter (except number of named storms) 
were below 1997, a year with one of the strongest El 
Niños in over 50 years. More details on the unusually 
quiet 2013 season can be found in Sidebar 4.1.

2	ACE is calculated by summing the squares of the six-hourly 
maximum sustained wind speed (knots) for all periods while 
the storm is at least tropical storm strength.

A main delineator between above- and below-
normal seasons (Fig. 4.9) is the frequency of hurri-
canes and major hurricanes that originate as named 
storms within the main development region [MDR; 
green boxed region in Fig. 4.10a, which encompasses 
the tropical Atlantic Ocean and Caribbean Sea be-
tween 9.5° and 21.5°N (Goldenberg et al. 2001; Bell 
and Chelliah 2006)]. Only six named storms formed 
in the MDR during 2013, producing one hurricane 
(Humberto) and having a total ACE value that was 
18% of the median. These numbers are comparable to 
the average MDR activity of a below-normal season, 

Fig. 4.8. NOAA’s Accumulated Cyclone Energy (ACE) index expressed 
as percent of the 1981–2010 median value. ACE is calculated by summing 
the squares of the 6-hourly maximum sustained wind speed (kt) for all 
periods while the storm is at least tropical storm strength. Pink, yel-
low, and blue shadings correspond to NOAA’s classifications for above-, 
near-, and below-normal seasons, respectively. The 165% threshold for a 
hyperactive season is indicated. Vertical brown lines separate high- and 
low-activity eras.

Fig. 4.9. Seasonal activity associated with storms 
first named in the Atlantic MDR. Red bars show the 
averages for above-normal seasons, blue bars show 
the averages for below-normal seasons, and black lines 
show the 2013 MDR activity. Season classifications are 
based on NOAA’s criteria (see http://www.cpc.ncep 
.noaa.gov/products/outlooks/background_information 
.shtml).
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and are at least six times lower than the above-normal 
season averages (six hurricanes and an ACE value of 
142% of the median).

(ii) Storm tracks
The 2013 Atlantic hurricane season featured three 

distinct sets of storm tracks. The first was related to 
five named storms that formed over the central and 
eastern tropical and subtropical Atlantic. Only one of 
these storms made landfall—Tropical Storm Chantal 
in the Caribbean islands. The second set of tracks 
reflected three named storms that formed in the Bay 
of Campeche and made landfall in eastern Mexico. 
Of these storms, Ingrid was the only hurricane of 
the season to make landfall. The third set of tracks 
reflected two tropical storms that moved across the 
central Gulf of Mexico. One of these systems, Tropi-
cal Storm Andrea, was the first named storm of the 

season and the only U.S. landfalling storm, striking 
northwestern Florida before moving across south-
eastern Georgia and South Carolina and becoming 
extratropical in North Carolina.

(iii) Atlantic sea surface temperatures
SSTs in the MDR were above average during the 

peak months (August–October, ASO) of the season, 
with the largest departures (between +0.5° and 
+1.0°C) observed across the eastern half of the Carib-
bean Sea (Fig. 4.10a). The mean SST departure within 
the MDR was +0.37°C. This value is the seventh high-
est in the 1950–2013 record (Fig. 4.10b) and is 0.3°C 
warmer than the average departure for the entire 
global tropics (Fig. 4.10c). This relative warmth within 
the MDR has been present since 1995 and is a fea-
ture of the warm phase of the Atlantic multidecadal 
oscillation (AMO; Enfield and Mestas-Nuñez 1999; 
Goldenberg et al. 2001; G. D. Bell et al. 2011, 2013), 
and this makes the relative inactivity for the season 
all the more unusual.

