

2006 Hurricane Field Program Plan

Hurricane Research Division National Oceanographic and Atmospheric Administration Atlantic Oceanographic and Meteorological Laboratory 4301 Rickenbacker Causeway Miami, FL 33149

Prepared by:

Jason Dunion, Joe Cione, Robert Rogers, Peter Dodge, John Kaplan, Sim Aberson, Shirley Murillo, and Neal Dorst

6 D. Mar

Frank D Marks, Jr Director, Hurricane Research Division

30 June 2006

Date

Distribution of the NOAA/HRD Hurricane Field Program Plan is restricted to personnel directly involved in the hurricane field program or to those persons who are on a need-to-know basis. This plan, in whole or in part, is not to be abstracted, cited or reproduced in the open literature.

Mention of a commercial establishment, company or product does not constitute any endorsement by the NOAA/Office of Oceanic and Atmospheric Research or the U.S. Government. Use, for publicity of advertisement, of information from this publication concerning proprietary products or their testing is not authorized.

©2006, U.S. Department of Commerce, NOAA/AOML/Hurricane Research Division

Cover: NOAA's Intensity Forecasting Experiment (IFEX), NASA's NAMMA field campaign, and the African Monsoon Multidisciplinary Analyses (AMMA) will provide the framework for HRD's 2006 hurricane field program. Several of the aircraft platforms, satellites, aircraft research experiments, and aircraft operational missions that will be conducted in 2006 appear on the cover and are discussed in detail in the hurricane field program

TABLE OF CONTENTS

INTRODUCTION

OPERATIONS

1.	Locations
2.	Field Program Duration
3.	Research Mission Operations
4.	Task Force Configuration
5.	Field Operations
	5.1 Scientific Leadership Responsibilities5
	5.2 Aircraft Scientific Crews
	5.3 Principal Duties of the Scientific Personnel
	5.4 HRD Communications
6.	Data Management6
7.	Operational Constraints
8.	Calibration of Aircraft Systems
HRD I	RESEARCH EXPERIMENTS
1.	Saharan Air Layer Experiment (SALEX)7
2.	Aerosonde TC Inflow Experiment14
3.	Tropical Cyclogenesis Experiment (GenEx) 19
4.	Tropical Cyclone Landfall and Inland Decay Experiment
5.	Tropical Cyclone Eye Mixing Module
NHC A	AND EMC OPERATIONAL MISSIONS
1.	Hurricane Synoptic -Flow Experiment
2.	Mature Storms Experiment
SUPPI	LEMENTAL: OPERATIONAL MAPS
1.	Map 1: Primary Atlantic operating bases and operating ranges (G-IV)
2.	Map 2: Primary Atlantic operating bases and operating ranges (WP-3D)

2006 HURRICANE FIELD PROGRAM PLAN

INTRODUCTION

National Oceanic and Atmospheric Administration Atlantic Oceanographic and Meteorological Laboratory Hurricane Research Division Miami, Florida. USA

One of the key activities in NOAA's Strategic Plan Mission Goal 3 ("Reduce Society's Risks from Weather and Water Impacts") is to improve the understanding and prediction of tropical cyclones (TCs). The National Centers for Environmental Prediction (NCEP) Tropical Prediction Center (TPC) is responsible for forecasting tropical cyclones in the Atlantic and East Pacific basins, while the Environmental Modeling Center (EMC) provides NWP guidance for the forecasters. Together they have made great strides in improving forecasts of TC track. With support from the research community, forecast errors of TC track have decreased by about 50% over the past 30 years. However, there has been much less improvement in forecasts of TC intensity and rainfall. The lack of improvement in intensity and rainfall forecasting is largely the result of deficiencies in routinely collecting inner-core data and assimilating it into the modeling system, limitations in the numerical models themselves, and gaps in our understanding of the physics of TCs and their interaction with the environment. Accurate forecasts will rely heavily on the use of improved numerical modeling systems, which in turn will rely on accurate observational datasets for assimilation and validation.

The next-generation TC model, the Hurricane Weather Research and Forecasting model (HWRF), is currently under development at EMC and is anticipated to become operational in 2007. The HWRF will run at high resolution (~10 km grid length initially), using improved data assimilation techniques and physical parameterizations. Such a configuration holds the hope of improving our understanding and forecasting of tropical cyclone track, intensity, structure, and rainfall. In order to realize such improvements, however, new data assimilation techniques must be developed and refined, physical parameterizations must be improved and adapted for TC environments, and the models must be reliably evaluated against detailed observations from a variety of TCs and their surrounding environments.

To conduct the research necessary to address the issues raised above, NOAA has proposed an experiment designed to improve operational forecasts of TC intensity, called the Intensity Forecasting EXperiment (IFEX). The goals of this experiment have been developed through a partnership involving NOAA's Hurricane Research Division (HRD), TPC, and EMC. The goals of IFEX are to improve operational forecasts of tropical cyclone intensity and rainfall by providing data to improve the operational numerical modeling system (i.e., HWRF) and by improving our understanding of the physics of intensity change and rainfall. These goals will be accomplished by satisfying a set of requirements and recommendations guiding the collection of the data:

- Goal 1: Collect observations that span the TC lifecycle in a variety of environments;
- Goal 2: Develop and refine measurement technologies that provide improved real-time monitoring of TC intensity, structure, and environment;
- Goal 3: Improve our understanding of the physical processes important in intensity change for a TC at all stages of its lifecycle;

A unique, and critical, aspect of IFEX is the focus on providing measurements of TCs at all stages of their life cycle, from pre-genesis to intensification and subsequent landfall, decay over water, or extratropical transition. The focus of hurricane research flights during the past 25 years has been on mature storms, leading to a dataset biased toward these types of systems. The strategy of observing the entire life cycle of a TC is new and unique, and it will provide invaluable information, particularly in sparsely observed environments. The

ability to target multiple basins provides greater flexibility for observing TCs at different stages of their life cycle.

The field program aircraft missions presented in this document are separated into two distinct sections: 1) HRD Research Experiments; and 2) NHC and EMC Operational Missions. The flight patterns that comprise these various research experiments and operational missions address various aspects of the tropical cyclone lifecycle, and they all specifically address the main goals of IFEX. There is an experiment to investigate the impact of a phenomenon called the Saharan Air Layer on tropical cyclone intensity change, an experiment that will involve the use of the Aerosonde unmanned aircraft system (UAS) to sample the tropical cyclone environment, including the low-level regions of the tropical cyclone boundary layer, an experiment to study tropical cyclogenesis, an experiment to measure the structural and subsequent decay of tropical cyclones that make landfall, an experiment to sample mesovortices in the eye of intense hurricanes, an operational mission designed to improve model forecasts of tropical cyclone track by sampling the surrounding tropical cyclone environment, an operational mission to sample mature tropical cyclones to investigate tropical cyclone intensity/structure, provide data to initialize/validate operational forecast models, and improve/evaluate technologies for observing tropical cyclones, and a research experiment designed to improve understanding of microwave scatterometer retrievals of the ocean surface wind. These research experiments and operational missions will be conducted with the NOAA/Aircraft Operations Center (AOC) WP-3D N42RF and Gulfstream IV-SP aircraft. A summary of each experiment/operational mission, along with which IFEX goals each specifically addresses, is included below. A more detailed description of each experiment/operational mission follows, which includes a description of the scientific rationale for the experiment/operational mission and details of the associated flight patterns.

(1) Saharan Air Layer Experiment: This is a multi-option, multi-aircraft experiment which uses GPS dropwindsondes launched from the NOAA GIV and NOAA WP-3D to examine the thermodynamic and kinematic structure of the Saharan Air Layer (SAL) and its potential impact on tropical cyclone (TC) genesis and intensity change. The GPS dropwindsonde drop points will be selected using real-time GOES SAL tracking imagery from UW-CIMSS and mosaics of SSM/I total precipitable water from the Naval Research Laboratory. Specific effort will be made to gather atmospheric information within the Saharan Air Layer as well as regions of high moisture gradients across its boundaries and the region of its embedded mid-level easterly jet. The goals of this experiment are to better understand and predict how the SAL's dry air, mid-level easterly jet, and suspended mineral dust affect Atlantic TC intensity change and to assess how well these components of the SAL are being represented in forecast models. This experiment addresses IFEX Goals 1 and 3.

(2) Aerosonde Experiment: This is a multi-option, multi-aircraft experiment that uses the Aerosonde UAS and GPS dropwindsondes/aircraft expendable bathythermographs (AXBTs) launched from the NOAA WP-3D to fully demonstrate and utilize the unique capabilities of the Aerosonde platform to document areas of the tropical cyclone environment that would otherwise be either impossible or impractical to observe. It is planned that this effort will be based in Key West, FL. The immediate focus of this experiment is to document and significantly improve our understanding of the rarely-observed tropical cyclone boundary layer and undertake detailed comparisons between in-situ and remote-sensing observations obtained from manned aircraft (NOAA WP-3D and AFRES C-130) and satellite based platforms. In addition, a primary objective of this effort is to provide real-time, near-surface wind observations to the National Hurricane Center in direct support of NOAA operational requirements. These unique data will also be made available to EMC for both data initialization and forecast verification purposes. This experiment addresses IFEX Goals 1, 2, and 3.

(3) **Tropical Cyclogenesis Experiment:** This multi-option, multi-aircraft experiment is designed to study how a tropical disturbance becomes a tropical depression with a closed surface circulation. This experiment seeks to answer the question through multilevel aircraft penetrations using dropsondes, flight-level data, and radar observations on the synoptic, mesoscale, and convective spatial scales. It will focus particularly on dynamic and thermodynamic transformations in the low- and mid-troposphere and lateral interactions between the disturbance and its synoptic-scale environment. This experiment addresses IFEX Goals 1 and 3.

(4) **Tropical Cyclone Landfall and Inland Decay Experiment:** This experiment is a multi-option, singleaircraft experiment designed to study the changes in TC surface wind structure near and after landfall. The experiment has several modules that could also be incorporated into operational surveillance of reconnaissance missions. An accurate description of the TC surface wind field is important for warning, preparedness, and recovery efforts. This experiment addresses IFEX Goals 1, 2, and 3.

(5) **Tropical Cyclone Eye Mixing Module**: This is a multi-option, single aircraft experiment designed to use the NOAA WP-3D to collect observations within the eye below the inversion to investigate the dynamic and thermodynamic structures of eyewall mesovortices and improve our knowledge of small-scale features and intensity changes in very strong TCs. This experiment addresses IFEX Goal 3.

(6) Hurricane Synoptic-Flow Experiment: This is a multi-option, single or multi-aircraft operational mission that uses GPS dropwindsondes launched from the NOAA G-IV, the NOAA WP-3D, or the Air Force Reserve C-130 to improve landfall predictions of TCs by releasing GPS dropwindsondes in the environment of the TC center. These data will be used by TPC/NHC and NCEP to prepare objective analyses and official forecasts through their assimilation into operational numerical prediction models. Because the atmosphere is known to be chaotic, very small perturbations to initial conditions in some locations can amplify with time. However, in other locations, perturbations may result in only small differences in subsequent forecasts. Therefore, targeting locations in which the initial conditions have errors that grow most rapidly may lead to the largest possible forecast improvements. Locating these regions that impact the particular forecast is necessary. When such regions are sampled at regularly-spaced intervals the impact is most positive. The optimal targeting and sampling strategies is an ongoing area of research. This experiment addresses IFEX Goal 1.

(7) Mature Storms Experiment: This is a multi-option, single -aircraft operational mission designed to use the NOAA WP-3D to sample tropical cyclones ranging in intensity from tropical depression to a major hurricane. The definition is meant to separate this category from tropical waves and disturbances that have yet to develop a well-defined warm-core circulation. The main goals of these missions is: 1) to improve our understanding of the factors which modify the intensity and structure of tropical cyclones, 2) to provide a comprehensive data set for the initiation (including data assimilation) and validation of numerical hurricane simulations (in particular the Hurricane Weather and Research Forecasting model (HWRF), 3) to improve and evaluate technologies for observing tropical cyclones, and 4) to develop rapid "real-time" communication of these observations to the National Centers for Environmental Prediction (NCEP) of the National Weather Service (NWS). Two experiments comprise the overall Mature Storms Experiment: the Frequent-Monitoring Experiment, designed to obtain regular 12- or 24-h resolution airborne Doppler-radar observations of hurricanes, with optional GPS dropsondes and the NESDIS Ocean Winds and Rain Experiment, designed to improve our understanding of microwave surface scatterometery in high-wind conditions over the ocean by collecting surface scatterometery data and Doppler data in the boundary layer of hurricanes.

In addition to the experiments presented above that comprise IFEX, there are several experiments that are also occurring simultaneously and will be partnering with HRD's IFEX:

- 1. NOAA/NESDIS will be conducting the Ocean Winds Experiment, using N42RF for part of the season. The goal of this experiment is to further our understanding of the ocean surface wind vector retrievals in high wind speed conditions and in the presence of rain for all wind speeds from microwave remote-sensing measurements.
- 2. NASA has planned an experiment called the NASA African Monsoon Multidisciplinary Analyses (NAMMA). The major research topics of this mission will be to examine the formation and evolution of tropical cyclones in the eastern and central Atlantic and their impact on the U.S. east coast, the composition and structure of the Saharan Air Layer, and whether aerosols affect cloud precipitation and influence cyclone development. NASA's DC-8 medium altitude research aircraft will serve as the primary research tool for the NAMMA investigations and will be based in Sal, Cape Verde from 15 August to 15 September. HRD plans include the coordination of WP-3D and G-IV aircraft research

missions downstream from NAMMA DC-8 missions. An overview of the NAMMA program can be found at:

http://namma.nsstc.nasa.gov/index.html

3. An international field campaign called the African Monsoon Multidisciplinary Analysis (AMMA) is planning a series of "Special Observing Periods" (SOPs) during the summer of 2006. AMMA is an international project designed to improve our knowledge and understanding of the West African Monsoon (WAM) and its variability. AMMA is motivated by an interest in fundamental scientific issues and by the societal need for improved prediction of the West African Monsoon and its impacts on West African nations. HRD plans include the coordination of WP-3D and GIV aircraft research missions downstream from AMMA aircraft and land-based tropical cyclone-related research activities. An overview of the international and U.S. components of the AMMA field campaign can be found at: http://amma.mediasfrance.org/index http://www.joss.ucar.edu/amma/

OPERATIONS

1. Locations

Starting on 05 July, the NOAA WP-3D (N42RF) and Gulfstream IV-SP aircraft will be available for possible HRD research missions. Operations for both aircraft will primarily base out of Tampa, Florida, with provision for deployments to Barbados, St. Croix, and Bermuda for storms in the Atlantic basin (including the Atlantic Ocean and the Caribbean Sea) and deployments to U.S. coastal locations in the western Gulf of Mexico for suitable Gulf storms. Occasionally, post mission recovery may be accomplished elsewhere.

2. Field Program Duration

The HRD hurricane field research program will be conducted from 05 July through 30 September 2006.

3. Research Mission Operations

The decision and notification process for hurricane research missions is shown, in flow chart form, in Appendix A of the HFP (Figs. A-1, A-2, and A-3). The names of those who are to receive primary notification at each decision/notification point shown in Figs. A-1, A-2, and A-3 are also listed in Appendix A of the HFP. Contacts are also maintained each weekday among the directors of HRD/AOML, TPC/NHC, NCEP/EMC, and AOC to discuss the "storm outlook."

Research operations must consider that the research aircraft are required to be placed in the National Hurricane Operations "Plan of the Day" (POD) 24 h before a mission. If operational "fix" requirements are accepted, the research aircraft must follow the operational constraints described in Section 7.

4. Task Force Configuration

The NOAA WP-3D aircraft (N42RF), equipped as shown in Appendix G of the HFP, will be available for research operations on a non-interference basis with operational "tasked" missions from 05 July to 30 September 2006. Also, the G-IV aircraft should be available, on a non-interference basis with operational "tasked" missions from 05 July to 30 September 2006.

5. Field Operations

5.1 Scientific Leadership Responsibilities

The implementation of the HRD 2006 Hurricane Field Program Plan is the responsibility of the field program director, who in turn, reports directly to the HRD director. The field program director will be assisted by the field program ground team manager. In the event of deployment, the field program ground team manager shall be prepared to assume overall responsibility for essential ground support logistics, site communications, and HRD site personnel who are not actively engaged in flight. Designated lead project scientists are responsible to the field program director or designated assistants. While in flight, lead project scientists are in charge of the scientific aspects of the mission.

5.2 Aircraft Scientific Crews

Tables B-2.1 through B-2.4 (Appendix B of the HFP) list the NOAA scientific crewmembers needed to conduct the 2006 hurricane field experiments. Actual named assignments may be adjusted on a case-by-case basis. Operations in 2006 will include completion of detailed records by each scientific member while on the aircraft. General checklists of NOAA science-related functions are included in Appendix E of the HFP.

5.3 Principal Duties of the Scientific Personnel

A list of primary duties for each NOAA scientific personnel position is given in Appendix D of the HFP.

5.4 HRD Communications

The HRD/Miami Ground Operations Center (MGOC) will operate from offices at AOML on Virginia Key (4301 Rickenbacker Causeway, Miami, Florida) or from TPC/NHC (11691 S.W. 17th Street, Miami, Florida).

During actual operations, the senior team leader of the MGOC, or his/her designee, can be reached by commercial telephone at (305) 221-4381 (HRD/TPC/NHC) or at (305) 361-4400 (HRD/AOML). At other times, an updated, automated telephone answering machine [(305) 221-3679] will be available at the MGOC. In

addition, MGOC team leaders and the field program director can be contacted by calling their cell phones or pager (phone numbers available at a later date).

MGOC, operating from AOML or TPC/NHC, will serve as "communications central" for information and will provide interface with AOC, TPC/NHC, and CARCAH (Chief, Aerial Reconnaissance Coordinator, All Hurricanes). In the event of a deployment of aircraft and personnel for operations outside Miami, HRD's field program ground team manager will provide up-to-date crew and storm status and schedules through the field program director or the named experiment lead project scientist. HRD personnel who have completed a flight will provide information to MGOC, as required.

6. Data Management

Data management and dissemination will be according to the HRD data policy that can be viewed at: http://www.aoml.noaa.gov/hrd/data2.html

A brief description of the primary data types and HRD personnel contact information may be found at: http://www.aoml.noaa.gov/hrd/data/products.html

Raw data are typically available to all of NOAA-sponsored personnel and co-investigators immediately after a flight, subject to technical and quality assurance limitations. Processed data or other data that has undergone further quality control or analyses are normally available to the principle and co-investigators within a period of several months after the end of the Hurricane Field Program. Examples of co-investigators are NASAsponsored NAMMA investigators and associated university or other Governmental partners.

All requests for NOAA data gathered during the 2006 Hurricane Field Program should be forwarded by email to the associated contact person in the HRD data products description (link above) or in writing to: Director, Hurricane Research Division/AOML, 4301 Rickenbacker Causeway, Miami, Florida 33149.

7. Operational Constraints

NOAA WP-3D aircraft are routinely "tasked" by NHC through CARCAH to perform operational missions that always take precedence over research missions. Research objectives can frequently be met, however, on these operational missions. Occasionally, HRD may request, through NHC and CARCAH, slight modifications to the flight plan on operational missions. These requests must not deter from the basic requirements of the operational flight as determined by NHC and coordinated through CARCAH.

