EXPERIMENT DESCRIPTION 4. TC-Ocean Interaction Experiment

Principal Investigator(s): Eric Uhlhorn (HRD), Rick Lumpkin (PhOD), Nick Shay (U. Miami/RSMAS)

Primary IFEX Goal: 3 - Improve understanding of the physical processes important in intensity change for a TC at all stages of its lifecycle

Significance and Goals:

This program broadly addresses the role of the ocean and air-sea interaction in controlling TC intensity by making detailed measurements of these processes in storms during the 2012 season. Specific science goals are in two categories:

Goal: To observe and improve our understanding of the upper-ocean response to the near-surface wind structure during TC passages. Specific objectives are:

- 1. The oceanic response of the Loop Current (LC) to TC forcing; and,
- 2. Influence of the ocean response on the atmospheric boundary layer and intensity.

In addition, these ocean datasets fulfill needs for initializing and evaluating ocean components of coupled TC forecast systems at EMC and elsewhere.

Rationale:

Ocean effects on storm intensity. Upper ocean properties and dynamics undoubtedly play a key role in determining TC intensity. Modeling studies show that the effect of the ocean varies widely depending on storm size and speed and the preexisting ocean temperature and density structure. The overarching goal of these studies is to provide data on TC-ocean interaction with enough detail to rigorously test coupled TC models, specifically:

- Measure the two-dimensional SST cooling, air temperature, humidity and wind fields beneath the storm and thereby deduce the effect of the ocean cooling on ocean enthalpy flux to the storm.
- Measure the three-dimensional temperature, salinity and velocity structure of the ocean beneath the storm and use this to deduce the mechanisms and rates of ocean cooling.
- Conduct the above measurements at several points along the storm evolution therefore investigating the role of pre-existing ocean variability.
- Use these data to test the accuracy of the oceanic components coupled models.

Ocean boundary layer and air-sea flux parameterizations. TC intensity is highly sensitive to airsea fluxes. Recent improvement in flux parameterizations has lead to significant improvements in the accuracy of TC simulations. These parameterizations, however, are based on a relatively small number of direct flux measurements. The overriding goal of these studies is to make additional flux measurements under a sufficiently wide range of conditions to improve flux parameterizations, specifically:

- Measure the air-sea fluxes of enthalpy and momentum using ocean-side budget and covariance measurements and thereby verify and improve parameterizations of these fluxes.
- Measure the air-sea fluxes of oxygen and nitrogen using ocean-side budget and covariance measurements and use these to verify newly developed gas flux parameterizations.

- Measure profiles of ocean boundary layer turbulence, its energy, dissipation rate and skewness and use these to investigate the unique properties of hurricane boundary layers.
- Conduct the above flux and turbulence measurements in all four quadrants of a TC so as investigate a wide range of wind and wave conditions.

The variability of the Gulf of Mexico Loop Current system and associated eddies have been shown to exert an influence on TC intensity. This has particular relevance for forecasting landfalling hurricanes, as many TCs in the Gulf of Mexico make landfall on the U.S. coastline. To help better understand the LC variability and improve predictions for coupled model forecasts, upper-ocean temperature and salinity fields in the vicinity of the LC will be sampled using expendable ocean profilers (see Fig. 4-1).

Pre- and post-storm expendable profiler surveys Flight description:

Feature-dependent survey. Each survey consists of deploying 60-80 expendable probes, with take-off and recovery at KMCF. Pre-storm missions are to be flown one to three days prior to the TC's passage in the LC (Fig. 4-1). Post-storm missions are to be flown one to three days after storm passage, over the same area as the pre-storm survey. Since the number of deployed expendables exceeds the number of external sonobuoy launch tubes, profilers must be launched via the free-fall chute inside the cabin. Therefore the flight is conducted un-pressurized at a safe altitude. In-storm missions, when the TC is passing directly over the observation region, will typically be coordinated with other operational or research missions (e.g. Doppler Winds missions). These flights will require 10-20 AXBTs deployed for measuring sea surface temperatures within the storm.

Figure 4-1: Typical pre- or post-storm pattern with ocean expendable deployment locations relative to the Loop Current. Specific patterns will be adjusted based on actual and forecasted storm tracks and Loop Current locations. Missions generally are expected to originate and terminate at KMCF.

Track-dependent survey. For situations that arise in which a TC is forecast to travel outside of the immediate Loop Current region, a pre- and post-storm ocean survey focused on the official track forecast is necessary. The pre-storm mission consists of deploying AXBTs/AXCTDs on a regularly spaced grid, considering the uncertainty associated with the track forecast. A follow-on post-storm mission would then be executed in the same general area as the pre-storm grid, possibly adjusting for the actual storm motion. Figure 4-2 shows a scenario for a pre-storm survey, centered on the 48 hour forecast position. This sampling strategy covers the historical "cone of uncertainty" for this forecast period.

Figure 4-2: Track-dependent AXBT/AXCTD ocean survey. As for the Loop Current survey, a total of 60-80 probes would be deployed on a grid (blue dots).