(iv) Atmospheric circulation
The below-normal Atlantic hurricane season 

was largely the result of a set of exceptionally non-
conducive atmospheric conditions within the MDR. 
One suppressing factor was the presence of strong (≥8 
m s-1) 200–850 hPa vertical wind shear across most of 
the tropical Atlantic Ocean, Caribbean Sea, and Gulf 
of Mexico (Fig. 4.11), with above-average shear ob-
served across the Caribbean Sea and Gulf of Mexico 
(not shown). Areas of weaker shear were confined to 
the southeastern MDR and Bay of Campeche. This 
signal is in stark contrast to a typical above-normal 
season, which features weak shear across large por-
tions of the MDR.

Also during ASO 2013, large areas within the 
MDR experienced anomalous upper-level conver-

Fig. 4.10. (a) ASO 2013 SST anomalies (°C). (b) Time 
series during 1950–2013 of ASO area-averaged SST 
anomalies in the MDR [green box in (a)]. (c) Time 
series showing the difference between ASO area-
averaged SST anomalies in the MDR and those for 
the entire global tropics (20°N–20°S). Red lines show 
a 5-pt. running mean of each time series. Anomalies 
are departures from the ERSST-v3b (Smith et al. 2008) 
1981–2010 period monthly means.

Fig. 4.11. ASO 2013 vertical wind shear magnitude 
and vectors (m s-1). Shading indicates areas where 
the vertical wind shear magnitude is ≤ 8 m s-1. Green 
box denotes the MDR. Vector scale is below right of 
color bar. 
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gence and lower-level divergence (Fig. 4.12a), along 
with anomalous mid- and low-level sinking motion 
(Fig. 4.12b) and drier air (Fig. 4.12c). None of these 
conditions are conducive to TC formation. Further-
more, the conducive phase of the MJO (Mo 2000) 
did not substantially offset these non-conducive 
conditions since it was present for only a brief period 
in early September and mid-October (see Fig. 4.6).

Climate factors such as El Niño and the cold phase 
of the AMO can produce non-conducive conditions 
within the MDR, but neither of these factors were 
present during ASO 2013. Instead, the observed 
conditions were related to a strong and persistent 
anomalous 200-hPa wave pattern that extended from 
North America to the eastern North Atlantic (Fig. 
4.13a). This wave pattern had no apparent large-scale 
climate links. Key features of this pattern (ridge and 
trough axes shown by thick black lines in Fig. 4.13c) 
include: (1) an amplified ridge extending northward 
from Mexico; (2) a downstream amplified trough over 
the western subtropical North Atlantic and Caribbean 
Sea (called the tropical upper-tropospheric trough, 
TUTT); and (3) an amplified ridge over the central 
and eastern subtropical North Atlantic.

This wave pattern contributed to the non-con-
ducive conditions within the MDR in two primary 
ways. First, its associated northwesterly flow from the 
Great Lakes to the southern Caribbean Sea (Fig. 4.13a) 
produced anomalous northerly and northwesterly 
vertical wind shear across the entire Caribbean Sea, 
resulting in the anomalously strong shear observed 
across the western half of the MDR (Fig. 4.13b).

Second, the strong curvature of the wave pattern 
was likely the primary contributor to the anomalous 
upper-level convergence and sinking motion across 

the western and central MDR. 
This area was part of a much larger 
region of upper-level convergence 
located between the amplified 
ridge (over Mexico) and the down-
stream TUTT axis, which is an 
area within midlatitude wave pat-
terns known for upper-level con-
vergence and descending motion. 
Similarly, a strong ridge within the 
eastern portion of the wave pattern 
contributed to the anomalous up-
per-level convergence and sinking 
motion over the central MDR, and 
also over the central subtropical 
North Atlantic north of the MDR.

Fig. 4.12. Aug–Oct 2013 height-latitude sections averaged between 
40°–60°W of (a) anomalous divergence (×10-6 s-1), (b) anomalous verti-
cal velocity (×10-2 hPa s-1), and (c) percent of normal specific humidity. 
Green shading indicates anomalous divergence, anomalous rising mo-
tion, and increased moisture, respectively. Brown shading indicates 
anomalous convergence, anomalous sinking motion, and decreased 
moisture. Climatology and anomalies are with respect to the 1981–2010 
period monthly means.