Hurricane research missions are routinely coordinated with hurricane reconnaissance operations. As each research mission is entered into the planned operation, a block of time is reserved for that mission and operational reconnaissance requirements are assigned. A mission, once assigned, *must be flown in the time period allotted and the tasked operational fixes met.* Flight departure times are critical. Scientific equipment or personnel not properly prepared for the flight at the designated pre-take-off time will remain inoperative or be left behind to insure meeting scheduled operational fix requirements. Information on delays to or cancellations of research flights must be relayed to CARCAH.

8. Calibration of Aircraft Systems

Calibration of aircraft systems is described in Appendix B of the HFP (B.1 en-route calibration of aircraft systems). True airspeed (TAS) calibrations are required for each NOAA flight, both to and from station and should be performed as early and as late into each flight as possible (Fig. B-1).

HRD RESEARCH EXPERIMENTS 1. Saharan Air Layer Experiment (SALEX)

INTRODUCTION

Saharan Air Layer Experiment: This is a multi-option, multi-aircraft experiment which uses GPS dropwindsondes launched from the NOAA G-IV (flying at ~175-200 hPa/~45,000-41,000 ft) and NOAA WP-3D (flying at ~500-700 hPa/18,000-10,000 ft) to examine the thermodynamic and kinematic structure of the Saharan Air Layer (SAL) and its potential impact on tropical cyclone (TC) genesis and intensity change. The GPS dropwindsonde drop points will be selected using real-time GOES SAL tracking imagery from UW-CIMSS and mosaics of SSM/I total precipitable water from the Naval Research Laboratory. Specific effort will be made to gather atmospheric information within the Saharan Air Layer as well as regions of high moisture gradients across its boundaries and the region of its embedded mid-level easterly jet. The goals of this experiment are to better understand and predict how the SAL's dry air, mid-level easterly jet, and suspended mineral dust affect Atlantic TC intensity change and to assess how well these components of the SAL are being represented in forecast models.

Program Significance: The Saharan SAL has been investigated fairly extensively during the past several decades, buts its role in influencing Atlantic TCs has not been thoroughly examined. The SAL is characterized by a well-mixed layer that originates over the arid regions of the Sahara and often extends up to ~500 hPa (~18,000 ft) over the African continent. This air mass is extremely warm and dry, with temperatures that are markedly warmer (~0.5-5.0°C in the western North Atlantic and ~5-10°C in the eastern North Atlantic) than a typical tropical sounding. Additionally, the RH (mixing ratio) in the SAL is ~30-35% (~3 g kg⁻¹) drier than a typical moist tropical sounding. The SAL is often associated with a mid-level easterly jet centered at about 700 hPa (~10,000 ft) and concentrated along its southern boundary.

SAL outbreaks typically move westward off the western coast of North Africa every 3-5 days during the summer months. There are several characteristics of these frequent outbreaks that can act to suppress Atlantic TC formation:

- 1) The SAL contains **dry**, **stable air** that can diminish local convection by promoting convectively driven downdrafts in the TC environment.
- 2) The SAL contains a **mid-level easterly jet** that can significantly increase the local vertical wind shear. The low-level circulations of TCs under the influence of this jet tend to race out ahead of their mid and upper-level convection, decoupling the storm and weakening it.
- 3) **Mineral dust** suspended within the SAL absorbs solar energy and subsequently releases longwave infrared energy. These thermal emissions act to warm the SAL and can re-enforce the tropical inversion that already exists in the tropical North Atlantic. This warming helps to stabilize the environment and also limits vertical mixing through the SAL, allowing it to maintain its distinctive low humidity for extended periods of time (several days) and over long distances (1000s of km)

Objectives: The main objectives of SALEX are to:

- Better understand how the SAL's dry air, mid-level easterly jet, and suspended mineral dust affect Atlantic TC intensity change.
- Include the moisture information from the GPS dropwindsondes in operational parallel runs of the NOAA Global Forecast System (GFS) model. The impact of this data on the GFS (and GFDL) initial/forecast humidity fields and its forecasts of TC track and intensity will be assessed.

Links to IFEX: This experiment supports the following NOAA IFEX goals:

- o Goal 1: Collect observations that span the TC lifecycle in a variety of environments;
- Goal 3: Improve our understanding of the physical processes important in intensity change for a TC at all stages of its lifecycle;

Mission Description: The NOAA G-IV (flying at ~175-200 hPa/~45,000-41,000 ft) and NOAA WP-3D (flying at ~500-700 hPa/~18,000-10,000 ft) GPS dropwindsonde drop points will be based on a flight pattern selected using information from the UW-CIMSS/HRD GOES SAL tracking product and mosaics of SSM/I TPW from NRL Monterey. Specific effort will be made to gather atmospheric information within the SAL, the transitional

environment (regions with high gradients of humidity) across its boundaries, its embedded mid-level easterly jet, and the immediate surrounding moist tropical environment. When possible, SALEX missions will be coordinated with the HRD Tropical Cyclone Genesis Experiment (GenEx). This coordination will involve the WP-3D and/or GIV and be executed on a case-by-case basis. Several SAL/TC interaction scenarios are candidates for SALEX missions:

Option 1:

Single TC located along the southern edge of the SAL (Fig. 1). Depending on the proximity of these two features, the SAL's dry air may be wrapping into the TC's low-level circulation (western semicircle).

<u>*G-IV*</u>: The G-IV **IP** will be in the NW quadrant of the TC (preferably west of the SAL's leading edge) and the initial portion of the 1st leg (**IP-2**) will focus a GPS dropwindsonde sequence across the high gradient region of humidity at the SAL's leading edge. There will be intermittent GPS dropwindsondes along the remainder of the first leg (**IP-2**), with higher density sequences along pre-determined regions of interest (e.g. dry SAL air). The 2^{nd} leg (**2-3**) will focus a GPS dropwindsonde sequence across the SAL's southern boundary to capture gradients of humidity and wind shear (associated with the SAL's mid-level easterly jet). Subsequent intermittent drops will be made along this leg (**2-3**) to sample the ambient moist tropical environment. The 3^{d} leg (**3-4**) will include a GPS dropwindsonde sequence will focus on sampling the intrusion of low humidity SAL air into the TC circulation and how the SAL's vertical structure and moisture content modify as it advects closer to the TC inner core. The SAL's leading edge ("rooster tail") will be sampled by a GPS dropwindsonde sequence during the final leg (**4-FP**).

<u>*WP-3D:*</u> The WP-3D **IP** will be in the SW quadrant of the TC and the initial portion of the 1st leg (**IP-2**) will focus on sampling the ambient moist tropical environment south of the TC. The 2^{d} leg (**2-3**) will include sampling the ambient moist tropical environment east of the TC as well as focusing a GPS dropwindsonde sequence across the SAL's southern boundary to capture gradients of humidity and wind shear (associated with the SAL's mid-level easterly jet). The 3^{d} leg (**3-4**) will include a GPS dropwindsonde sequence that will be focused along the dry air inflow region on the west semicircle of the TC. This drop sequence will focus on sampling the intrusion of low humidity SAL air into the TC circulation and how the SAL's vertical structure and moisture content modify as it advects closer to the TC inner core. The final leg (**4-FP**) will include a penetration of the TC center of circulation followed by GPS dropwindsonde sequences targeting the SAL west of the TC. The final GPS dropwindsonde sequence will sample the SAL's leading edge ("rooster tail") west of the TC.

Fig. 1: Sample G-IV (top) and WP-3D (bottom) flight tracks for a TC positioned along the southern edge of the SAL

- Note 1: During the ferry to the **IP**, the G-IV (WP-3D) should climb to ~200 hPa/41,000 ft (500 hPa/18,000 ft) as soon as possible and climb as feasible to maintain the highest altitude for the duration of the pattern.
- Note 2: In order to capture the SAL's horizontal/vertical structure, particular attention should be paid to regions of high moisture gradients across its boundaries (G-IV: IP-2, 2-3, and 4-FP; WP-3D: 2-3, and 4-FP).
- Note 3: The SAL's mid-level easterly jet (~20-50 kt at 600-700 hPa/12,000-15,000 ft) may be evident from GPS dropwindsondes dropped near the SAL's southern boundary (G-IV: **IP-2** and **2-3**; WP-3D: **2-3** and **3-4**).

Option 2: Single TC is embedded within the SAL and intensifies upon emerging. These systems are often candidates for rapid intensification.

G-IV: The G-IV **IP** will be west of the TC and preferably within the SAL. The 1st leg (**IP-2**) will include a GPS dropwindsonde transect across the northern boundary of the SAL. This dropwindsonde sequence will focus on sampling the large humidity gradients across the northern edge of the SAL. The 2^{rd} (2-3) and 3^{rd} (3-4) legs of the flight pattern will intermittently sample the moist tropical environment out ahead of the TC and north of the SAL. The 4^{th} leg (4-5) will include a GPS dropwindsonde transect across the northern boundary of the SAL (NE of the TC), intermittent GPS dropwindsondes within the SAL (in the middle of the flight leg), and a GPS dropwindsonde transect across the southern boundary of the SAL (southeast of the TC). The northern and southern dropwindsonde sequences will focus on sampling the large humidity gradients along the SAL's boundaries. The intermittent dropwindsondes and southern dropwindsonde sequence will concentrate on sampling the SAL's mid-level easterly jet. The 5th (5-6) and 6th (6-FP) flight legs will include intermittent GPS dropwindsondes that will help identify how the SAL's vertical structure and moisture content are being modified by the TC circulation closer to the storm.

WP-3D: The WP-3D **IP** will be west of the TC and preferably within the SAL. The 1st leg (**IP-2**) will include a GPS dropwindsonde transect across the northern boundary of the SAL. This dropwindsonde sequence will focus on sampling the large humidity gradients across the northern edge of the SAL. The 2^{nd} leg (**2-3**) of the flight pattern will sample the boundary between moist tropical air north of the TC center and the SAL to the south and will include a penetration of the TC center of circulation. Particular attention will be focused on sampling dry SAL air near the TC inner core. The 3^{rd} leg (**3-4**) will include a GPS dropwindsonde transect across the northern boundary of the SAL to sample the humidity gradients at the SAL's northern boundary. The 4^{th} leg (**4-FP**) will sample the boundary between moist tropical air north of the TC center and the SAL to the south and will include a penetration of the TC center of circulation. Particular attention will be focused on sampling dry SAL air near the TC inner core. The 3^{rd} leg (**3-4**) will include a GPS dropwindsonde transect across the northern boundary of the SAL to sample the humidity gradients at the SAL's northern boundary. The 4^{th} leg (**4-FP**) will sample the boundary between moist tropical air north of the TC center and the SAL to the south and will include a penetration of the TC center of circulation. Particular attention will be focused on sampling dry SAL air near the TC inner core.

Fig. 2: Sample G-IV (top) and WP-3D (bottom) flight tracks for a TC emerging from the SAL.

- Note 1: During the ferry to the **IP**, the G-IV (WP-3D) should climb to ~200 hPa/41,000 ft (500 hPa/18,000 ft) as soon as possible and climb as feasible to maintain the highest altitude for the duration of the pattern.
- Note 2: The TC may undergo a period of rapid intensification as it emerges from the SAL.
- Note 3: In order to capture the SAL's horizontal/vertical structure, particular attention should be paid to regions of high moisture gradients across its boundaries (G-IV: IP-2 and 4-5; WP-3D: IP-2 and 3-4).
- Note 4: The SAL's mid-level easterly jet (~20-50 kt at 600-700 hPa/12,000-10,000 ft) may be evident from GPS dropwindsondes dropped near the SAL's southern boundary (G-IV: **5-6** and **6-7**).

Option 3: Single TC embedded located along the leading edge of the SAL. These systems are often struggle to intensify as they are overtaken by the SAL surge, but do occasionally separate from the SAL and intensify. These systems are often characterized by their low-level circulations racing out ahead (west) of their mid-level convection.

G-IV: The G-IV **IP** will be west of the TC. The 1st leg (**IP-2**) will include intermittent GPS dropwindsonde sampling of the moist tropical environment out ahead of the TC and west of the SAL. The 2^{nd} (2-3) leg will sample the moist tropical environment north of the TC and west of the SAL followed by a GPS dropwindsonde transect across the leading edge of the SAL (north of the TC). The 3^{d} (3-4) and 4^{h} (4-5) legs of the flight pattern will intermittently sample the SAL with specific focus on sampling the gradients associated SAL's midlevel easterly jet (typical located along the southern edge of the SAL). The 5^{h} (5-**IP**) flight leg will include intermittent GPS dropwindsonde sampling of the SAL, followed by a transect across the SAL's leading edge, followed by intermittent GPS dropwindsonde sampling of the moist tropical environment out ahead of the TC and west of the SAL.

WP-3D: The WP-3D **IP** will be west of the TC. The 1st leg (**IP-2**) will include intermittent GPS dropwindsonde sampling of the moist tropical environment out ahead of the TC and west of the SAL. The 2nd leg (**2-3**) of the flight pattern will sample the boundary between moist tropical air north of the TC center and the SAL to the south and will include a penetration of the TC center of circulation. Particular attention will be focused on sampling dry SAL air near the TC inner core. The 3^{d} leg (**3-4**) will include intermittent GPS dropwindsonde sampling within the SAL with specific focus on sampling the gradients associated SAL's mid-level easterly jet (typical located along the southern edge of the SAL). The 4^{th} leg (**4-FP**) will sample the boundary between moist tropical air west of the TC center and the SAL to the east and will include a penetration of the TC center of circulation. Particular attention will be focused on sampling the gradients associated SAL's mid-level easterly jet (typical located along the southern edge of the SAL). The 4^{th} leg (**4-FP**) will sample the boundary between moist tropical air west of the TC center and the SAL to the east and will include a penetration of the TC center of circulation. Particular attention will be focused on sampling dry SAL air near the TC inner core.

Fig. 3: Sample G-IV (top) and WP-3D (bottom) flight tracks for a TC along the leading edge of the SAL.

- Note 1: During the ferry to the **IP**, the G-IV (WP-3D) should climb to ~200 hPa/41,000 ft (500 hPa/18,000 ft) as soon as possible and climb as feasible to maintain the highest altitude for the duration of the pattern.
- Note 2: The TC will likely struggle to intensify as it is overtaken by the SAL. Slow intensification is possible if the TC is able to separate from the SAL.
- Note 3: In order to capture the SAL's horizontal/vertical structure, particular attention should be paid to regions of high moisture gradients across its boundaries (G-IV: 2-3 and 5-FP; WP-3D: 2-3 and 4-FP).
- Note 4: The SAL's mid-level easterly jet (~20-50 kt at 600-700 hPa/12,000-10,000 ft) may be evident from GPS dropwindsondes dropped near the SAL's southern boundary (G-IV: **4-5** and **5-FP**; WP-3D: **2-3** and **3-4**).

Option 4: Single TC embedded within the SAL throughout most or all of its lifecycle. These systems struggle to intensify and are often characterized by their low-level circulations racing out ahead (west) of their mid-level convection. Depending on the proximity of these features, the SAL's dry air may be wrapping into the TC's low-level circulation (western semicircle).

G-IV: The **IP** will be north of the TC and preferably north of the SAL. The 1st leg (**IP-2**) will include a GPS dropwindsonde transect across the northern and southern boundaries of the SAL. These dropwindsonde sequences will focus on sampling the large humidity gradients across the SAL boundaries as well as the SAL's mid-level easterly jet (typical located along the southern edge of the SAL). These scenarios (TC embedded within the SAL) are typically cases where the TC is under the influence of a strong SAL easterly jet. The 2nd leg (**2-3**) of the flight pattern will intermittently sample the moist tropical environment south of the SAL. The 3^{d} leg (**3-4**) will include a GPS dropwindsonde sequence will sample the intrusion of low humidity SAL air into the TC circulation and help to define how the SAL's vertical structure and moisture content modify as it advects closer to the TC inner core. A final GPS dropwindsonde transect (**4-FP**) will be made across the area of high moisture gradients at the SAL's northern boundary and in the relatively moister tropical environment north and northwest of the SAL.

WP-3D: The **IP** will be NW of the TC and preferably north of the SAL. The 1^{st} leg (**IP-2**) will include a GPS dropwindsonde transect across the northern boundary of the SAL. This dropwindsonde sequences will focus on sampling the large humidity gradients across the SAL. The 2^{nd} leg (**2-3**) of the flight pattern will intermittently

sample the moist tropical environment south of the SAL and will include a GPS dropwindsonde transect across the southern boundary of the SAL as well as the SAL's mid-level easterly jet (typical located along the southern edge of the SAL). The 3^{d} (3-4) and 4^{h} (4-5) legs will include a GPS dropwindsonde sequence that will be focused along the dry air inflow region on the west semicircle of the TC. This drop sequence will sample the intrusion of low humidity SAL air into the TC circulation and help to define how the SAL's vertical structure and moisture content modify as it advects closer to the TC inner core. The final leg (4-FP) will sample the boundary between moist tropical air west of the TC center and the SAL to the east and will include a penetration of the TC center of circulation. Particular attention will be focused on sampling dry SAL air near the TC inner core.

Fig. 4: Sample G-IV (top) and WP-3D (bottom) flight track for a TC embedded in the SAL for most or all of its lifecycle.

- Note 1: During the ferry to the **IP**, The G-IV (WP-3D) should climb to ~200 hPa/~41,000 ft (500 hPa/18,000 ft) as soon as possible and climb as feasible to maintain the highest altitude for the duration of the pattern.
- Note 2: In order to capture the SAL structure, particular attention should be paid to regions of high moisture gradients across its boundaries (G-IV: IP-2 and 4-FP; WP-3D: IP-2 and 2-3).
- Note 3: The TC's low-level circulation may race ahead of its mid-level convection due to the influence of the SAL's mid-level easterly jet.
- Note 4: The SAL's mid-level easterly jet (~20-50 kt at 600-700 hPa/15,000-10,000 ft) may be evident from GPS dropwindsondes dropped near the SAL's southern boundary (G-IV: **IP-2**; WP-3D: **2-3**).

HRD RESEARCH EXPERIMENTS (CONT'D) 2. Aerosonde Tropical Cyclone Inflow Experiment

Hurricanes and tropical storms cause many deaths and average billions of dollars in damages each year. More than 1000 lives were lost in Hurricane Katrina (2005) alone, and the financial impact on the U.S. economy has already exceeded \$200 Billion. Improved forecasts and warnings also reduce the costs inherent in responding to the hurricane threat. The devastating impacts of Hurricanes like Katrina or Wilma (2005) require that we make the best possible and most authoritative information available to decision-makers to help them determine whether to implement mandatory evacuations and other costly actions for approaching hurricanes.

NOAA is working with its international and domestic partners to cost-effectively increase the number, breadth, accuracy, and availability of observation systems. As part of this effort, NOAA is investing in new technologies, such as Unmanned Aircraft Systems (UAS) in order to improve the accuracy and timeliness of our Nation's existing weather observation and forecast system. This experiment plans to demonstrate the capabilities of the versatile Aerosonde UAS within the context of bw-level hurricane reconnaissance. It will also build upon recent NOAA UAS success (Ophelia 2005) and directly tie into one of the GoM CI major themes (Coastal Hazards).