Coordinated float/drifter deployment overflights:

Measurements will be made using arrays of profiling and Lagrangian floats and drifters deployed by AFRC WC-130J aircraft in a manner similar to that used in the 2003 and 2004 CBLAST program. Additional deployments have since refined the instruments and the deployment strategies. MiniMet drifters will measure SST, surface pressure and wind speed and direction. Thermistor chain Autonomous Drifting Ocean Station (ADOS) drifters add ocean temperature measurements to 150m. All drifter data is reported in real time through the Global Telecommunications System (GTS). Flux Lagrangian floats will measure temperature, salinity, oxygen and nitrogen profiles to 200 m, boundary layer evolution and covariance fluxes of most of these quantities, wind speed and scalar surface wave spectra. E-M APEX Lagrangian floats will measure temperature, salinity and velocity profiles to 200m. Profile data will be reported in real time on GTS.

Substantial resources for this work will be funded by external sources. The HRD contribution consists of coordination with the operational components of the NHC and the 53rd AFRC squadron and P-3 survey flights over the array with SFMR and SRA wave measurements and dropwindsondes. If the deployments occur in the Gulf of Mexico, Loop Current area, this work will be coordinated with P-3 deployments of AXBTs, AXCTDs and AXCPs to obtain a more complete picture of the ocean response to storms in this complex region.

Main Mission description:

P-3 flights will be conducted in collaboration with operational float and drifter deployments by WC-130J aircraft operated by the AFRES Command (AFRC) 53rd Weather Reconnaissance Squadron. The P-3 surveys will provide information on the storm and sea-surface structure over the float and drifter array.

Coordination and Communications:

Alerts - Alerts of possible deployments will be sent to the 53^{rd} AWRO up to 5 days before deployment, with a copy to CARCAH, in order to help with preparations. Rick Lumpkin (PhOD) will be the primary point of contact for coordination with the 53^{rd} WRS and CARCAH.

Flights:

Coordinated float/drifter deployments would nominally consist of 2 flights, the first deployment mission by AFRC WC-130J and the second overflight by NOAA WP-3D. An option for follow-on missions would depend upon available resources.

Day 1- WC-130J Float and drifter array deployment- Figure 4-3 shows the nominal deployment pattern for the float and drifter array. It consists of two lines, A and B, set across the storm path with 8 and 4 elements respectively. The line length is chosen to be long enough to span the storm and anticipate the errors in forecast track. The element spacing is chosen to be approximately the RMW. The Lagrangian floats and thermistor chain drifters (ADOS) are deployed near the center of the array to maximize their likelihood of seeing the maximum wind speeds and ocean response. The Minimet drifters are deployed in the outer regions of the storm to obtain a full section of storm pressure and wind speeds. The drifter array is skewed one element to the right of the track in order to sample the stronger ocean response on the right side.

Day 2. P-3 In-storm mission- Figure 4-4 shows the nominal P-3 flight path and dropwindsonde locations during the storm passage over the float and drifter array. The survey should ideally be timed so that it occurs as the storm is passing over the drifter array.

The survey includes legs that follow the elements of float/drifter line 'A' at the start and near the end. The survey anticipates that the floats and drifters will have moved from their initial position since deployment and will move relative to the storm during the survey. Waypoints 1-6 and 13-18 will therefore be determined from the real-time positions of the array elements. Each line uses 10 dropwindsondes, one at each end of the line; and two at each of the 4 floats, the double deployments are done to increase the odds of getting a 10m data.

The rest of the survey consists of 8 radial lines from the storm center. Dropwindsondes are deployed at the eye, at half R_{max} , at R_{max} , at twice R_{max} and at the end of the line, for a total of 36 releases. AXBTs are deployed from the sonobuoy launch tubes at the eye, at R_{max} and at 2 R_{max} . This AXBT array is focused at the storm core where the strongest air-sea fluxes occur; the buoy array will fill in the SST field in the outer parts of the storm. In this particular example, the final two radials have been moved after the second float survey to avoid upwind transits. For other float drift patterns, this order might be reversed.

It is highly desirable that this survey be combined with an SRA surface wave survey because high quality surface wave measurements are essential to properly interpret and parameterize the air-sea fluxes and boundary layer dynamics, and so that intercomparisons between the float wave measurements and the SRA wave measurements can be made.

Extended Mission Description:

If the storm remains strong and its track remains over water, a second or possibly third oceanographic array may be deployed, particularly if the predicted track lies over a warm ocean feature predicted to cause storm intensification (Fig. 4-5). The extended arrays will consist entirely of thermistor chain and minimet drifters, with 7 elements in a single line. As with the main mission, the spacing and length of the line will be set by the size of the storm and the uncertainty in the forecast track.

Mission timing and coordination will be similar to that described above. P-3 overflights would be highly desirable.

Figure 4-3: Float and drifter array deployed by AFRC WC-130J aircraft. The array is deployed ahead of the storm with the exact array location and spacing determined by the storm speed, size and the uncertainty in the storm track. The array consists of a mix of ADOS thermistor chain (A) and minimet (M) drifters and gas (G) and EM (E) Lagrangian floats. Three items are deployed at locations 3, 4 and 5, two items at location 3 and one item elsewhere.

Figure 4-4: P-3 pattern over float and drifter array. The array has been distorted since its deployment on the previous day and moves relative to the storm during the survey. The pattern includes two legs along the array (waypoints 1-6 and 13-18) and an 8 radial line survey. Dropwindsondes are deployed along all legs, with double deployments at the floats. AXBTs are deployed in the storm core.

Figure 4-5: Extended Mission. Two additional drifter arrays will be deployed along the storm track.