Fig. 4.13. ASO 2013 circulation and anomalies: (a) 200-
hPa anomalous streamfunction (shaded, ×10-6 m2 s-1) 
and wind vector (m s-1), (b) 200–850 hPa anomalous 
magnitude of vertical wind shear and anomalous shear 
vector (m s-1), and (c) total 200-hPa streamfunction 
(contours, interval is 5 × 106 m2 s-1, with additional solid 
contours at an interval of 1 × 106 m2 s-1) and anomalous 
divergence (shaded, ×10-6 s-1). Boxes in (a) show index 
regions for Figs. 4.14 and 4.15. Vector scales for (a, b) 
are shown below right of color bar. Thick dashed lines 
in (c) identify ridge and trough axes of persistent wave 
pattern discussed in text. Green boxes in all panels in-
dicate the MDR. Anomalies are based on the 1981–2010 
climatology.
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Given these relationships, it is of interest to quan-
tify the relative strength of the 200-hPa wave pattern 
during ASO 2013, along with its historical frequency 
of occurrence. The analysis is based upon ASO stan-
dardized streamfunction indices for the three regions 
shown in Fig. 4.13a [Mexico (blue box), the Caribbean 
Sea and western subtropical North Atlantic (orange 
box), and the eastern North Atlantic (black box)].

The index time series (dating back to 1970) shows 
that streamfunction anomalies within the Caribbean 
Sea region (Fig. 4.14, orange bars) typically have the 
same sign as those in both the Mexico (Fig. 4.14a, blue 
bars) and east Atlantic (Fig. 4.14b, black bar) regions. 
These relationships are reflected in their strong index 
correlations (0.86 and 0.73, respectively). In contrast, 
the ASO 2013 anomalies in the Caribbean Sea region 
had an opposite sign of the other two regions. There 
is only one other instance in the record (the below-
normal 1994 season which featured three hurricanes, 
no major hurricanes, and an ACE of 35% of the me-

dian) in which a similar wave pattern existed with 
the amplitudes of all three indices exceeding 0.25 
standard deviations.

An examination of the differences in index am-
plitudes between the three regions shows that the 
ASO 2013 wave pattern was of record strength (Figs. 
4.15a,b). Similarly, the standardized index that is the 
sum of the anomaly differences from Figs. 4.15a and 
b (Fig. 4.15c) was also of record strength (+3 stan-
dard deviations), exceeding the next largest value 
(+2 standard deviations during ASO 1994) by a full 
standard deviation.

The analysis shows that the exceptionally non-
conducive conditions within the MDR during ASO 
2013 were linked to a rare (only twice since 1970) 
upper-level wave pattern of record strength that ex-
tended from Mexico to the eastern North Atlantic. It 
is of note that El Niño was present when this pattern 
last occurred in ASO 1994, but this was not the case 
during 2013.

This wave pattern does not have a known relation-
ship to other climate factors and it therefore has a 
low probability of prediction on seasonal time scales. 

Fig. 4.14. ASO standardized streamfunction indices 
for the period 1970–2013 averaged over the boxed 
regions shown in Fig. 4.13a. Panel (a) shows indices for 
the Mexico (blue) and Caribbean Sea (orange) regions 
and panel (b) shows indices for the eastern Atlantic 
(black) and Caribbean Sea (orange) regions. The in-
dices are calculated by first standardizing the ASO 
streamfunction anomalies at each grid point, and then 
standardizing the area-averaged value of the standard-
ized grid-point anomalies. The correlations between 
the Mexico and Caribbean Sea indices and between the 
Eastern Atlantic and Caribbean Sea indices are given 
in panels (a) and (b), respectively. All standardizations 
are based on the 1981–2010 climatology.