Ultimately, the value of this proposed work will be measured in lives saved and money not spent from improved understanding, forecasts and preparation. Specific benefits that directly link to NOAA's stated strategies within the Weather and Water mission goal include detailed documentation of the rarely-observed hurricane boundary layer environment (*Monitor and Observe*), an improved physical understanding of this critically important region (*Understand and Describe*), and enhanced observations that directly lead to improved future forecasts of tropical cyclone intensity change (*Assess and Predict*).

The Aerosonde UAS

The Aerosonde UAS is fully summarized in Holland et al (2000). It has been undertaking civilian operations since 1995, was the first UAV to cross the Atlantic Ocean and has an impressive endurance record of over 32 hrs. It has a sophisticated command and control system and the flexibility to be deployed and commanded from virtually any location. Initially developed for meteorological and environmental applications in remote and dangerous conditions, the Aerosonde has been specifically designed for all-weather operations under harsh conditions and is well suited to the hurricane reconnaissance role. The aircraft has evolved through to the current Mark 4 version and its relevant specifications are provided in Table 1.

Specifications							
Weight, wing span	26-30 lb, 10 ft						
Engine	24 cc, Fuel Injected engine using unleaded petrol						
Navigation	GPS						
Operation							
Staff for Launch and Recovery	3 staff: Controller, Engineer, Pilot/Maintenance						
Ground Equipment	Proprietary Staging Box, Personal Computer, GPS, Radio Antennae and Iridium Satellite modem						
Flight	Fully autonomous, under Base Command						
Launch and Recovery	Launch from car roof rack, or catapult, land on belly. Able to operate from remote and unprepared surfaces						
Ground & air communications	UHF or Satcoms to Aerosonde, VHF to field staff and other aircraft, internet or phone to command center and users.						
Performance							
Speed, Climb	Speed 35-80 kt, Climb 3 m/s at sea level						
Endurance, Range	20 to >30 h, up to 3000 km (depending on payload weight and configuration)						

Table 1. Specifications of Mark 5 Aerosonue UAV

Aerosonde Payload

A range of payloads are operational or under development for the Aerosonde. Those that are relevant to the hurricane boundary layer mission are listed in Table 2

Table 2. O	perational	Aerosonde	instruments	of rel	evance to	bounda	ry la	ver monitoring	•

Measurement	Instrument	Manufacturer	Technical	Comments
Air temp, press., hum.	Vaisala RSS901 sensor	Vaisala	P<.5 hPa, T<.2K, RH<2% 0.1 hz standard, capable of 1 hertz	Standard met observations
Winds	Proprietary	AeNA	u,v < .5 m/s	Standard met observations
Surface temperature	IR KT11	Heitronics	SST < 0.5K	Surface ocean and land temperatures.
	IR KT15	Heitronics	SST < 0.5K	
Liquid water content and ice crystal concentration	Heymsfield VIPS	NCAR	Video recording of impacts on oiled plastic	Cloud physics and potential spray/ salt distributions
Sea state, ocean surface winds, soil moisture	GPS reflectance	NASA	<10 m resolution. Accuracy unknow n	Detailed observations of surface conditions
Surface visible imaging	Digital still camera Olympus 5050	Olympus	5 megapixel 3x Optical zoom	High resolution surface imaging
Surface visible imaging	Sony 555 Video camera, fixed mount	Sony		Video of surface conditions
Infrared imaging	Indigo Omega camera	Indigo Systems	8-12 micron IR imaging	IR surface imagery

Aerosonde Launch, Command and Control

Aerosonde command and control is accomplished by:

- UHF command for LOS up to 120 miles, which may be back to a launch site or can be transferred to a mobile or other site as required;
- Iridium Satcom for OH command to any location on earth.

The required equipment is a lap top computer, a small staging box (briefcase size) and relevant antennae. AeNA has often operated from a vehicle and has transferred control to ships and other sites under operational conditions. All Aerosonde commanders and technicians are fully qualified under Australian Civil Air Operator Certificate Number VT585156-U-01, issued to Aerosonde on 30 May 2003. This is the only current Aviation Authority Certification in the world.

Use of the Aerosonde UAS for Hurricane Reconnaissance

While recent composite analyses from Cione et al (2000) and Cione and Uhlhorn (2003) have led to new insights regarding structural details of the hurricane air-sea interface, sustained and comprehensive observations of the thermodynamic (temperature and moisture) and kinematic (wind) structure of the near-surface hurricane environment have never been undertaken. Yet this environment, where the atmosphere meets the sea, is critically important:

- This is where the critical oceanic energy supply is transferred to the atmosphere
- Here we find the strongest winds in a hurricane and especially those that are most critical for forecasts and warnings

Improved observations in this region will lead to better understanding, and improved capacity for forecasting tropical cyclone intensity change. A major uncertainty in forecasting landfall intensity is the potential for rapid intensification or decay in the critical 24 h period when major response decisions have been already made. Enhancing this predictive capability would save our economy billions of dollars and help reduce the risk of death and injury for vulnerable populations

Successful utilization of the WP-3D Orion and Gulfstream IV-SP aircraft have made NOAA a global leader in the area of hurricane aircraft surveillance and reconnaissance. However, the danger of near-surface operations in the extreme hurricane conditions has precluded comprehensive monitoring of this critical region. Satellites are also unable to monitor this region, so we are currently left with scattered local observations from dropsondes. We propose to use the unique low-flying capacity of the Aerosonde UAS platform to address this significant observational shortcoming. The Aerosonde is capable of flying at altitudes of 500 feet or less within the high-wind hurricane eyewall environment. This is thousands of feet lower than any manned aircraft is able to operate.

We consider that the payoff for using the Aerosonde platform within the hurricane environment would be both significant and immediate. The benefits would include detailed documentation of a heretofore poorly observed region of the tropical cyclone (*Monitor and Observe*) together with providing real-time, high-resolution, low-level wind observations of the hurricane maximum winds in support of NOAA's Tropical Prediction Center's (TPC) forecasting requirements (*Assess and Predict*). In addition, the low flying Aerosonde would greatly enhance our physical understanding of the rarely observed hurricane air-sea interface (*Understand and Describe*). Ultimately, this will lead to improved forecasts of tropical cyclone intensity change by enhancing today's boundary layer parameterization schemes and providing invaluable initialization and verification data sets for numerical models (*Assess and Predict*). The data also will provide ground truth for aircraft and satellite derived remote measurements.

These observations and related benefits can be obtained at a cost that is quite low by normal hurricane reconnaissance costing standards.

The potential importance of this UAS role in hurricane reconnaissance is emphasized by the findings of the Hurricane Intensity Research Working Group established by the NOAA Science Advisory Board. There preliminary recommendation, presented to the last meeting of the SAB, is that:

"Low and Slow" Unmanned Aircraft Systems (UAS) have demonstrated a capacity to operate in hurricane conditions last season. A full demonstration program should be instituted in 2006 to assess their ability to provide low altitude in situ observations in a critical region where manned aircraft satellite observations are lacking.

Links to IFEX: This experiment supports the following NOAA IFEX goals:

- **Goal 1**: Collect observations that span the TC lifecycle in a variety of environments;
- **Goal 2**: Develop and refine measurement technologies that provide improved real-time monitoring of TC intensity, structure, and environment;
- **Goal 3**: Improve our understanding of the physical processes important in intensity change for a TC at all stages of its lifecycle;

Summary of Relevant Prior Research and Results

On September 16th 2005, NOAA, NASA and Aerosonde partners successfully flew into tropical storm Ophelia. This landmark event marked the first time an autonomous vehicle was flown into the core of a mature tropical system (see <u>http://www.noaanews.noaa.gov/stories2005/s2508.htm</u> and

http://www.magazine.noaa.gov/stories/mag193.htm). At the time, Ophelia was a 55kt tropical storm and was located off the North Carolina coastline (Figure 1). Winds were reported in near-real time to NOAA's National Hurricane Center and directly impacted NHC operational forecasts for the tropical system at that time.

Fig. 1: Aerosonde (blue) and WP-3D (red) flight tracks into tropical storm Ophelia on September 16th 2005. This mission marked the **first-ever successful unmanned flight** into a tropical cyclone. Storm intensity at the time was 55kts.

This experiment is designed to build on the success and strong momentum attained in 2005. Using the experience gained from the Ophelia mission, it is believed that the time is right for a focused and concerted effort to fly additional missions into stronger storms (hurricanes) at lower altitudes. We also feel that we can build upon recent operational success and continue to transmit critical data to NOAA's operational centers (NHC and EMC) that might otherwise go un-sampled. With additional support, significant improvements to data quality, quantity, resolution and transmission efficiency are all possible in the very near future. It is also believed that the scientific insights and benefits gained by conducting additional low-level Aerosonde missions into the rarely observed, yet critically important hurricane boundary layer environment are potentially very significant.

Mission Description

The primary objective of this experiment is fully demonstrate and utilize the unique capabilities of the Aerosonde platform to document areas of the tropical cyclone environment that would otherwise be either impossible or impractical to observe. It is planned that this effort will be based somewhere on the east coast of the Florida peninsula or possible within the Florida Keys. The immediate focus of this experiment is to document and significantly improve our understanding of the rarely-observed tropical cyclone boundary layer and undertake detailed comparisons between in-situ and remote-sensing observations obtained from manned aircraft (NOAA WP-3D and AFRES C-130) and satellite based platforms. In addition, a primary objective of this effort is to provide real-time, near-surface wind observations to the National Hurricane Center in direct support of NOAA operational requirements. These unique data will also be made available to EMC for both data initialization and forecast verification purposes.

The NOAA WP-3D (flying initially at 5000ft) GPS dropwindsonde and AXBT drop points will be regularly spaced (see notes below). Only mature tropical systems positioned offshore the SE US coast that are of at least tropical storm intensity would be considered viable candidates for this mission. When possible, Aerosonde Tropical Cyclone Inflow Experiment missions will be coordinated with the TC Landfall and Inland Decay Experiment. This coordination will involve the WP-3D and be executed on a case-by-case basis.

Fig. 2: TC Inflow Experiment flight tracks for both the AEROSONDE and WP-3D Aircraft.

- Note 1: AEROSONDE Take-off/Recovery: East Coast US (Florida)
- Note 2: Pre-IP: AEROSONDE-Coastal Buoy/C-Man 150m comparisons (SST,Ta,Td,P,V)
- Note 3: AEROSONDE IP: 400km from TC center (Initial IP flight level: 750m)
- Note 4: AEROSONDE Descend to 150m (IR SST retrieval). Remain at 150m until 350km. At 350km, ascend to 700m, remain at 700m until 300km
- Note 5: AEROSONDE Descend to 150m, remain at 150m until 250km. At 250km, ascend to 700m, and remain at 700m until 200km.
- Note 6: When the AEROSONDE is ~200km from the TC center: BEGIN WP-3D Figure 4 ALPHA Pattern.
- Note 7: WP-3D will fly at 5000 ft and drop co-located AXBT and GPS pairs every 100 km between 300-100km from the center (and every 50km from 0-100km from the TC center). For non-penetration legs, an additional AXBT/GPS drop will be launched at the leg mid-point.
- Note 8: After completing the ALPHA pattern, the WP-3D will begin pattern BETA by climbing to 10000 ft and repeating the identical drop pattern conducted during the ALPHA pattern. A total of 38 AXBT and GPS expendables are required for this mission.
- Note 9: Post storm-comparisons with WP-3D Doppler radar winds and SFMR are desired so both instruments will need to be fully functional.
- Note 10: At 250km, AEROSONDE ascend to 700m, and remain at 700m until 200km. From 200-100km, continuous 700m-150m soundings (briefly below 150m if possible)
- Note 11: At 100km, AEROSONDE ascend from 150m to 500m for eyewall penetration (~40-50km from center). In eye, AEROSONDE descend to 100-150m (IR SST retrieval) then corkscrew eye sounding to 3km
- Note 12: AEROSONDE Begin final eyewall penetration at 3km altitude (if no manned aircraft in storm)
- Note 13: IF AFRES C-130 PRESENT NO EYE SOUNDINGS WILL BE CONDUCTED
- Note 14: RETURN TO AEROSONDE BASE OF OPERATIONS

HRD RESEARCH EXPERIMENTS (CONT'D)3. Tropical Cyclogenesis Experiment

Motivation

While forecasts of tropical cyclone track have shown significant improvements in recent years (Aberson 2001), corresponding improvements in forecasts of tropical cyclone intensity have been much slower (DeMaria and Gross 2003). The lack of improvement in intensity forecasting is the result of deficiencies in the numerical models (e.g., resolution limitation and parameterization inadequacies), deficiencies in the observations, and deficiencies in our basic understanding of the physical processes involved. The problem becomes even more acute for forecasting tropical cyclogenesis. While global models have shown some skill in recent years in predicting tropical cyclogenesis, our understanding of the physical processes involved remains limited, largely because observing genesis events is a difficult task. However, a key aspect of the NOAA Intensity Forecasting Experiment (IFEX; Rogers et al. 2006) is the collection of observations during all portions of a tropical cyclone's lifecycle, particularly on the early lifecycle stages. This emphasis on the early stages of the lifecycle will provide an opportunity to observe several genesis events and improve our understanding of this key process, leading to better predictions of tropical cyclogenesis, organization, and intensification.

Since both tropical cyclogenesis and tropical cyclone intensity change can be defined by changes in low- and mid-level vorticity, knowledge of the processes that play a significant role in genesis will also advance our understanding of intensity change. A better understanding of the processes that lead to an increase in lowand mid-level cyclonic vorticity will also allow NHC to better monitor and forecast tropical cyclogenesis and intensity change, improvements that would be especially valuable for those events that threaten coastal areas. Data obtained by aircraft investigating potential genesis events will positively impact operations and research in other ways as well. The collection of three-dimensional data at all stages in a tropical cyclone's lifecycle is one of the key requirements for NCEP as a part of the IFEX experiment. Such data will provide information that will guide the development of balance assumptions and error covariance matrices important in the development of data assimilation schemes for models (i.e., HWRF) that will be used in these environments. They will also provide important datasets for evaluating the performance of HWRF. In addition to improving the understanding and forecasting of tropical cyclogenesis and intensity change, the proposed experiment will yield useful insight into the structure, growth and ultimately the predictability of the systems responsible for almost all of the weather-related destruction in the tropical Atlantic and East Pacific. Investigation of systems that fail to complete the genesis process will also result in a better understanding and prediction of easterly disturbances in general so that distinction can be better made between developing and non-developing tropical disturbances.

Background

Tropical cyclogenesis can be viewed as a rapid increase of low-level cyclonic vorticity organized on the mesoscale within a region of enhanced convective activity. Numerous hypotheses have been advanced in the literature to explain how this vorticity develops and amplifies. One of the key aspects differentiating these hypotheses centers on whether the lower-tropospheric cyclonic vorticity begins in the mid-levels and develops downward to the surface or begins in the lower troposphere and builds upward to the middle troposphere – the so-called "top-down" vs. "bottom-up" mechanisms. Prominent "top-down" theories include one study which showed observations of multiple midlevel vortices prior to genesis in the West Pacific (Ritchie et al. 1997) that led them to view the genesis process as a stochastic one whereby chance merger and axisymmetrization of these midlevel vortices leads to growth of the circulation to the surface by increasing the Rossby-Prandtl-Burger penetration depth of potential vorticity anomalies associated with the vortices. Another study supporting the "top-down" approach showed observations of genesis in the East Pacific (Bister and Emanuel 1997) and hypothesized that downdrafts driven by evaporational cooling advected the vorticity of the midlevel vortex downward, enhancing convection and low-level vorticity production.

The set of hypotheses supporting the "bottom-up" approach generally describes the genesis process as being driven by low-level convergence that increases cyclonic vorticity near the surface through vortex stretching. One such "bottom-up" hypothesis emphasizes the role of a parent midlevel vortex in axisymmetrizing nearby low-level convectively-generated cyclonic vorticity, called vortical hot towers, that leads to the spin-up of the surface circulation (e.g., Montgomery and Enagonio 1998; Davis and Bosart 2001; Montgomery et al 2004). A similar hypothesis was advanced by Rogers and Fritsch (2001) and Chen and Frank

(1993) who emphasized the role of the midlevel vortex and high midlevel humidity in providing a favorablyreduced local Rossby radius of deformation to retain the heating from convective bursts and spin up low-level vorticity through low-level stretching caused by the convective heating. Another set of theories focuses on the reduction of the lower tropospheric effective static stability to low values in the core of incipient cyclones. Suppression of convectively-induced downdrafts is one means of accomplishing this (Emanuel 1995; Raymond, Lopez, and Lopez 1998). Eliminating low-level outflows produced by the downdrafts allows the inflow of updraft air to spin up the low-level circulation, leading to the development of the warm-core characteristic of the tropical cyclone.

Objectives

 $\overline{\text{Wi}}$ th the above background in mind, the objectives of this experiment are defined as follows:

1. Test prevailing hypotheses relating to top-down vs. bottom-up development

This objective will be addressed by documenting the development of low-level vorticity in the presence of a midlevel vortex center, and vice versa. It will also be addressed by documenting the interactions between low- and mid-level vortices in pre-genesis environments.

2. Document aspects of mesoscale and synoptic-scale environment of incipient disturbances to identify characteristics necessary in genesis

Key tasks in addressing this objective involve assessing the importance of pre-existing vorticity and broad areas of high humidity and determining the importance of their spatial and temporal distribution in tropical cyclogenesis. Another important question to address is the role, if any, that a midlevel vortex plays in governing the distribution and magnitude of deep convection, and to determine the importance of downdraft suppression in limiting boundary layer stabilization. A final task is to examine hypotheses relating humidity and static stability profiles to downdraft morphology and the vortex response to convective heating.

Links to IFEX: This experiment supports the following NOAA IFEX goals:

- Goal 1: Collect observations that span the TC lifecycle in a variety of environments;
- **Goal 3**: Improve our understanding of the physical processes important in intensity change for a TC at all stages of its lifecycle;

Experiment Description

The physical processes that are important in tropical cyclogenesis span a wide spectrum of temporal and spatial scales, with time scales ranging from minutes to days and space scales ranging from mm to hundreds of km. Furthermore, many of the processes are highly nonlinear and transient. For these reasons, an experimental approach that combines observations and numerical modeling is required to adequately address the questions posed above. When possible, GenEx missions will be coordinated with the HRD Saharan Air Layer Experiment (SALEX). This coordination will involve the WP-3D and/or G-IV and be executed on a case-by-case basis.

Observational component

Recent observations from airborne Doppler radar have identified important processes on the mesoscale that contribute to tropical cyclogenesis. For example, results obtained from a WP-3D aircraft investigation of Dolly in 1996 (Reasor et al. 2005) indicate its genesis was strongly influenced by persistent, deep convection in the form of mesoscale convective systems (MCSs) that developed in association with an easterly wave over the Caribbean. Within this deep convection an eye-like feature formed, after which time the system was declared a depression. The initial development of the low-level circulation in both Dolly (1996) and Guillermo (1991) occurred in the presence of multiple midlevel vortices. The close proximity of the low- and mid-level vorticity maxima (often within 50-100 km horizontally) observed in these two genesis cases supports a further examination of the aforementioned vortex merger ideas. To adequately diagnose the role of these vortices, it is vital that they be sampled in their entirety (which will invariably depend on the distribution of precipitation scatterers) and with a temporal resolution that allows time continuity of the vortices to be established when possible.

In addition to the wind and rainfall measurements provided by the Doppler radars, measurements of temperature and moisture are vital to address the thermodynamic issues described above. Dropsondes released in a regular grid will enable the determination of thermodynamic fields in the vicinity of the incipient system, as well as enable the calculation of mean divergence and vorticity fields around the system, important in determining the strength and depth of the downdrafts (provided time aliasing is minimized). The dropsondes should be released from as high an altitude as possible to provide observations of mid-level humidity and winds where scatterers are not present. The tail radars on the WP-3D's will also enable a determination of the presence of saturation when scatterers are observed.

This experiment may be executed with the NOAA WP-3D alone, but optimally it will involve the participation of the NOAA G-IV aircraft as well. Flights will occur into incipient tropical disturbances over the western Caribbean Sea, Gulf of Mexico, and tropical Atlantic Ocean. For these missions the WP-3D will be based primarily in Barbados, though operations can also occur from St. Croix and Tampa. The systems flown here will primarily be incipient systems. If a system undergoes genesis and continues to develop, however, the WP-3D's will continue to fly the system using flight patterns from the Frequent-Monitoring Experiment (in this Field Program Plan).

The primary mission will require the WP-3D flying back-to-back missions. It will fly mesoscale survey patterns designed to document any suspected low- and mid-level vortices and sample any changes in the lowand mid-level thermodynamic fields associated with the incipient systems. Crucial to a complete understanding of the genesis process is the collection of observations with high temporal and spatial resolution. Therefore, the staggered WP-3D missions are designed to commence on station at midnight (12 AM) local and again on station at noon (12 PM) local. If it is not possible to fly the WP-3D at 12-h staggering, then 24-h staggering will be performed. If available, the G-IV aircraft would fly simultaneously at upper levels (42,000 ft or 175 hPa) and collect observations to a distance of ~1500 km from the center of the disturbance. This G-IV mission would only occur if operations happened in the tropical Atlantic or Western Caribbean and there were indications of mid- or low-level dry air in the vicinity of the disturbance.

The main aircraft for the mesoscale flights will be the WP-3D. Doppler radar observations, GPSsondes, and flight level observations obtained during these flights will help locate low- and mid-level vortices and help document their structures and life cycles. Primary aspects of this experiment will be to observe the complete life cycle and interaction of low- and mid-level vortices, understand how these vortices are influenced by the diurnal cycle of convection, and observe the evolution of the thermodynamic fields as the incipient system evolves. The location of persistent areas of deep convection and candidate vortices will be determined using high-resolution visible and infrared GOES-winds produced available online, supplemented by NASA TRMM imagery when available. Additionally, favorable environments for deep convection and vortex development, such as those described in the Introduction, will be identified using water vapor loops, model analysis fields enhanced by satellite winds, and QuikSCAT imagery, also available online.

Staggered missions with the WP-3D aircraft will begin with the aircraft flying one of two survey patterns at 14,000 ft (4 km). The primary purpose of these patterns will be to collect F/AST Doppler radar and GPS dropsonde data in the area of deep convection in order to map the evolution of the three-dimensional wind and thermodynamic structure of the deep convection and incipient vortex. Two possible patterns can be flown, with the decision of which pattern determined by the degree of organization of the system. For incipient systems that are relatively disorganized, a sawtooth pattern is flown (Fig. 1) along the axis of an easterly wave. Leg lengths will be 150-200 nmi (250-300 km), with some variability dependent on the size of the system and the time available on station. The pattern will be centered approximately on any discernible circulation, if identifiable, or on a dominant area of convective activity. After the circulation center or convective area is passed, the sawtooth pattern is mirrored and the aircraft completes a return trip, creating a series of diamond shapes to complete the pattern. This return trip will provide some greater temporal continuity to the observations.

As a system becomes better organized, a second survey pattern is flown (Fig. 2), consisting of a squarespiral configuration centered on a broad low- or mid-level circulation center. If multiple mesoscale convective systems exist embedded within a parent circulation, the pattern will be centered on the parent circulation. Dropsondes are released at regular intervals to create a near uniform grid covering the circulation and including any MCS's, if possible. The spacing between the outer spiral and the inner box pattern is nominally set for 60 nm (111 km), but it can be varied to ensure optimal representation of the convective and mesoscale features. Once a persistent low-level vortex is identified, subsequent missions will fly a pattern centered on the vortex. This pattern will be a rotating figure-4 pattern (Fig. 3). Flight legs for the figure-4 pattern will be 60-120 nm (111-225 km) to allow for the collection of data with high temporal and spatial resolution in the vicinity of the vortex center. The length of these flight legs is designed to completely include the low-level vortex and convection associated with it. Depending on the leg lengths and the time available on station, the pattern may consist of higher azimuthal resolution. The tail radar will operate in F/AST mode during the entirety of these patterns. For the WP-3D using the NOAA antenna, the tail radar will operate in continuous mode during the Microphysics Module.

If available, the GIV will be most beneficial flying a synoptic-scale pattern. It will fly at maximum altitude observing the upper and lower troposphere with GPS dropsondes in the pre-genesis and incipient tropical disturbance environment. The most likely scenario calls for the GIV to fly a Saharan Air Layer Experiment (SALEX) pattern as the system is interacting with a Saharan Air Layer (Fig. 4).

The possible availability of multiple aircraft during this experiment leads to several different scenarios. A summary of the potential combinations of aircraft during genesis experiments follows:

• Option 1 (Optimal experiment):

The NOAA WP-3D aircraft will fly in the tropical Atlantic, Gulf of Mexico, or western Caribbean basins, either diamond or square-spiral survey patterns to locate low- and mid-level vortices (Figs. 1 or 2). These flights will be flown in coordination with the G-IV aircraft, providing synoptic -scale measurements of upper- and lower-tropospheric observations around the incipient disturbance. Once a persistent mid-level vortex is located, the WP-3D will fly either rotating figure-4 (Fig. 3) or square-spiral patterns.

• **Option 2 (Lesser experiment):**

Option 1 but with only the WP-3D aircraft.

Auxiliary Storm Modules: These are stand-alone "plug-in" modules that are one hour or less in duration and can be executed after the selected primary storm module. Execution is dependent on system attributes, aircraft fuel and weight restrictions, and proximity to operations base.

(1) Convective Burst Module: The objectives of the convective burst module are to obtain quantitative description of the kinematic, thermodynamic, and electrical properties of intense convective systems (bursts) and the nearby environment to examine their role in the cyclogenesis process. This module can be flown separately within a mission designed to study local areas of convection or at the end of one of the survey patterns. The module can be flown independently with one of the WP-3D aircraft or with a WP-3D and the NASA ER-2 plane (Fig. 4). Once a local area of intense convection is identified, the WP-3D will transit at altitude (14,000 ft.) to the nearest point just outside of the convective cores and fly a circumnavigation of the convective area. The circumnavigation will consist of a series of straight legs just outside of the main convection. The tail radar should be operated in F/AST sector scan and regularly spaced dropsondes (10-20 km apart) will be released during this time. Once the circumnavigation is completed, and the WP-3D is near the original IP, two straight-line crossings of the convective area should be performed with the WP-3D avoiding the strongest cores, as necessary for safety considerations. The WP-3D can fly at either at a constant radar altitude of 14,000 ft. or, if conditions warrant, to perform a slanted ascent through the melting layer on the first pass and a slanted descent on the return pass. If time permits, the WP-3D should descend to the lowest safe altitude and perform another circumnavigation (or partial one) of the convective burst. No dropsondes will be released during the low-level run.

Modeling component

A modeling component is a necessary complement to the observational component because it provides spatial and temporal continuity to the dynamics and thermodynamics fields in incipient systems. It also provides a framework for testing the various hypotheses regarding the structure and environment of the incipient vortex that is undergoing tropical cyclogenesis. For the tests to be conducted here, a high-resolution numerical model (grid length < 2 km) is necessary to adequately resolve the deep convective towers that are key to the

genesis process. A variety of models are available to suit this need; initially the MM5 mesoscale model will be used, which is a well-tested model that provides a variety of options for physical parameterizations. In addition, the WRF-ARW model can be used. Ultimately, the desired model will be the WRF-NMM model, otherwise known as the HWRF model. The HWRF model will be the NOAA operational model, so it is desirable to perform research using this model once it has the capability of being run at sufficiently high resolution.

A variety of experiments can be run with such a modeling framework. Simulations of observed genesis cases can be performed to test the performance of the model and evaluate the importance of the various physical processes observed by the aircraft. Vorticity, heat, and moisture budgets can be calculated from the model and compared with comparable budgets from the Doppler radar and GPS dropsonde data. The statistical properties (e.g., means, distributions, correlations) of various fields and their variation with time and altitude can be compared between the model and the observations to gain a better understanding of the structural evolution of incipient systems and how well they are reproduced in the model. Observing system simulation experiments (OSSEs) can also be performed to determine the optimal flight tracks for initializing HWRF for incipient systems.

To complement the real-data simulations, idealized simulations can be performed that will better be able to isolate specific physical processes important in tropical cyclogenesis. For example, tests could be run that vary the amplitude and altitude of the initial midlevel vortex and the humidity of the synoptic and mesoscale environment of the incipient system. The observations could be used to guide the formulation of idealized experiments by providing a physically realistic range for specifying the structures of the system and its environment and evaluating the performance of the idealized simulations.

Figure 1: WP-3D Pre-genesis early organization vortex survey pattern – Diamond pattern

- Note 1: True airspeed calibration is required.
- Note 2. The pattern is flown with respect to the wave axis, typically inclined at 30-40° from N, or relative to circulation or vorticity centers.
- Note 3. Length of pattern (axis parallel to wave axis) should cover both low- and mid-level vortices, leg lengths range from 150 200 nm (275-375 km).
- Note 4. Fly 1-2-3-4-5-6-7-8 at 14,000 ft (4 km) altitude, dropping sondes at all locations denoted by black circles.
- Note 5. Set airborne Doppler radar to scan F/AST on all legs.

Figure 2: WP-3D Pre-genesis late organization vortex survey pattern – Square-spiral pattern

- Note 1. True airspeed calibration is required.
- Note 2. The pattern is flown with respect to the wave axis, typically inclined at 30-40° from N, or relative to circulation or vorticity centers.
- Note 3. Drop sondes at all numbered points. Drops at intermediate points can be omitted if dropsonde supply is insufficient.
- Note 4. The spacing between the outer spiral and inner box (nominally set to 60 nm (111 km)) can be increased or decreased depending on the size of the disturbance.
- Note 5. Fly 1-2-3-4-5-6-7-8-9-10-11-12 at 14,000 ft (4.0 km) altitude.
- Note 6. Set airborne Doppler radar to scan F/AST on all legs.
- Note 7. ER-2 track is offset 5-10 nm (10-15 km) from track of WP-3D.

Figure 3: WP-3D Post-genesis rotating Figure-4 pattern

- Note 1: True airspeed calibration is required.
- Note 2. The pattern may be entered along any compass heading.
- Note 3. Fly 1-2-3-4-5-6-7-8 at 14,000 ft altitude, 60-120 nm (111-225 km) leg length.
- Note 4 Set airborne Doppler radar to scan F/AST on all legs.

Figure 4: Convective Burst module

- Note 1: True airspeed calibration is required.
- Note 2: Circumnavigation (IP to point 6) by single WP-3D at 14 kft.
- Note 3: Convective crossing (6-7-FP) at 14 kft.
- Note 4: Repeat circumnavigation (time permitting) at low altitude (200 ft in day, 1000 ft at night).
- Note 5: No GPS sondes for low-altitude option.
- Note 6: ER-2 flies either racetrack or bowtie pattern during WP-3D circumnavigation, flies vertically aligned with WP-3D during convective crossing.

HRD RESEARCH EXPERIMENTS (CONT'D) 4. Tropical Cyclone Landfall and Inland Decay Experiment

Program Significance: The lifecycle of a tropical cyclone often ends when it makes landfall and decays as it moves inland. Research has shown that the rate of decay is a function of the

Storm intensity at landfall; accurate real-time description of the TC surface wind field near and after landfall is important for warning, preparedness, recovery efforts, and post-storm analysis. During a hurricane threat, an average of 300 nm (550 km) of coastline is placed under a hurricane warning, which costs about \$50 million in preparation per event. The size of the warned area depends on the extent of hurricane and tropical storm force winds at the surface, evacuation lead-times, and the forecast of the storm's track. Research has helped reduce uncertainties in the track and landfall forecasts, and now one of the goals of HRD's Intensity Forecasting Experiment (IFEX) is to improve the accuracy of the surface wind fields in TCs, especially near and after landfall. Improvements in diagnosing surface wind fields could reduce uncertainties in the size of hurricane warning areas.

There are still uncertainties in deriving surface wind estimates from flight level and Stepped Frequency Microwave Radiometer (SFMR) wind speeds collected near the coast. Currents and changing bathymetry could change the breaking wave field, which could change both the roughness length at higher wind speeds as well as changing the microwave emissions. Evaluation of these effects may lead to adjustments to the operational surface wind speed algorithms. Data collected at the coast will also help to refine the inland decay model being developed and evaluated in the Joint Hurricane Test bed (JHT). Airborne Doppler radar data will be transmitted to TPC/NHC and EMC as part of another JHT project to assimilate radar data into the HWRF model.

Analysis of Doppler radar, GPS sonde, SFMR, flight-level and SRA or IWRAP data collected during hurric ane flights can help achieve the Intensity Forecasting Experiment (IFEX) goals for the 2006 Field Program. A major goal is to capture the lifecycle of a TC and landfall is usually at the end of the lifecycle. Data collection strategies developed for mature hurricanes over the open ocean can also be applied at landfall. Subsets of the data collected can be transmitted to NHC and to EMC, for assimilation into HWRF. The Doppler and GPS sonde data can be analyzed to derive three-dimensional wind fields to compare with output from the HWRF and data from the NASA Scanning Radar Altimeter (SRA) can be compared to HWRF wavefields. In addition to shear and heat flux from the ocean, hurricanes at landfall experience other conditions that may affect intensity change. These include change in ocean wave action in shallow waters, change in surface roughness, drier and cooler inflow from the land, and topography. Radar, dropsonde, and SFMR data can help define those conditions. Decay over land is also important. Data collected during and shortly after landfall should help refine operational statistical decay models as well as provide validation for HWRF.

HRD developed a real-time surface wind analysis system to aid the TPC/NHC in the preparation of warnings and advisories in TCs. The surface wind analyses are now used for post-storm damage assessment by emergency management officials. The surface wind analyses are also used to validate and calibrate an operational inland wind forecast model that HRD has developed under Federal Emergency Management Agency (FEMA) sponsorship. The operational storm surge model (SLOSH) could also be run in real-time with initial data from the surface wind analysis.

As a TC approaches the coast, surface marine wind observations are normally only available in real-time from National Data Buoy Center (NDBC) moored buoys, C-MAN platforms, and a few ships. Surface wind estimates must therefore be based primarily on aircraft measurements. Low-level (<5,000 ft (1.5 km] altitude) NOAA and Air Force Reserve aircraft flight-level winds are adjusted to estimate surface winds. These adjusted winds, along with C-SCAT and SFMR wind estimates, are combined with actual surface observations to produce surface wind analyses. These surface wind analyses were initially completed after Hurricane Hugo's landfall in South Carolina and Hurricane Andrew's landfall in South Florida in support of post-landfall damage surveys conducted by FEMA. In recent years, these analyses have been produced in real-time for operational use by the NHC for many of the TCs that have affected the Western Atlantic basin, including such notable landfalling

storms as Opal (1995), Fran (1996), Georges (1998), Bret and Floyd (1999), Isidore (2003) and Frances, Ivan and Jeanne (2004), and Dennis, Katrina, Rita and Wilma (2006).

Dual-Doppler analysis provides a more complete description of the wind field in the inner core. Recently the analysis techniques have been streamlined so real-time wind analyses can be computed aboard the aircraft and wind fields at selected levels transmitted from the aircraft to NHC and NMC. These wind fields are also quite useful for post-storm analysis. An observational study of Hurricane Norbert (1984), using a PDD analysis of airborne radar data to estimate the kinematic wind field, found radial inflow at the front of the storm at low levels that switched to outflow at higher levels, indicative of the strong shear in the storm's environment. Another study used PDD data collected in Hurricane Hugo near landfall to compare the vertical variation of winds over water and land. The profiles showed that the strongest winds are often not measured directly by reconnaissance aircraft.

Recent GPS sondes dropped at and inside the flight-level radius of maximum winds (RMW) in strong hurricanes have shown remarkable variations of the wind with height. A common feature is a wind speed maximum at 300-500 m altitude. Theoretical and numerical modeling of the hurricane boundary layer suggests that the low-level jets are common features. The height of the jet varies by storm quadrant, and modeling indicates that this variation can be enhanced as a hurricane crosses land.

While collection of dual-Doppler radar data by aircraft alone requires two WP-3D aircraft flying in wellcoordinated patterns, time series of dual-Doppler data sets have been collected by flying a single WP-3D toward or away from a ground-based Doppler radar. In that pattern, the aircraft Doppler radar rays are approximately orthogonal to the ground-based Doppler radar rays, yielding true Dual-Doppler coverage. Starting in 1997 the Atlantic and Gulf coasts were covered by a network of Doppler radars (WSR-88D) deployed by the National Weather Service (NWS), Department of Defense, and Federal Aviation Administration (Fig C-5 in the Appendix). Each radar transmits the base data (Level II) in near real-time to a central site. These data are subsequently archived at the National Climatic Data Center. In precipitation or severe weather mode the radars collect volume scans every 5-6 min.

If a significant tropical cyclone moves within 215 nm (440 km) of the coast of the Eastern or Southern United States, then (resources permitting) a WP-3D will obtain Doppler radar data to be combined with data from the closest WSR-88D radars in dual-Doppler analyses. The tail radar is tilted to point 20 deg forward and aft from the track during successive sweeps (the fore-aft canning mode: F/AST). These analyses could resolve phenomena with time scales <10 min, the time spanned by two WSR-88D volume scans. This time series of dual-Doppler analyses will be used to describe the storm's inner core wind field and its evolution. The flight pattern for this experiment is designed to obtain dual-Doppler analyses at intervals of 10-20 min in the inner core. The Doppler data will be augmented by dropping GPS sondes near the coast, where knowledge of the boundary-layer structure is crucial for determining what happens to the wind field as a strong storm moves inland. GPS sondes will also be dropped in the eye wall in different quadrants of the hurricane. To augment the inner core analyses, dual-Doppler data can also be collected in the outer portions of the storm, beyond the range of the WSR-88D, because the alternating forward and aft scans in F/AST mode intersect at 40 deg, sufficient for dual-Doppler synthesis of winds.