Fig. 4.15. ASO standardized indices for the period 
1970–2013 based on (a) the Mexico minus Caribbean 
Sea indices from Fig. 4.14a, panel (b) the east Atlantic 
minus the Caribbean Sea indices from Fig. 4.14b, and 
(c) the indices in panel (a) minus those in (b). All stan-
dardizations are based on the 1981–2010 climatology.
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Based on this analysis and on the ongoing warm 
phase of the AMO, the suppressed 2013 Atlantic hur-
ricane season provides no indication that the current 
high-activity era for Atlantic hurricanes has ended.

3) Eastern North Pacific and Central North 
Pacific Basins—M. C. Kruk, C. J. Schreck, and T. Evans

(i) Seasonal activity
The Eastern North Pacific (ENP) Basin is offi-

cially split into two separate regions for the issuance 
of warnings and advisories by NOAA’s National 
Weather Service. NOAA’s National Hurricane Cen-
ter is responsible for issuing warnings in the eastern 
part of the basin that extends from the Pacific Coast 
of North America to 140°W, while NOAA’s Central 
Pacific Hurricane Center in Honolulu, Hawaii, 
is responsible for issuing warnings in the central 
North Pacific (CNP) region between 140°W and the 
dateline. This section summarizes the TC activity in 
both warning areas using combined statistics, along 
with information specifically addressing the observed 
activity and impacts in the CNP region.

The ENP/CNP hurricane season officially spans 
from 15 May to 30 November. Hurricane and tropical 
storm activity in the eastern area of the basin typically 
peaks in September, while in the central Pacific TC 
activity normally reaches its seasonal peak in August 
(Blake et al. 2009). During the 2013 season, a total of 
20 named storms formed in the combined ENP/CNP 
Basin, with only 2 of these forming in the CNP (very 
close to the dateline). This total included nine hur-
ricanes and one major hurricane. The 1981–2010 IB-
TrACS seasonal averages for the basin are 16.5 named 
storms, 8.5 hurricanes, and 4.0 major hurricanes.

An above-normal number of five named storms 
developed or entered into the CNP during 2013 (Fig. 
4.16). Although half the TCs that formed in 2013 
reached hurricane intensity, the ACE index for 2013 
indicates many of the storms were weak and short-
lived, with a seasonal value of only 70.1 × 104 kt2 (Fig. 
4.16), which is well below the 1981–2010 mean of 137.0 
× 104 kt2 (Bell et al. 2000; Bell and Chelliah 2006).

(ii) Environmental influences on the 2013 season
Figure 4.17 illustrates the background conditions 

for TC activity in the ENP and CNP during 2013. 
Consistent with the marginal La Niña conditions, 
weak cool SST anomalies were observed near the 
equator and along the Central American coast (Fig. 
4.17a). Most of the TCs formed over an area of warm 
SST anomalies to the north off the Mexican coast. 
This also coincided with a broad region of enhanced 

convection that extended from 140°W eastward to 
the Gulf of Mexico (Fig. 4.17b). Meanwhile, the ITCZ 
was generally suppressed and shifted northward, as 
indicated by the positive outgoing longwave radiation 
(OLR) anomalies along 5°N and negative anomalies 
near 12°N. Vertical wind shear magnitudes were 
generally close to their climatological values (Fig. 
4.17c); however, the vertical wind shear anomalies 
were generally easterly in the ENP, which might have 
also favored cyclogenesis.

Figure 4.17d shows a broad area of 850-hPa 
westerly anomalies near the equator, with easterly 
anomalies to the north, similar to what occurred in 
2012 (Diamond 2013). This combination produced 
the region of enhanced cyclonic vorticity within 
which most of the ENP storms developed. Many of 
these storms developed where the enhanced vorticity 
intersected the westerly anomalies. The westerlies 
could have strengthened easterly wave activity in 
this region through barotropic energy conversion 

Fig. 4.16. Seasonal TC statistics for the ENP basin over 
the period 1970–2013: (top) number of named storms, 
hurricanes, and major hurricanes, and (bottom) the 
ACE Index (×104 kt2)with the seasonal total of 2013 
highlighted in red. The time series shown includes the 
corresponding 1981–2010 base period means for each 
parameter.