Objectives:

- A) Collect flight level wind data and make surface wind estimates to improve real-time and post-storm surface wind analyses in hurricanes.
- **B**) Collect airborne Doppler radar to combine with WSR-88D radar data in post-storm three-dimensional wind analyses.
- C) Document thermodynamic and kinematic changes in the storm during and after landfall.
- **D**) Measure the characteristics of the middle troposphere and the hurricane boundary layer with GPS sondes.

Links to IFEX: This experiment supports the following NOAA IFEX goals:

• Goal 1: Collect observations that span the TC lifecycle in a variety of environments;

- Goal 2: Develop and refine measurement technologies that provide improved real-time monitoring of TC intensity, structure, and environment;
- **Goal 3**: Improve our understanding of the physical processes important in intensity change for a TC at all stages of its lifecycle;

Mission Description:

This experiment is a *multi-option*, *single-aircraft* experiment designed to study the changes in TC surface wind structure near and after landfall. The experiment has several modules that could also be incorporated into operational surveillance or reconnaissance missions. This experiment is designed to be conducted by flying one or two single aircraft missions with a NOAA WP-3D aircraft when a hurricane moves within 215 nm (400 km) of the U.S. coastline. The first of these 2 flights will typically consist of the real-time module followed by SFMR and/or Coastal Wind Profile modules. A second flight could complete the post-landfall module. If the storm either moves parallel to the coastline or moves slowly inland and resources permit, the experiment may be repeated with a second flight. While the storm's location relative to the coastline will dictate which combination of these modules will be flown, the real-time module will generally precede all of the other modules.

The aircraft must have working lower fuselage and tail radars. The HRD workstation should be on board, so we can ingest, analyze, and transmit radar and GPS sonde data back to TPC/NHC. The SFMR should be operated, to provide estimates of wind speed at the surface. If the IWRAP or C-SCAT is on the aircraft then it should also be operated to provide another estimate of the surface winds. If the NASA SRA is working it also should collect wave and sweep heights to characterize the storm surge and breaking wavefield near the coast.

If some of the portable Doppler radars (SMART-R and/or DOW), portable profilers and portable wind towers are deployed between ~65 and 130 km inland in the onshore flow regime as depicted in Fig. LF_1, this will provide valuable data for the inland decay model. If possible, one of the DOWs should be positioned relative to the nearest WSR-88D such that the dual-Doppler lobes cover the largest area of onshore flow possible. In the schematic shown in Fig. LF_1, one of the DOWs is positioned northwest of the Melbourne WSR-88D so that one dual-Doppler lobe is over the coastal waters and the other covers the inland region. The profiler is positioned in the inland dual-Doppler lobe to provide independent observations of the boundary layer to anchor the dual-Doppler analysis.

All of the modules support real-time and post-storm surface wind analyses. The flight patterns will depend on the location and strength of the storm relative to surface observing platforms and coastal radars. The first two modules could be easily incorporated into a tasked operational mission. The other three modules are more suited to research missions, where the patterns are not constrained by fix or gale force wind radii requirements. When possible, TC Landfall and Inland Decay missions will be coordinated with the Aerosonde Tropical Cyclone Inflow Experiment. This coordination will involve the WP-3D and be executed on a case-by-case basis.

Real-time module :

The real-time module combines passes over marine surface platforms with one or more figure four patterns in the core of the hurricane (Fig. LF_1.) The aircraft flies at or below 5,000 ft (1.5 km) (ideally at 2,500 ft [750 m]), so that flight level winds can be adjusted to 30 ft (10 m) to combine with measurements from marine surface platforms. Flight-level data and GPS sondes dropped near the platforms will be used to validate the adjustment method. Note that if the storm is outside of WSR-88D Doppler range then the figure-4 pattern could be repeated before returning home.

The landfall flight pattern should take advantage of buoys or CMAN sites nearby, if those platforms are expected to experience winds > 25 m/s. The aircraft descends at the initial point and begins a low-level figure-4 pattern, possibly modifying the legs to fly over the buoys (Fig. LF_1). The radar will be in F/AST mode. If time permits the aircraft would make one more pass through the eye and then fly the dual-Doppler option. In this example, the pattern would be completed in about 2.5 h. GPS sondes would be dropped near the buoys or C-MAN sites, and additional sondes will be dropped at or just inside the flight level radius of maximum winds (RMW).

Note that the optimal volume scans for this pattern will be obtained when the storm is 32-80 nm (60-150 km) from the radar, because beyond 80 nm (150 km) the lowest WSR-88D scan will be above 5,000 ft (1.5 km) which is too high to resolve the low-level wind field. Within 32 nm (60 km) the volume scan will be incomplete, because the WSR-88D does not scan above 19.5%. It is essential that these passes be flown as straight as possible, because turns to fix the eye will degrade the Doppler radar coverage.

Coastal Survey module :

When the hurricane is making landfall, this module will provide information about the boundary layer in the onshore and offshore flow regimes. FigureLF_2 shows an example for a hurricane making landfall near Melbourne, Florida. On the first coastal pass the WP-3D would fly parallel 10-15 km offshore to obtain SFMR surface winds (1-2 in Fig. LF_2). The track should be adjusted so that the SFMR footprint is out of the surf zone. The second pass should as close to the coast as safety permits, to sample the boundary layer transitions at the coast in onshore and offshore flow (3-4 in Fig. LF_2). The first pass should be at 5,000 ft (1.5 km) or less, and the aircraft could climb to higher altitudes for the second pass. On both of these passes the aircraft should fly to 150 km or the radius of gale-force winds and drop GPS sondes at the RMW and at intervals of 12.5, 25, 50, 75 and 100 or 125 km on either side of the storm track, to sample both onshore and offshore flow regimes. Finally, to better sample the adjustment of the off shore flow from land to ocean a short leg would be flown from the coast spiraling towards the storm center. 34 dropsondes would be dropped quite near the coast, followed by 3-4 dropsondes spaced every 20-30 km along the trajectory. The Doppler radar will be in F/AST mode, to provide wind estimates on either side of the aircraft track. This module could be flown when the hurricane is making landfall or after the storm moves inland. The pattern could be flown in ~2 h.

SFMR Evaluation Module:

This module is similar to the Coastal Survey module, except that it concentrates on the region with hurricane force winds and is designed to collect data to evaluate the performance of the SFMR in varying ocean conditions near landfall where strong oceanic currents (like the Gulf Stream) and shallower bathymetry could cause changes to the breaking wave field that would cause changes in microwave emissions, besides those changes that correlate directly to wind speed. As shown in Fig. LF_3, the aircraft would fly a leg toward the coast, preferably at 1200' above MSL, to gather high resolution SRA data to define the wave field. A sequence of combined AXBT and GPS sonde drops will map out the thermodynamic and boundary layer wind speeds. This leg is followed by a run along the coast to the maximum offshore flow, where the plane turns and flies offshore, dropping a further sequence of AXBTs and sondes. The final leg of the pattern, in this example, is parallel to the Gulf Stream back to the onshore flow region. From here the module could be repeated or the aircraft could execute the next module.

Onshore Wind Profile Evaluation Module:

In this module, the aircraft will collect vertical profiles of wind speed in various near shore environments to test the hypothesis that near the coast surface wind speeds may be lower than the operational flight level wind reduction would suggest. Data collected will help evaluate various effects. For example, roughness lengths may change, especially in higher wind speeds. The boundary layer changes at the coast; sonde data will help indicate whether there are similar changes from open ocean to coastal waters.

To evaluate the adjustment of winds from normal reconnaissance altitude to the surface in near-shore conditions, the aircraft should fly this module at 700 hPa (10000', ~3000 m). The aircraft follows the flow to the coast (Fig. LF_4), deploying GPS sondes every 5-10 nmi. Then the aircraft turns and flies into the center of the storm, back off shore, and then upwind to a point to start a new onshore profile, where each sequence of sondes is closer to the radius of maximum winds. The last sequence could be along the inside edge of the eye wall. To maintain good SFMR, tail Doppler radar, SRA and IWRAP data collection, the onshore flow segments should be flown in short straight segments with quick turns rather than smooth curves.

Post Landfall Module:

This module is designed to collect kinematic and thermodynamic data ~1-2 h prior to and up to 6 h after a hurricane makes landfall. It is essential that ground based measurements are obtained in conjunction with those that are being made by aircraft, since the primary goal of this module is **b** determine the kinematic and thermodynamic changes that occur after a hurricane makes landfall, throughout the depth of the lower troposphere.

The WP-3D will fly a coastal survey pattern followed by a figure-4 pattern (Fig. LF_5) over land with leg lengths ~150 km at an altitude of ~15,000 ft (5 km). The WP-3D tail radar should be in F/AST mode. These data will aid in rainfall estimation and will help document the changes in vortex and rain band structure over land that are crucial to understanding the environment that supports tornado and mesovortex development.

Over land, available portable wind towers, mesonet stations, profilers and DOW radars should be deployed along the path of the landfalling hurricane to identify the changes in storm structure as the hurricane moves inland. The wind towers and mesonet stations will obtain high-resolution surface wind, temperature, pressure, relative humidity, and perhaps rainfall measurements. If available, a profiler could be placed at the center of each line of mesonet stations. The profilers and RASS sounder will provide wind and temperature measurements within the lowest 3 and 1 km, respectively. Rain gauges should be located at each profiler and DOW radar site to obtain high-resolution rainfall measurements, both for calibrating the radar rainfall algorithms and for documentation of storm rainfall.

The first set of towers and mesonet stations should be placed as close as possible to the coastline (<10 km) to enable accurate documentation of the surface wind field just after landfall. Other towers or mesonet stations should be placed ~65 and 135 km inland respectively; however, these distances will vary depending upon the intensity and speed of motion of the landfalling storm as well as safety considerations. Fig. LF_6 shows the estimated time after landfall that is required for the TC winds to decay to various wind threshold levels as determined using the HRD empirical inland wind decay model. The spacing between the mesonet stations located within each group should be ~30 nm (50 km) perpendicular to the track to maximize the likelihood that one of the mesonet stations will be located near the radius of maximum wind of the landfalling storm.

If the inland profilers are mobile, it will be possible to follow severe weather producing rainbands if safety and logistical considerations allow. The DOW Doppler radars should be placed roughly halfway between the two rear lines of mesonet and profiler stations. The DOW radars in combination with the profilers with RASS will aid in documenting the changes in kinematic and thermodynamic structure of the hurricane after landfall. An accurate analysis of such changes is crucial to learning more about the development of mesovortices and/or tornadoes spawned by landfalling hurricanes. They will also help document the changes in winds within the PBL of a landfalling hurricane. Finally, the radars will aid in the measurement of the rainfall associated with the landfalling hurricane.

TROPICAL CYCLONE LANDFALL WINDFIELDS EXPERIMENT

Figure LF_1 (Real-time module): True airspeed calibration required. The legs through the eye may be flown along any compass heading along a radial from the ground-based radar. The **IP** is approximately 100 nm (185 km) from the storm center. Downwind legs may be adjusted to pass over buoys. WP-3D should fly legs along the WSR-88D radials. Set airborne Doppler radar to F/AST scanning on all legs. Aircraft should avoid penetration of intense reflectivity regions (particularly those over land). Wind center penetrations are optional.

TROPICAL CYCLONE LANDFALL WINDFIELDS EXPERIMENT

Figure LF_2 (Coastal Survey pattern): First pass starts 150 km from center or radius of gale-force winds, whichever is closer. Pass from 1-2 should be 10-15 km offshore for optimum SFMR measurements. Drop sondes at RMW, and 12.5, 25, 50, 75 and 100 or 125 km from RMW on ether side of storm in legs 1-2 and 3-4. Dropsondes should be deployed quickly at start of leg 5-6, and then every 10-15 km hereafter. Set airborne Doppler to scan in F/AST scanning on all legs, with single PRF > 2400 and 20% tilt. Aircraft should avoid penetration of intense reflectivity regions (particularly those over land).

SFMR EVALUATION MODULE

Figure LF_3 (SFMR Evaluation Module): Gray area encloses hurricane inner core with winds > hurricane force. True airspeed calibration is required. The legs are at 1500-3000 ft (500 - 1000 m) altitude. Set airborne Doppler radar to F/AST mode at a single PRF 2400 and 20° tilt on all legs. Aircraft should avoid penetration of intense reflectivity regions (particularly those over land). Wind center penetrations are optional.

ONSHORE WIND PROFILE MODULE

Figure LF_4 (Coastal Wind speed Profile Evaluation Module): True airspeed calibration is required. The legs are at 700 hPa (10000 ft, 3000 m) altitude. Set airborne Doppler radar to F/AST mode at a single PRF 2400 and 20° tilt on all legs. Aircraft should avoid penetration of intense reflectivity regions (particularly those over land). Wind center penetrations are optional.

TROPICAL CYCLONE LANDFALL WINDFIELDS EXPERIMENT

Figure LF_5 (Post landfall module flight pattern): Coastal survey pattern (sold line) at an altitude of ~10,000-15,000 ft (3-4 km) dropping GPS sondes near buoys of opportunity and within 10-20 km of the shore in both the onshore and offshore flow. Inland figure-4 pattern (dashed line) centered on the storm with leg lengths of ~80 nm (150 km) at an altitude of ~15,000 ft (5 km). WP-3D should fly legs along the WSR-88D radials. Set airborne Doppler radar to F/AST scanning on all legs. Aircraft should avoid penetration of intense reflectivity regions (particularly those over land). Wind center penetrations are optional.

Figure LF_6 (Maximum sustained surface winds after landfall): Maximum sustained surface winds (MSSW) after landfall estimated using the Kaplan/DeMaria (1995) inland wind decay model for TCs with landfall intensities (V0) of 75, 90,105,120, and 145 kt.

HRD RESEARCH EXPERIMENTS (CONT'D) 5. Tropical Cyclone Eye Mixing Module

Program Significance: Eyewall mesovortices have been hypothesized to mix high entropy air from the eye into the eyewall, thus increasing the amount of energy available to the hurricane. Signatures of such mesovortices have been seen in cloud formations within the eyes of very strong TCs, and from above during aircraft penetrations. Observations within the eye below the inversion can allow for the study of the dynamic and thermodynamic structures of these mesovortices and improve our knowledge of small-scale features and intensity changes in very strong TCs.

Objectives: The main objective of the Eye Mixing Module is to:

- Collect diservations within the eye below the inversion to investigate the dynamic and thermodynamic structures of these mesovortices and improve our knowledge of small-scale features and intensity changes in very strong TCs.
- Links to IFEX: This experiment supports the following NOAA IFEX goals:
 - Goal 3: Improve our understanding of the physical processes important in intensity change for a TC at all stages of its lifecycle;

Mission Description: Although this WP-3D research module is not a standalone experiment **i** could be included as a module within any of the following HRD research missions: Saharan Air Layer Experiment, Aerosonde Experiment, or TC Landfall and Inland Decay Experiment. For this module, a Category 4 or 5 TC with a clearly-defined eye and eyewall and an eye diameter of at least 25 nm is needed (Fig. EYE-1). The WP-3D will penetrate the eyewall at the altitude proposed for the rest of the experiment. Once inside the eye, the WP-3D will descend from that altitude to a safe altitude below the inversion (about 2500 ft) while performing a figure-4 pattern. The leg lengths will be determined by the eye diameter, with the ends of the legs at least 2 nm from the edge of the eyewall. Upon completion of the descent, the WP-3D will circumnavigate the eye about 2 nm from the edge of the eyewall in the shape of a pentagon or hexagon. Time permitting; another figure-4 will be performed during ascent to the original flight level. Depending upon the size of the eye, this pattern should take between 0.5 and 1 h.

Figure EYE-1 (Mature Storm Eye Module): The WP-3D approaches from the north, penetrates the eyewall into the eye, and descends below the inversion to 2500 ft while performing a figure-4 (dotted line) in the eye. The WP-3D circumnavigates the eye in an octagon or pentagon (solid line), and then ascends while conducting another figure-4 (time permitting) rotated 45 degrees from the original (dashed line).

NHC AND EMC OPERATIONAL MISSIONS

1. Hurricane Synoptic-Flow Experiment

Program Significance: Accurate numerical TC forecasts require the representation of meteorological fields on a variety of scales, and the assimilation of the data into realistic models. Omega dropwindsonde (ODW) observations from WP-3D aircraft obtained between 1982 and 1996 during the Hurricane Synoptic Flow Experiment produced significant improvement in the guidance for official track forecasts. Since 1997, more than 130 operational "Synoptic Surveillance" missions have been flown with the NOAA G-IV jet in the environments of TCs threatening the United States coastline; some of these have been supplemented with dropwindsonde observations from one or two WP-3D or USAF C-130 aircraft. An improved dropwindsonde based on the Global Positioning System has been developed by the National Center for Atmospheric Research and has replaced the ODW. With further operational use of the GIV aircraft, and as other mobile observing platforms become available, optimal sampling and utilization techniques must be devised to provide the greatest possible improvement in initial condition specification.

Objectives: The goal of the NHC/HRD synoptic flow experiment is to improve landfall predictions of TCs by releasing dropwindsondes in the environment of the TC center. These data will be used by TPC/NHC and NCEP to prepare objective analyses and official forecasts through their assimilation into operational numerical prediction models. Because the atmosphere is known to be chaotic, very small perturbations to initial conditions in some locations can amplify with time. However, in other locations, perturbations may result in only small differences in subsequent forecasts. Therefore, targeting locations in which the initial conditions have errors that grow most rapidly may lead to the largest possible forecast improvements. Locating these regions that impact the particular forecast is necessary. When such regions are sampled at regularly spaced intervals the impact is most positive. The optimal targeting and sampling strategies is an ongoing area of research.

A number of methods to find targets have been investigated, mainly in the wintertime extratropics. Potential vorticity diagnosis can help to find the cause of forecast failure. Singular vectors of the linearized equations of motion can estimate the growth of small perturbations in the model. This method is relatively expensive, and full implementation in the Tropics where adiabatic processes dominate has proven difficult, and the linear assumption tends to break down at the 72 h forecast time necessary for the posting of hurricane watches and warnings. Related strategies involve the sensitivity vector, and quasi-inverse linear method. All these methods may depend on the accuracy of the initial conditions determined without the supplemental data.

A fully nonlinear technique uses the breeding method, the operational NCEP perturbation technique in which initially random perturbations are repeatedly evolved and rescaled over a relatively short cycling time. These vectors are related to local Lyapunov vectors and, therefore, define the fastest growing modes of the system. Changes to initial conditions due to dropwindsonde data obtained from operational synoptic surveillance missions during the 1997 and 1998 hurricane seasons grow (decay) in regions of large (small) perturbation in the operational NCEP Ensemble Forecasting System. Therefore, these bred-modes provide a good estimate of the locations in which supplemental observations are likely to have the most impact. However, though the breeding method can find locations of probable error growth in the model globally, it does not distinguish those locations, which impact the particular forecast from those which do not.

A more generalized method which can use any dynamical ensemble forecast system is the ensemble transform. This method transforms an ensemble of forecasts appropriate for one observational network into one appropriate for other observational networks. Ensemble forecasts corresponding to adaptations of the standard observational network are computed, and the expected prediction error variance at the observation time is computed for each potential network. The prediction error variance is calculated using the distances between the forecast tracks from all ensemble members and the ensemble mean. These last two methods are currently undergoing testing with Observing System Experiments to discern an optimal targeting technique.

Links to IFEX: This experiment supports the following NOAA IFEX goals:

• Goal 1: Collect observations that span the TC lifecycle in a variety of environments;

Mission Description: To assess targeting strategies a relatively uniform distribution of dropwindsondes will be released over a minimum period by various aircraft operating *simultaneously*. Specific flight tracks will vary depending on such factors as the location of the storm, relative both to potential bases of operation and to particular environmental meteorological features of interest.

In 2006, it is unlikely NHC/HRD will perform synoptic flow missions with the WP-3D aircraft unless NOAA is tasked by NHC to do so. The flight patterns described here can be adopted for implementation by the USAF C-130 aircraft on tasked surveillance missions which could be augmented by one of the NOAA WP-3Ds only on a non-interference basis with other research or operationally-tasked missions. A current goal is to obtain oversampled datasets with which to study the effectiveness of the various targeting techniques described above. This goal usually requires the deployment of more than one aircraft during a particular mission.

A sample mission is shown in Fig. SYN-1. The two WP-3D or C-130 aircraft and the G-IV will begin their missions at the same time. Subject to safety and operational constraints, each WP-3D or C-130 will climb to the 500 hPa level (about FL 180) or above, then proceed, step-climbing, along the routes assigned during preflight. *It is particularly important that both aircraft climb to and maintain the highest possible altitude as early into the mission as aircraft performance and circumstances allow, and attain additional altitude whenever possible during the mission.*

Beyond 60 nm (111 km) from the storm center, drops are made at pre-assigned locations, generally every 120 nm (222 km). These drop locations are provided with the particular mission flight tracks 24 h before departure and may potentially be modified in-flight. Since dropwindsonde data within 60 nm (111 km) of the storm center are automatically rejected by the operational data assimilation schemes, such observations are not made unless requested as part of other tasking requirements.

If a NOAA WP-3D aircraft is involved in the missions, at least one will fly through the TC center and execute a figure-4 pattern. This aircraft's Doppler radar should be set to record forward and aft (F/AST) continuously. If both aircraft penetrate the storm, the figure-4 pattern will generally be executed by the *second* aircraft through the storm, and the first aircraft through will collect vertical incidence Doppler data. Coordination with potential USAF reconnaissance is necessary to ensure adequate aircraft separation. The instorm portion of the missions is shown schematically in Fig. SYN-2, although the actual orientation of these tracks may be rotated.

Of paramount importance is the transmission of the dropwindsonde data to NCEP and TPC/NHC for timely incorporation into operational analyses, models, forecasts, and warnings. Operational constraints dictate an 0600 or 1800 UTC departure time, so that most of the dropwindsonde data will be included in the 1200 or 0000 UTC analysis cycle. Further, limiting the total block time to 9 h allows adequate preparation time for aircraft and crews to repeat the mission at 24-h intervals. These considerations will ensure a fixed, daily real-time data collection sequence that is synchronized with NCEP and TPC/NHC's analysis and forecasting schedules.

HURRICANE SYNOPTIC FLOW EXPERIMENT

• Note 1:	During the ferry to the IP , the WP-3D or C-130 aircraft will climb to the 500 hPa level (about FL 180). The
	400 hPa level (about FL 250) should be reached as soon as possible and maintained throughout the remainder of the pattern, unless icing or electrical conditions require a lower altitude.
• Note 2.:	During the ferry to the \mathbf{IP} , The G-IV should climb to the 41,000 ft (200 hPa) as soon as possible and climb as feasible to maintain the highest altitude for the duration of the pattern.

HURRICANE SYNOPTIC FLOW EXPERIMENT

Figure SYN-2: In-Storm Patterns

- Note 1: Within the 40 nm (75 km) range ring, all legs are on cardinal tracks.
- Note 2: The second aircraft through the storm will execute the Doppler "figure-4" pattern. The Doppler radar should be set to continuously scan perpendicular to the track during radial penetrations and to F/AST on the downwind leg.
- Note 3: Numbered symbols (u, n) reflect scheduled drops for each aircraft.
- Note 4: Drop #5 in the "figure -4" pattern occurs on the second pass through the eye.
- Note 5: A/C 1 should collect vertical incidence Doppler data during storm penetration.
- Note 6: If missions are not repeated, then block times may exceed 9 h. In addition to the GPS dropsonde data, 3-4 RECCO's h^{-1} should be transmitted during each mission.

Special Notes: Missions similar to the Synoptic Flow missions may be flown in non-hurricane conditions to collect GPS dropsonde data sets for satellite sounding evaluations. These missions differ from the normal experiment as follows:

- Block times are 10 h, and the experiment is not repeated on the following day.
- In-storm portion of the pattern (Fig. SYN-2) is omitted and no Doppler data are collected.
- The G-IV does not participate in the mission.

Saharan Air Layer - Synoptic Surveillance Follow-on

Mission Description: This follow-on module will be executed by HRD, using HRD resources and will be carried out within the constraints of the pre-determined operational flight track. Additional intermediate GPS dropwindsondes (HRD supplied) may be requested along the flight track to target specific areas of interest. GPS dropwindsondes will be launched from the G-IV (flying at ~200 hPa/~41,000 ft) or the WP-3D (flying at ~500 hPa/~20,000 ft) along the operational Synoptic Surveillance flight pattern. These additional drop locations will be selected using real-time GOES Saharan Air Layer (SAL) tracking imagery from UW-CIMSS and mosaics of SSM/I total precipitable water from the Naval Research Laboratory. Specific effort will be made to gather atmospheric information within the SAL as well as regions of high moisture gradients across its boundaries. The main goals of this experiment are to:

- Better understand how the SAL's dry air, mid-level easterly jet, and suspended mineral dust affect Atlantic TC intensity change.
- Include the moisture information from the GPS dropwindsondes in operational parallel runs of the NOAA Global Forecast System (GFS) model. The impact of this data on the GFS initial/forecast humidity fields and its forecasts of TC track and intensity will be assessed.

Several SAL/TC interaction scenarios are candidates for this follow on mission:

1) Single tropical cyclone (TC) located along the southern edge of the SAL. Depending on the proximity of these two features, the SAL's dry air may be wrapping into the TC's low-level circulation (western quadrants). GPS dropwindsonde sequences will be focused along this dry air inflow region (west of the TC), across regions of high moisture gradients at the SAL's leading edge (northwest of the TC), and across the southern boundary of the SAL (north and northeast of the TC). The SAL's mid-level jet will also be sampled in the region of the latter transect.

Figure SYN-3: Sample flight track for a TC positioned along the SAL's southern boundary.

2) Single TC is embedded within the SAL and intensifies upon emerging. These systems are often candidates for rapid intensification. GPS dropwindsonde transects perpendicular to the northern boundary of the SAL and near to possible points of the TC's emergence from the SAL are desirable. Additional transects will be focused along the SAL's southern boundary (south of the TC). The SAL's mid-level jet will also be sampled, particularly along those transects on the eastern sides of the TC.

Figure SYN-4: Sample flight track for a TC emerging from the SAL.

3) Single TC embedded within the SAL throughout most or all of its lifecycle. These systems struggle to intensify and are often characterized by their low-level circulation racing out ahead (west) of their mid-level convection. Depending on the TC's proximity to the SAL, the SAL's dry air may be wrapping into its low-level circulation (western semicircle). GPS dropwindsonde sequences will be focused along this dry air inflow region (west of the TC), across regions of high moisture gradients at the SAL's northern boundary (north of the TC), and across regions of high moisture gradients at the SAL's southern boundary (east of the TC). The SAL's mid-level jet will also be sampled, particularly in the region of the latter transect.

Figure SYN-5: Sample flight track for a TC embedded in the SAL for most or all of its lifecycle.

- Note 1: During the ferry to the **IP**, the WP-3D aircraft will climb to the ~500 hPa level (~20,000 ft). The 400 hPa level (~25,000 ft) should be reached as soon as possible and maintained throughout the remainder of the pattern, unless icing or electrical conditions require a lower altitude.
- Note 2: During the ferry to the **IP**, The GIV should climb to the ~200 hPa (~41,000 ft) as soon as possible and climb as feasible to maintain the highest altitude for the duration of the pattern.
- Note 3: In order to capture the SAL's horizontal/vertical structure, particular attention should be paid to regions of high moisture gradients across its boundaries.

NHC AND EMC OPERATIONAL MISSIONS (CONT'D)

2. Mature Storms Experiment

Program significance: By "mature storm" we mean a tropical cyclone that has developed a closed circulation and a warm core. Thus this could include anything from a tropical depression to a major hurricane. The definition is meant to separate this category from tropical waves and disturbances that have yet to develop a well-defined warm-core circulation.

There are four main goals of this experiment: 1) to improve our understanding of the factors which modify the intensity and structure of tropical cyclones, 2) to provide a comprehensive data set for the initiation (including data assimilation) and validation of numerical hurricane simulations (in particular the Hurricane Weather and Research Forecasting model (HWRF), 3) to improve and evaluate technologies for observing tropical cyclones, and 4) to develop rapid "real-time" communication of these observations to the National Centers for Environmental Prediction (NCEP) of the National Weather Service (NWS).

Two experiments comprise the overall Mature Storms Experiment. The first is the Frequent-Monitoring experiment, designed to obtain regular 12- or 24-h resolution airborne Doppler-radar observations of hurricanes, with optional GPS dropsondes. The second is the NESDIS Ocean Winds and Rain Experiment, designed to improve our understanding of microwave surface scatterometery in high-wind conditions over the ocean by collecting surface scatterometery data and Doppler data in the boundary layer of hurricanes.

Frequent Monitoring: This experiment is designed specifically to address the IFEX goal of obtaining hurricane data sets that can address both the assimilation and validation needs of hurricane modelers, and in particular, the needs of those at NCEP/EMC (National Centers for Environmental Prediction/Environmental Modeling Center) developing modeling and assimilation techniques to work with the Hurricane Weather and Research Forecasting model (HWRF). EMC experience with assimilation and initialization have led to the following conclusions about data requirements: 1) When possible, data in mature storms should be collected to the outermost closed isobar, 2) wavenumbers 0 and 1 should be sufficient to obtain a good initialization of strong hurricanes, 3) azimuthal resolution needs increase for weaker storms which are less-completely organized. Resolutions finer than wavenumber 2 may be impractical from flight-level *in situ* data, but might be possible from airborne Doppler observations if azimuthal Doppler coverage within the radius of the outermost isobar is nearly complete. Fortunately, the radius of the outermost closed isobar tends to decrease with decreased age or intensity of the tropical cyclone.

There is a goal within IFEX to better define the structure and evolution of a tropical cyclone throughout its lifetime. Also, to verify hurricane simulations, measurements collected over several observation cycles are needed to better assess the models. The Frequent Monitoring experiment gets its name from its 12-24 hour monitoring schedule. This schedule will allow the results of several model initializations to be compared with actual observations of the same system.

It appears from running of operational models that the most vertical resolution is needed in the boundary and outflow layers to assimilate numerical simulations. One might also assume that this is where the most vertical resolution is needed in observations to verify the initialization and forecasts of the model. For this reason it is desirable that if sufficient dropsondes are available, they should be dropped in the radial penetrations in the Frequent-Monitoring experiment to verify that the boundary-layer and surface winds produced in HWRF resemble those in observations. If sufficient dropsondes are not available, a combination of SFMR, IWRAP, and airborne Doppler data will be used for verification.

NESDIS Ocean Winds and Rain Experiment: This experiment will be executed by NOAA/NESDIS and aims to improve understanding of microwave scatterometer retrievals of the ocean surface wind. The NOAA/ NESDIS/ Office of Research and Applications in conjunction with the University of Massachusetts' (UMASS) Microwave Remote Sensing Laboratory and the OMAO/Aircraft Operations Center have been conducting

flights as part of the Ocean Winds and Rain Experiment for the past several years. The Ocean Winds and Rain experiment is part of an ongoing field program whose goal is to further our understanding of microwave scatterometer and radiometer retrievals of the ocean surface wind vector in high wind speed conditions and in the presence of rain for all wind speeds. This knowledge will be used to help improve and interpret operational wind retrievals from current and future satellite-based scatterometers. The hurricane environment provides the adverse atmospheric and ocean surface conditions required. The Integrated Wind and Rain Airborne Profiler (IWRAP) and the Stepped Frequency Microwave Radiometer (USFMR), both designed and built by UMASS, are the critical sensors for these experiments. IWRAP consists of two scatterometers operating at Ku-band and C-band, which measure the reflectivity profile in precipitation in addition to the surface backscatter. The capabilities of IWRAP are essential in unraveling the effects of precipitation on scatterometer wind retrievals. A raw data mode acquisition system was tested for IWRAP during the Winter Storms Experiment this year, and it will be fully implemented during this hurricane season. Collecting the raw data allows spectral processing to be done which will allow the rain and surface contributions in the IWRAP data to be decoupled. This is critical in understanding the impacts of rain on the measurements, and thus, the ocean surface wind vector retrievals.

A secondary objective of the NESDIS experiments is to explore how much of this remotely-sensed data collected on the WP-3D can be processed and sent off the plane in near real-time. NESDIS has been working with Remote Sensing Solutions, Inc. in developing an effective data processing, distribution and display system to accomplish this within the constraints of a satellite phone data connection. The NOAA Aircraft Operations Center and Hurricane Research Division have been integral partners in accomplishing this task. Remotely-sensed surface data is not only extremely useful for experiment flight planning but also to the hurricane analysts at the Tropical Prediction Center as has been demonstrated with the experimental use of the SFMR on the NOAA P-3s over the past several years, which became fully operational last year. For this season N42RF will be equipped with a dedicated Globalstar satellite phone and a computer system to process and distribute to the ground the flight level serial data stream and the lower fuselage radar data in near real-time. Additionally on N42, a second Globalstar satellite data connection will be used to test dissemination of products derived from the X-band tail radar, a near real-time processing system for IWRAP and USFMR, and the serial data stream from the AVAPS station. The transmission of full resolution tail radar data packets may also be tested if a higher bandwidth satellite phone system becomes available on N42.

Links to IFEX: This experiment supports the following NOAA IFEX goals:

- **Goal 2**: Develop and refine measurement technologies that provide improved real-time monitoring of TC intensity, structure, and environment;
- **Goal 3**: Improve our understanding of the physical processes important in intensity change for a TC at all stages of its lifecycle;

Mission Descriptions:

The NESDIS Ocean Winds and Rain Experiment will be executed by NOAA/NESDIS. Specific details regarding these NESDIS missions are not included here.

Frequent Monitoring: Two different options are possible with this experiment. These are 1) the single-aircraft "rotating figure 4" (Fig. FM-1) and the hexagonal pattern (Fig. FM-2). These two options permit the maximum flexibility at the time of the aircraft missions.

Single-aircraft option: In most cases temporal resolution is also important, for both initialization and verification. This has been verified in communication with EMC. At the time of this writing, the preferred mode of operation will be 24-hour turnaround with the one available WP-3D aircraft, launch times to be determined by HWRF assimilation needs, but within AOC operational and safety constraints. A complete "rotating figure 4" pattern, as shown in Fig. FM-1, provides the most complete coverage for the proposed single-aircraft missions, but takes longer to complete than the "hexagonal" pattern shown in Fig. FM-2. The nominal flight-level for these missions is 10,000 ft, but can be lower without compromising the mission objectives.

Mature Storms Experiment Flight Planning Approach:

During the 2006 Hurricane Field Program (05 July to 30 September), the primary objective will be to meet IFEX goals 1 through 3, which involve collecting airborne Doppler radar and flight-level data over a period of several days in storms of varying intensity and structural type, but with emphasis during this period on intensity changes throughout the tropical-cyclone lifecycle. A subset of these goals will be accomplished in the context of the Mature Storms Experiment, with flight patterns that involve the one available NOAA WP-3D (N42RF).

EMC and NHC will conduct a set of frequent monitoring missions over several days encompassing as much of a particular storm's life cycle as possible. This would entail using the one available NOAA WP-3D on back-to-back flights on a 24-hour schedule when the system is at depression, tropical storm, or hurricane strength.

At times, one set of flights may take precedence over others depending on factors such as storm strength and location, operational tasking, and aircraft availability. One scenario could likely occur that illustrate how the mission planning is determined:

1) An incipient TC, at depression or weak tropical storm stage is within range of an operational base and is expected to develop and remain within range of operational bases for a period of several days. Here, the highest priority would be to start the set of frequent-monitoring flights, with single NOAA WP-3D missions while the TC is below hurricane strength, with continued single NOAA WP-3D missions at 24-hour intervals until the system is out of range or makes landfall. During the tropical depression or storm portion of the frequent monitoring, higher azimuthal resolution of the wind field is preferred over radial extent of observations, while in the hurricane portion, the flight plan would be designed to get wavenumber 0 and 1 coverage of the hurricane out to the largest radius possible, rather then the highest time resolution of the eyewall winds.

Mature Storms Experiment

Figure FM-1: Single-aircraft "rotating figure 4" pattern (100 nm maximum radius)

-		
ľ	Note 1.	Doppler radars should be operated in single-PRF mode, at a PRF of 2400-3200. The default will be 2400 PRF.
		Radar scientist should verify this mode of operation with AOC engineers. If there is no assigned radar scientist,
		LPS should verify. <i>This is crucial for the testing and implementation of real-time quality control.</i>
1	Note 2.	Unless specifically requested by the LPS, both tail Doppler radars should be operated in fore/aft continuous
		scanning with a fore/aft angle of 20° relative to fuselage.
ľ	Note 3.	IP can be at any desired heading relative to storm center
1	Note 4.	To maximize sonde coverage aircraft should operate at highest altitudes that still minimize icing
ľ	Note 5.	Shaded areas show airborne-Doppler radar coverage with a maximum flight radius of 100 nm
ľ	Note 6.	Maximum radius may be decreased or increased within operational constraints
1	Note 7.	Dropsondes shown are not a required part of this flight plan and are optional.
ľ	Note 8.	Flight pattern should be centered around either the 18, 00, 06, or 12 GMT operational model analysis times.
1	Note 9.	Maximum radius may be changed to meet operational needs while conforming to flight-length constraints.

Mature Storms Experiment

Figure FM-2. Single-aircraft "Hexagonal flight pattern" (100 nm maximum radius)

Note 1.	Doppler radars should be operated in single-PRF mode, at a PRF of 2400-3200. The default will be 2400 PRF.
	Radar scientist should verify this mode of operation with AOC engineers. If there is no assigned radar scientist,
	LPS should verify. This is crucial for the testing and implementation of real-time quality control.
Note 2.	Unless specifically requested by the LPS, both tail Doppler radars should be operated in fore/aft continuous
	scanning with a fore/aft angle of 20° relative to fuselage.
Note 3.	IP can be at any desired heading relative to storm center
Note 4.	To maximize sonde coverage aircraft should operate at highest altitudes that still minimize icing
Note 5.	Shaded areas show airborne-Doppler radar coverage with a maximum flight radius of 100 nm
Note 6.	Maximum radius may be decreased or increased within operational constraints
Note 7.	Dropsondes shown are not a required part of this flight plan and are optional.
Note 8.	Flight pattern should be centered around either the 18, 00, 06, or 12 GMT operational model analysis times.
Note 9.	Maximum radius may be changed to meet operational needs while conforming to flight-length constraints.

Supplemental: Operational Base Maps

Map 1: Primary Atlantic operating bases and approximate operating ranges for the NOAA G-IV.

Supplemental: Operational Base Maps (cont'd)

Map 2: Primary Atlantic operating bases and approximate operating ranges for the NOAA WP-3D.

Hurricane Field Program Plan Part II Appendices

Table of Contents

APPENDIX A	i
Decision and Notification Process	i
APPENDIX B: CALIBRATION; SCIENTIFIC CREW LISTS; DATA BUOYS	vi
B.1 En-route Calibration of Aircraft Systems	vi
B.2 Aircraft Scientific Crew Lists	vii
B.3 Buoy/Platform Over Flight Locations	viii
Table B-3.1: Moored Buoys	viii
Table B-3.2 C-MAN Sites	viii
Table B-3.3 NOS National Water Level Observation Network (NWLON)	viii
Table B-3.4 Automated Surface Observing System (ASOS) Sites	vi
APPENDIX C: DOD/NWS RAWIN/RAOB AND NWS COASTAL LAND-BASED RAD	DARSxxv
APPENDIX D: PRINCIPAL DUTIES OF THE NOAA SCIENTIFIC PERSONNEL	xxvi
APPENDIX E: NOAA RESEARCH OPERATIONAL PROCEDURES AND CHECK L	ISTSxxx
E.1 "Conditions-of-Flight" Commands	xxxi
E.2 Lead Project Scientist	xxxii
E.3 Cloud Physics Scientist	xxxix
E.4 Boundary Layer Scientist	xli
E.5 Radar Scientist	xliv
E.6 Dropsonde Scientist	xivii
APPENDIX F: SYSTEMS OF MEASURE AND UNIT CONVERSION FACTORS	1
APPENDIX G: AIRCRAFT SCIENTIFIC INSTRUMENTATION	li
APPENDIX H: NOAA EXPENDABLES AND RECORDING MEDIA	liii
ACRONYMS AND ABBREVIATIONS	liv

Hurricane Field Program Plan

Part II

Appendix A

DECISION AND NOTIFICATION PROCESS

The decision and notification process is illustrated in Figs. A-1, A-2, and A-3. This process occurs in four steps:

- 1) A research mission is determined to be probable within 72 h [field program director]. Consultation with the director of HRD, and the AOC Project Manager determines: flight platform availability, crew and equipment status, and the type of mission(s) likely to be requested.
- 2) The Field Program Advisory Panel [F Marks (Director, HRD), J. Dunion (Director, Hurricane Field Program), R. Rogers, M. Black, P. Black, J. Cione, P. Dodge, J. Gamache, J. Kaplan, S. Murillo and J. McFadden (or AOC designee) meets to discuss possible missions and operational modes. Probable mission determination and approval to proceed is given by the HRD director (or designee).
- 3) Primary personnel are notified by the Hurricane Field Program Director [J. Dunion].
- 4) Secondary personnel are notified by their primary affiliate (Table A-2).

General information, including updates of program status, are provided continuously by tape. Call (305) 221-3679 to listen to the recorded message. During normal business hours, callers should use (305) 361-4400 for other official inquiries and contacts. During operational periods, an MGOC team member is available by phone at (305) 229-4407 or (305) 221-4381. The MGOC team leader and the HRD field program director will be available by cell phone and/or telepager (appropriate contact information will be provided to program participants before the start of the field program).

**Note: Time of briefings, conference calls, decisions, and deployments are dictated by timing limitations imposed by the AOC crew.

Fig. A-1: Decision and notification process for Day "-2".

**Note: Time of briefings, conference calls, decisions, and deployments are dictated by timing limitations imposed by the AOC crew.

Fig. A-2: Decision and notification process for Day "-1"

**Note: Time of briefings, conference calls, decisions, and deployments are dictated by timing limitations imposed by the AOC crew.

Fig. A-3: Decision and notification process for Day "0"

Appendix B: Calibration; Scientific Crew Lists; Data Buoys

B.1 En-Route Calibration of Aircraft Systems

Instrument calibrations are checked by flying aircraft intercomparison patterns whenever possible during the hurricane field program or when the need for calibration checks is suggested by a review of the data. In addition, an over flight of a surface pressure reference is advisable en route or while on station when practicable. Finally, all flights enroute to and from the storm are required to execute a true airspeed (TAS) calibration pattern. This pattern is illustrated in Fig. B-1.

B.2Aircraft Scientific Crew Lists

Position	N49 (G-IV SP)	N42RF
Lead Project Scientist	J. Dunion	R. Rogers; M. Black
Cloud Physics Scientist	n/a	(radar scientist)
Radar Scientist	n/a	J. Gamache; S. Aberson
Dropsonde Scientist	S. Aberson;	S. Murillo
Workstation Scientist	n/a	(radar scientist)
IWRAP Scientist	n/a	P. Chang

Table B-2.1 Saharan Air Layer Experiment (multi-option, single or dual-aircraft mission)

 Table B-2.2 Aerosonde Experiment (single-option, single aircraft mission)

Position	N49 (G-IV SP)	N42RF
Lead Project Scientist	n/a	J. Cione
Cloud Physics Scientist	n/a	(radar scientist)
Radar Scientist	n/a	J. Gamache; S. Aberson
Dropsonde Scientist	n/a	M. Black
Workstation Scientist	n/a	(radar scientist)
IWRAP Scientist	n/a	P. Chang

 Table B-2.3 Tropical Cyclogenesis Experiment: (multi-option, single or dual-aircraft mission)

Position	N49 (G-IV SP)	N42RF
Lead Project Scientist	J. Dunion	R. Rogers
Cloud Physics Scientist	n/a	(radar scientist)
Radar Scientist	n/a	J. Gamache; S. Aberson
Dropsonde Scientist	P. Leighton	P. Leighton
Workstation Scientist	n/a	(radar scientist)
IWRAP Scientist	n/a	P. Chang

 Table B-2.4 Tropical Cyclone Landfall and Inland Decay Experiment (dual-option, singleaircraft mission)

Position	N49 (G-IV SP)	N42RF
Lead Project Scientist	n/a	P. Dodge; J. Kaplan
Cloud Physics Scientist	n/a	(radar scientist)
Radar Scientist	n/a	J. Gamache; S. Aberson
Dropsonde Scientist	n/a	P. Leighton
Workstation Scientist	n/a	(radar scientist)
IWRAP Scientist	n/a	P. Chang

PCL11 30.40 -87.21 10 (m) NOS-NVLON 8729840 - PENSACOLA, PL 42003 28.64 -86.04 5 NDBC EGUL 7 200 MN SOUTH OF PANAMA CTY, FL 3-meter discus buoy, DACT psyload 42013 28.64 -85.08 6 NOS-NVLON 872910 - PANAMA CTY, FL 10-meter discus buoy, ARES payload 42015 28.44 8.51 NDBWLON 872910 - PANAMA CTY, FL 3-meter discus buoy, ARES payload 5076F1 29.41 8.486 0 NOS-NVLON 872910 - PANAMA CTY, FL 3-meter discus buoy, ARES payload 5076F1 29.41 8.486 0 NON-NUON 771NDALL AFB TOWER C N-R 3-meter discus buoy, ARES payload 5197F1 30.06 -84.23 10 NDBC CMP24 - WEST FLORIDA CENTRAL BUOY 42021 24.66 -44.22 200 NPS NEP FLORIDA CONTR BUOY 10-42.42.42.42.42.42.42.42.42.42.42.42.42.4	Station	Lat	Lon	Height	Provider	Station Location	Payload Comments
42039 28.80 48.64 5 NDBC PENSACULA. 11SM BAST SOUTHEAST OF PEASACULA. FL 3-meter discus buoy, DACT payload PCBF1 30.21 45.88 6.1 NDGX WILON ST25210. PAAAMA CITY PE ACULA. FL 10-meter discus buoy, ARES payload PCBF1 30.21 45.88 6.1 NDGX WILON ST25210. PAAAMA CITY PE ACULA. FL 3-meter discus buoy, ARES payload 4006 45.42 5.1 NDBC W. TAMPA 106 NM WEST NORTHWEST OF TAMPA, FL 3-meter discus buoy, ARES payload 42024 27.66 44.22 3.2 COMPS W.FL HONT, FL 3-meter discus buoy, ARES payload 42024 27.66 44.22 3.2 COMPS CMPL + VEST FLORIDA CENTRAL BUOY 4-40.4 42021 28.30 48.30 NDBC CMPL AREY, FL 4-40.4 <td>PCLF1</td> <td>30.40</td> <td>-87.21</td> <td>10 (m)</td> <td>NOS-NWLON</td> <td>8729840 - PENSACOLA, FL</td> <td></td>	PCLF1	30.40	-87.21	10 (m)	NOS-NWLON	8729840 - PENSACOLA, FL	
42003 25.94 -45.92 10 NDBC E GULF 2001 MASOUTH OF PAAMAA CTTY, FL 10-meter discus buoy, ARES payload APCF 20.73 -45.49 10 NOS-NWLON 8728090 - APALACH(CULA, FL APCF 20.73 -45.49 10 NOS-NWLON 8728090 - APALACH(CULA, FL APCF 20.73 -45.49 51.1 NDBC WTAMPA 100 NW WEST NORTH WEST OF TAMPA, FL 3-meter discus buoy, ARES payload 42024 25.51 -45.51 NDBC WTAMPA 100 NW WEST NORTH WEST OF TAMPA, FL 3-meter discus buoy, ARES payload 42021 25.61 -45.22 COMPS STATT PART PART PART PART PART PART PART	42039	28.80	-86.04	5	NDBC	PENSACOLA - 115NM EAST SOUTHEAST OF PENSACOLA, FL	3-meter discus buoy, DACT payload
PCBF1 30.21 45.88 6.1 NOS-NWLON 372210 - PANAMA CITY BEACH, R. SCOF1 29.73 44.98 0.10 NOS-NWLON 372200 - PALACHICICIA, R. SCOF1 29.41 44.86 3.1 NDBC TYNDALL AFB TOWER C (N), R. 3-meter discus buoy, ARES payload SIPP1 30.06 44.22 21.00 COMPS NELL POINT, F. L 3-meter discus buoy, ARES payload 42021 27.46 43.42 23.00 OMPS CMP14 WEST NORTHWEST OF TAMPA, R. 3-meter discus buoy, ARES payload 42022 27.56 43.73 3.2 COMPS CMP14 WEST NORTHWEST OF TAMPA, R. 3-meter discus buoy, ARES payload 42013 23.66 43.07 3.2 COMPS CMP14 WEST OF TAMPA, R. 3-meter discus buoy, ARES payload 42013 27.16 82.95 2.8 COMPS CMP14 WEST OF TAMPA, R. 42013 27.16 82.95 2.8 COMPS NA2 - NAYY.2 42014 2.5.7 1.0 COMPS AREA NAT PARK, FL 1.91 2.5.7	42003	25.94	-85.92	10	NDBC	E GULF 260 NM SOUTH OF PANAMA CITY, FL	10-meter discus buoy, ARES payload
APCF1 29.73 -84.98 10 NOS. NVLON 8728690 - APALACHICOLA, FL SCOFI 29.41 -84.86 S1. NDBC W.TAMPA 106 NM WEST NORTHWEST OF TAMPA, FL 3-meter discus buoy, ARES payload 42036 0.42.29 10 COMPS W.FL MONT, FL 3-meter discus buoy, ARES payload 42024 77.46 -84.22 3.2 COMPS W.FL MERHAB 3-meter discus buoy, ARES payload 42024 77.46 -84.23 3.2 COMPS CMFL PARKAR 5- 42021 28.30 -83.37 3.2 COMPS CMFL PARKO CONTY BUOY, FL - 42023 2.505 8.37 3.2 COMPS CMFL PARKOP, FLORIDA SOUTH BUOY - 42013 2.610 8.307 3.2 COMPS NR1- PARKOP CONTY FLORIDA SOUTH BUOY - 42014 2.810 10 COMPS NR2- NAY-2 - - 42013 2.810 10 COMPS PRED HOWARD PARK, FL - - 42014 2.527 10	PCBF1	30.21	-85.88	6.1	NOS-NWLON	8729210 - PANAMA CITY BEACH, FL	
SGOF1 29.41 -8.48.66 53.1 NDBC TYNDALL AFB TOWER C (N), FL SHPF1 30.66 -8.42.9 10 COMPS SHELL POINT, FL Ameter discus burg, ARES payload SHPF1 30.66 -8.42.9 10 COMPS SHELL POINT, FL Ameter discus burg, ARES payload 42022 27.60 -8.37.4 3.2 COMPS CMP3-4 SUBT	APCF1	29.73	-84.98	10	NOS-NWLON	8728690 - APALACHICOLA, FL	
42036 28.51 -8.4.81 5 NDBC W. TAMPA 106 NM WEST NORTHWEST OF TAMPA, PL. 3-meter discus buoy, ARES payload 42024 27.6 -8.4.22 3.2 COMPS W. FL. MERHAB 3-meter discus buoy, ARES payload 42024 27.6 -8.37.4 3.2 COMPS W. FL. MERHAB 3-meter discus buoy, ARES payload 42021 28.0 -83.30 3.2 COMPS CM14- PASCO COUNTY BUOY, FL - 42021 28.0 -83.00 3.2 COMPS CM3- WEST FLORIDA SOUTH BUOY - 42023 27.6 -83.07 3.2 COMPS NA2-NAV-2 - 42013 27.16 -82.83 0.0 COMPS RED HOWAD PARK, FL - 42014 27.6 -82.83 0.0 COMPS PULASKI SHOAL LIGHT, RL - 42014 -82.7 1.0 COMPS APRON SPRINCOS FL - - 42014 -82.7 1.0 COMPS APRON SPRINCOS FL - - FIPET 24.6	SGOF1	29.41	-84.86	35.1	NDBC	TYNDALL AFB TOWER C (N4), FL	
SHPF1 30.6 -8.42.9 10 COMPS SHELL POINT, FL 42024 27.6 -8.42.2 COMPS W.F.H. MERHAB Hord A 42022 27.6 -8.37.4 3.2 COMPS W.F.H. MERHAB Hord A 42022 27.6 -8.37.4 3.2 COMPS C.M.P.F. MEST FLORIDA CENTRAL BUOY 42021 28.3 -8.33.0 2.8 COMPS C.M.P.F. DRUDA SOUTH BUOY 42021 28.3 -8.33.0 10 NDBC CEDAR KEY, FL 42013 27.16 -82.95 2.8 COMPS NAENT HOUND SOUTH BUOY CWBF1 7.88 -82.83 6.4 NOS.NULON 87.6724-CLEARWATER BEACH, FL PLF1 2.81 -82.77 10 NDBC PULASKISHOALIGHT, FL	42036	28.51	-84.51	5	NDBC	W. TAMPA 106 NM WEST NORTHWEST OF TAMPA, FL	3-meter discus buoy, ARES payload
42024 7.4 -8.4.22 3.2 COMPS W. FL. MERHAB 42024 7.50 -8.3.7 3.2 COMPS CMP2-4. VEST FLORIDA CESTRAL BUOY KTNFI 29.82 -8.3.9 10 NDBC KEATON BCH, FL 42021 28.0 -8.3.07 3.2 COMPS CM1-PASCO COUNTY BUOY, FL 42023 26.05 -8.3.07 3.2 COMPS CM1-PASCO COUNTY BUOY, FL 4203 26.05 -8.3.07 3.2 COMPS CM1-PASCO COUNTY BUOY, FL 4203 27.16 -82.95 2.8 COMPS NA2 - NAVY-2 4201 28.0 10 COMPS FRED HOWARD PARK, FL 470F1 28.15 -82.7 10 NDBC PLASKI SHOAL LIGHT, FL FIFF1 28.46 -82.77 10 NDBC PLASKI SHOAL LIGHT, FL FISF1 28.7 7 COMPS FARDIN SPRINGS, FL	SHPF1	30.06	-84.29	10	COMPS	SHELL POINT, FL	
42022 27.50 -8.37.40 3.2 COMPS CMP2-4. WEST FLORIDA CENTRAL BUOY 42021 28.30 -8.33.00 2.8 COMPS CMP4 - PASCO COUNTY RUOY, FL 42021 28.30 -8.33.00 2.8 COMPS CMP4 - PASCO COUNTY RUOY, FL 42021 26.05 -83.07 3.2 COMPS CMP4 - PASCO COUNTY RUOY, FL 42031 27.16 -82.05 2.8 COMPS CMP4 - PASCO COUNTY RUOY, FL 42013 7.16 -82.05 2.8 COMPS CREPL PORADPARK PL CWBF1 27.88 -82.37 10 COMPS REPL HOWARD PARK, FL PISF1 24.60 -82.77 10 NDBC PULASKI SHOALLICHT, FL CMFF1 7.50 -82.76 10 COMPS REPL HOWARD NGS, FL ANF1 27.51 -82.77 10.8 COMPS RAPPON SPRINCOS, FL ANF1 27.75 -82.63 6.1 NOS-NVLON 8726534 - PORT MANATEE, FL SAPT1 27.64 -82.55 10	42024	27.46	-84.22	3.2	COMPS	W. FL MERHAB	
KTNFI9.82-8.3910NDBCKEATON BCH, FL420212.836.83.073.2COMPSCMA+ PASCO COLINTY BUOY, FL42032.60.5-8.30.73.2COMPSCMA+ PASCO COLINTY BUOY, FL42032.61.6-8.30.73.2COMPSCMA+ PASCO COLINTY BUOY, FL42032.71.6-8.20.52.8COMPSNA2-NAVY-24201327.1.6-8.20.52.8COMPSNA2-NAVY-2420142.71.6-8.20.71.0COMPSFRED HOWARD PARK, FLFHIPF128.1.5-8.20.71.0COMPSFRED HOWARD PARK, FLPLSF124.69-8.27.71.0NDBCPULASKI SHOAL LIGHT, RLFKF11.0.8COMPSARNOTICE (CLE PARK, FLPLSF124.69-8.27.67COMPSFARPON SPRINGS, FL7ARF125.4-8.27.71.0.8COMPSPORT RICHEY, FL7ARF125.4-8.27.71.0.8COMPSARNOTARA, FL7ARF127.6-8.2.61.0NOS-NVIONS72650 - ST. PETERSBURG, FL7ARF127.6-8.2.51.0NOS-NVIONS72650 - ST. PETERSBURG, FL7ARF127.6-8.2.51.0NOS-NVIONS72650 - ST. PETERSBURG, FL7ARF127.6-8.2.51.0NOS-NVIONS72650 - ST. PETERSBURG, FL7ARF127.6-8.2.51.0NOS-NVIONS72650 - ST. PETERSBURG, FL7ARF127.6-8.2.51.0NOS-NVIONS72550 - PORT MY	42022	27.50	-83.74	3.2	COMPS	CMP24 - WEST FLORIDA CENTRAL BUOY	
42021 28.30 8.330 2.8 COMPS CMP + PASCO COUNTY BUOY, FL CDRF1 29.14 8.303 10 NDBC CEDAR KEY, FL CDRF1 29.14 8.303 10 NDBC CEDAR KEY, FL CVBF1 7.98 8.2.83 6.4 NOS-NVLON 8726724 - CLEARWATER REACH, FL CVBF1 7.98 8.2.73 10 COMPS RFED HOWARD PARK, FL PUF1 2.6.9 -82.77 10 NDBC PULASKI SHOAL LICHT, FL CGKF1 7.60 -82.76 10 COMPS FRED HOWARD ALL FL PUS1 2.40 -82.76 10 COMPS FRED HOWARD ALL FL ANGF1 2.54 -82.76 10.1 COMPS FRED HOWARD ALL FL ANMF1 2.74 -82.67 10.3 COMPS ANNA MARA, FL PIK1 2.84 -82.67 10.3 COMPS ANNA MARA, FL PIK1 2.76 -82.67 10.3 COMPS ANNA MA	KTNF1	29.82	-83.59	10	NDBC	KEATON BCH, FL	
4203 26.05 -83.07 3.2 COMPS CM S. WEST FLORIDA SOUTH BUOY CORFI 29.14 -83.09 10 NDBC CEDAR KEY, FL 42013 27.16 -82.95 2.8 COMPS NA2 - NAVY-2 CWBFI 27.98 -82.83 6.4 NOS-NWLON ST2674 - CLEARWATER BEACH, FL FHIPFI 28.15 -82.80 10 COMPS FRED HOWARD PARK, FL ANCET 28.17 46.0 +82.77 10 NDBC FPLARWATER BEACH, FL EGKFI 27.60 +82.76 10 COMPS ANCLOTE GULF PARK, FL EGKFI 27.60 +82.76 10 COMPS ANCLOTE GULF PARK, FL ANRFI 28.41 +82.67 10.0 COMPS ANNA MARIA, FL FTRFI 27.54 +82.74 10.8 COMPS ANNA MARIA, FL SAPFI 27.44 +82.65 10 NOS-NWLON \$72639 - OTT MANATEE, FL OPTFI 27.78 +82.63 6.1 NOS-NWLON \$72	42021	28.30	-83.30	2.8	COMPS	CMP4 - PASCO COUNTY BUOY, FL	
CDRF1 29.14 83.03 10 NDRC CEDAR KEY, FL 4013 27.16 82.95 2.8 COMPS RA2 - NAVY -2 CWBF1 27.98 -82.83 6.4 NOS.NULON 8726724 - CLEARWATER BEACH, FL FHPF1 28.15 -82.80 10 COMPS FRED HOWARD PARK, FL FHPF1 28.16 -82.77 10 NDBC PULASKI SHOAL LIGHT, FL FLSF1 24.66 82.76 10 COMPS TARPON SPRINGS, FL ANMF1 27.54 82.74 10.8 COMPS ANNA MAIL A, FL FTRF1 28.46 82.77 10.8 COMPS PORT RICHEY, FL AMF1 27.54 82.74 10.3 COMPS PORT RICHEY, FL FIRSF1 28.47 10.3 COMPS ANNA MAIL A, FL PORT ANATER, FL PMAF1 27.64 82.56 10 NOS-NWLON 8726384 - PORT TANPA, FL PMF1 27.64 82.55 10 NOS -WULON 8726697 - NICKAY BAY ENTANCE, FL	42023	26.05	-83.07	3.2	COMPS	CM3 - WEST FLORIDA SOUTH BUOY	
42013 27.16 82.95 2.8 COMPS NA2-NAVY-2 CWBF1 27.16 82.95 2.8 COMPS FREED HOWARD PARK, FL FHIF1 28.15 -82.80 10 COMPS FREED HOWARD PARK, FL PANCF1 28.19 -82.77 10 NOBC PULASKI SHOAL LIGHT, FL EGKF1 27.60 -82.76 10 COMPS EGMONT KEY, FL EGKF1 27.60 -82.77 10 NDBC PULASKI SHOAL LIGHT, FL EGKF1 27.60 -82.76 10 COMPS EGMONT KEY, FL ANRF1 28.16 -82.74 10.8 COMPS ANNA MARIA, FL PTRF1 28.29 -82.73 10.1 COMPS PORT RICHEY, FL ASAPF1 27.44 -82.67 10.3 COMPS PORT RICHEY, FL SAPF1 27.64 -82.65 10 NOS-NWLON 72636-07 MOT MANTER, FL VEF1 27.07 -82.45 10 NOS-NWLON 72636-07 MOT MANTER, FL	CDRF1	29.14	-83.03	10	NDBC	CEDAR KEY, FL	
CWBF1 2198 +82.83 6.4 NOS-NWLON 872724 - CL EARWATER BEACH, FL FHPF1 28.15 +82.80 10 COMPS FRED HOWARD PARK, FL FHPF1 28.15 +82.77 10 NDBC PULASKI SHOAL LIGHT, FL FLSF1 24.60 +82.77 10 NDBC PULASKI SHOAL LIGHT, FL FLSF1 24.60 +82.76 10 COMPS TARPON SPRINGS, FL AMF1 27.54 +82.74 10.8 COMPS FARDON SPRINGS, FL ANMF1 27.54 +82.74 10.8 COMPS PORT RICHEY, FL HSSF1 28.77 82.71 10.1 COMPS PORT RICHEY, FL HSSF1 28.77 82.73 10.1 COMPS PORT RICHEY, FL FMSF1 27.64 *82.56 10 NOS-NWLON 8726383 PORT MANATER, FL PMAF1 27.64 *82.55 10 NOS -NWLON 872697 PORT MAPA, FL VENF1 27.07 *82.45 11.6 NDBC VENICE, FL	42013	27.16	-82.95	2.8	COMPS	NA2 - NAVY-2	
FHPF1 28.15 -82.80 10 COMPS FRED HOWARD PARK, FL ANCF1 28.19 -82.79 10 COMPS ANCLOTE GULF PARK, FL PLSF1 24.69 -82.77 10 NDBC PULASKI SHOAL LIGHT, FL EGKF1 27.60 -82.76 10 COMPS EGMONT KEY, FL TARF1 28.16 -82.76 7 COMPS FANDA SHOAL, FL PARF1 25.64 -7 COMPS ANNA MARIA, FL PTF1 25.9 -82.73 10.1 COMPS PORT RICHEY, FL HSSF1 28.77 -82.73 10.3 COMPS PORT RICHEY, FL HSSF1 28.77 82.63 6.1 NOS-NWLON 872630 - ST. PETERSBURG, FL PMAF1 27.66 +82.55 10 NOS-NWLON 872630 - OLD PORT TAMPA, FL YEMF1 27.07 +82.45 11.6 NDBC VENCE, FL WCYF1 27.19 +82.45 10.0 NOS-NWLON 872630 - OLD PORT TAMPA, FL YEMF1 20.64 +81.88 13.1 NDBC SAND KEY, FL SANF1 </td <td>CWBF1</td> <td>27.98</td> <td>-82.83</td> <td>6.4</td> <td>NOS-NWLON</td> <td>8726724 - CLEARWATER BEACH FL</td> <td></td>	CWBF1	27.98	-82.83	6.4	NOS-NWLON	8726724 - CLEARWATER BEACH FL	
ANCF1 28.19 82.79 10 COMPS ANCLOTE GULF PARK, FL PLSF1 24.69 82.77 10 NDBC PULASKI SHOAL LIGHT, FL EGKF1 24.60 82.76 10 COMPS TARPON SPRINGS, FL ANMF1 75.4 82.74 10.8 COMPS ANNA MARIA, FL PTRF1 28.40 82.73 10.1 COMPS PORT RICHEY, FL HSSF1 28.73 10.1 COMPS PORT RICHEY, FL SAPF1 27.6 6.6 COMPS ANNA MARIA, FL SAPF1 27.6 6.1 NOS-NWLON 8726520 - ST. PETERSBURG, FL PMAF1 27.64 82.25 10 NOS-NWLON 8726607 - OLD PORT TAMPA, FL VEFF1 27.91 82.42 10 NOS-NWLON 8726607 - MCAY BAY ENTRANCE, FL MCYF1 77.91 82.42 10 NOS-NWLON 872667 - MCKAY BAY ENTRANCE, FL MCYF1 27.91 82.42 10 NOS-NWLON 872520 - FORT MYERS, FL SANF1	EHPE1	28.15	-82.80	10	COMPS	FRED HOWARD PARK FI	
PINET 24.69 82.77 10 NDBC PULASKI SHOAL LIGHT, H. EGKF1 27.60 82.76 10 COMPS EGMONT KEY, FL TARF1 28.16 82.76 7 COMPS EGMONT KEY, FL ANMF1 27.54 82.76 7 COMPS ANNA MARIA, FL PTRF1 28.29 82.73 10.1 COMPS PORT RICHEY, FL HSSF1 28.77 82.71 6.6 COMPS HOMOSASSA, FL ARPF1 28.44 82.65 10 NOS-WULON 8726520 - ST. PETERSBURG, FL SAPF1 27.76 82.65 10 NOS-WULON 8726540 - ST.	ANCE1	28.19	-82.79	10	COMPS	ANCI OTE GUI E PARK EI	
ECKF1 27.60 82.76 10 COMPS EGMONT KEY, FL TARF1 28.16 -82.76 10 COMPS TARF0N SPRINGS, FL ANMF1 27.54 -82.74 10.8 COMPS PARNOS, FL ANMF1 27.54 -82.74 10.8 COMPS PORT RICHEY, FL PTRF1 28.29 -82.73 10.1 COMPS PORT RICHEY, FL ARPF1 27.76 -82.63 6.1 NOS-NWLON 8726302 ST. PETERSBURG, FL SAPF1 27.64 -82.55 10 NOS-NWLON 8726607 - OLD PORT TAMPA, FL VENF1 27.91 -82.45 10 NOS-NWLON 8726607 - MCKAY BAY ENTRANCE, FL WCYF1 27.91 -82.42 10 NOS-NWLON 8726607 - MCKAY BAY ENTRANCE, FL MCYF1 27.91 -82.42 10 NOS-NWLON 8726607 - MCKAY BAY ENTRANCE, FL MCYF1 27.91 -82.42 10 NOS-NWLON 8726607 - MCKAY BAY ENTRANCE, FL MCYF1 27.91 -82.44 -81.88	PI SE1	24.69	-82 77	10	NDBC	PULASKI SHOAL LIGHT FL	
Lond 1 2.3.6 -02.76 70 COMPS TARPI 25.11 ANMF1 27.54 +82.74 10.8 COMPS ANNA MARIA, FL PTRF1 28.29 +82.73 10.1 COMPS PORT RICHEY, FL HSSF1 28.77 +82.71 6.6 COMPS HOMOSASSA, FL ARPF1 28.44 +82.67 10.3 COMPS ARIPEREKA, FL SAPF1 27.66 +82.65 10 NOS-NWLON 8726520 - ST. PETERSBURG, FL PMAF1 27.64 +82.55 10 NOS-NWLON 8726520 - ST. PETERSBURG, FL VENF1 27.07 +82.45 11.6 NDS-NWLON 8726670 - OLD PORT TAMPA, FL VENF1 27.07 +82.45 10 NOS-NWLON 8726567 - MCKAY BAY ENTRANCE, FL 42014 25.25 +82.21 2.8 COMPS BIG CALOS PASS, FL SANF1 24.46 +81.88 13.1 NDBC SAND KEY, FL FMRF1 26.65 +81.87 6.1 NOS-NWLON 872520- FORT MY	EGKE1	27.60	-82.76	10	COMPS	EGMONT KEV EL	
HAM 1 25.0 -02.7.0 1, COMPS FAR 0.5 MIR 0.5, FL PTRF1 28.29 -82.73 10.1 COMPS PORT RICHEY, FL BSSF1 28.77 -82.63 6.1 NOS-NWLON 8726520 - ST. PETERSBURG, FL ARPF1 27.64 -82.63 6.1 NOS-NWLON 8726520 - ST. PETERSBURG, FL SAPF1 27.64 -82.55 10 NOS-NWLON 8726520 - ST. PETERSBURG, FL OPTF1 27.86 -82.55 10 NOS-NWLON 8726507 - OLD PORT TAMPA, FL VENF1 27.91 -82.42 10 NOS-NWLON 8726667 - MCKAY BAY ENTRANCE, FL MCYF1 27.91 -82.42 10 NOS-NWLON 8726667 - MCKAY BAY ENTRANCE, FL MCYF1 27.91 -82.42 10 NOS-NWLON 872667 - MCKAY BAY ENTRANCE, FL MCYF1 24.40 -81.88 12 COMPS BIG CARLOS PASS, FL SANF1 24.46 -81.88 13.1 NDBC SAND KEY, FL FMRF1 26.65 -81.87 6.4 NOS-NWLON 872030 - FERNANDINA BEACH, FL SYMF1 24.55	TAREI	27.00	-82.76	7	COMPS	TARPON SPRINGS FI	
ANNIF1 27-34 -62.74 10.3 COMPS ANNA MARIA, FL PTRF1 28.29 -82.73 10.1 COMPS PORTRICHEY, FL HSSF1 28.77 -82.71 6.6 COMPS HOMOSASSA, FL SAPF1 27.76 -82.63 6.1 NOS-NWLON 8726520 - ST. PETERSBURG, FL SAPF1 27.64 -82.55 10 NOS-NWLON 8726384 - PORT MANATE, FL VENF1 27.07 -82.45 10 NOS-NWLON 8726607 - OLD PORT TAMPA, FL VENF1 27.07 -82.45 10 NOS-NWLON 8726607 - OLD PORT TAMPA, FL VENF1 27.07 -82.42 10 NOS-NWLON 8726607 - OLD PORT TAMPA, FL VENF1 27.07 -82.42 10 NOS-NWLON 8726607 - MCKAY BAY ENTRANCE, FL 42014 25.25 -82.11 2.8 COMPS W. FL SEA-COOS SGCF1 24.46 -81.88 13.1 NDBC SAND KEY, FL FMRF1 24.66 -81.87 6.1 NOS-NWLON 872530 - FCW WEST, FL SMKF1 24.63 -81.47	ANMET	20.10	-02.70 02.74	10.9	COMPS	ANNA MADIA EL	
PIKF1 26.29 -82.73 10.1 COMPS FOKURELT, FL HSSF1 28.47 -82.67 10.3 COMPS ARPFA, FL ARPF1 28.44 -82.67 10.3 COMPS ARIPEKA, FL SAPF1 27.66 -82.56 10 NOS-NWLON 8726320-ST. PETERSBURG, FL PMAF1 27.66 -82.55 10 NOS-NWLON 8726320-ST. PETERSBURG, FL VENF1 27.07 -82.45 11.6 NDBC VENICE, FL WCYF1 27.07 -82.42 10 NOS-NWLON 8726607 - MCKAY BAY ENTANCE, FL WCYF1 27.91 -82.42 10 NOS-NWLON 8726607 - MCKAY BAY ENTANCE, FL MCYF1 25.25 -82.21 2.8 COMPS BIG CARLOS PASS, FL SANF1 24.46 -81.88 12 COMPS BIG CARLOS PASS, FL SANF1 24.46 -81.88 13.1 NDBC SAND KEY, FL FUKF1 24.55 -81.84 64 NOS-NWLON 872030- FERNANDINA BEACH, FL KYWF1 30.40 -81.43 10 NOS-NWLON	ADDE1	27.54	-02.74	10.8	COMPS	ANNA MARIA, FL DORT DICHEV, FL	
HSSF1 25.77 -82.71 0.0 COMPS RUMOASSA, FL ARFF1 25.67 0.3 COMPS ARIPEKA, FL SAPF1 27.66 -82.63 6.1 NOS-NWLON 8726520 - ST. PETERSBURG, FL PMAF1 27.66 -82.55 10 NOS-NWLON 8726502 - ST. PETERSBURG, FL VENF1 27.07 -82.45 11.6 NDBC VENCE, FL WCYF1 27.07 -82.42 10 NOS-NWLON 8726667 - MCAY BAY ENTRANCE, FL 42014 25.25 -82.21 2.8 COMPS W. FL SEA-COOS BGCF1 26.40 -81.88 13.1 NDBC SAND KEY, FL FMRF1 26.65 -81.87 6.1 NOS-NWLON 8726520 - FORT MYERS, FL YWF1 24.65 -81.81 6.4 NOS-NWLON 872030 - FERNANDINA BEACH, FL YWF1 30.60 -81.43 10 NOS-NWLON 872030 - FERNANDINA BEACH, FL SMFF1 24.63 -81.11 48.5 NDBC SOMBRERO KEY, FL SMFF1 24.63 -81.11 48.5 NDBC SOM	PIKFI UCCE1	20.29	-82.75	10.1	COMPS	FORT RICHET, FL	
ARTF1 28.44 -82.07 10.3 COMPS ARIPERA, PL SAFF1 27.76 +82.66 6.1 NOS-NWLON 8726520 - ST. PETERSBURG, FL PMAF1 27.66 +82.56 10 NOS-NWLON 8726520 - ST. PETERSBURG, FL OPTTE1 27.86 +82.55 10 NOS-NWLON 8726607 - OLD PORT TAMPA, FL VENF1 27.91 +82.45 11.6 NDBC VENICE, FL MCYF1 27.91 +82.42 10 NOS-NWLON 8726607 - MCKAY BAY ENTRANCE, FL 42014 25.25 +82.21 2.8 COMPS W.FL SEA-COOS BGCF1 26.40 +81.88 12 COMPS BIG CARLOS PASS, FL SANF1 24.46 +81.88 13.1 NDBC SAND KEY, FL FMRF1 30.67 +81.47 6.4 NOS-NWLON 8724580 - KEY WEST, FL SMKF1 34.46 +81.43 10 NOS-NWLON 8720303 - FERNANDINA BEACH, FL MYPF1 30.40 -81.43 10 NOS-NWLON 8720303 - FERNANDINA BEACH, FL SMKF1 24.53 +81.11	ADDE1	20.77	-82.71	0.0	COMPS	ADIDEKA EL	
SAFT 21.70 -82.03 0.1 NOS-NWLON 8726320 - S1. FE JESSBORG, FL OPTF1 27.64 -82.55 10 NOS-NWLON 8726362 - PORT MANATEE, FL VENF1 27.07 -82.45 11.6 NDBC VENICE, FL WCYF1 27.07 -82.42 10 NOS-NWLON 8726667 - MCKAY BAY ENTRANCE, FL 42014 25.25 -82.21 2.8 COMPS W. FL SEA-COOS BGCF1 26.40 -81.88 12. COMPS BIG CARLOS PASS, FL SANF1 24.46 -81.88 13.1 NDBC SAND KEY, FL FMRF1 26.65 -81.87 6.1 NOS-NWLON 8724580 - KEY WEST, FL FMF1 30.67 -81.47 6.4 NOS-NWLON 872030 - FERNANDINA BEACH, FL YCWF1 30.40 -81.43 10 NOS-NWLON 872030 - FERNANDINA BEACH, FL SAUF1 24.63 -81.47 6.4 NOS-NWLON 8723970 - VACA KEY, FL VCAF1 24.71 -81.47 6.4 NOS-NWLON 8723970 - VACA KEY, FL VCAF1 24.71 -81.11	AKPFI	28.44	-82.07	10.5	COMPS NOS NUL ON	AKIPEKA, FL	
PMAPI 27.64 -82.55 10 NOS-NWLON 872607 - 10L PORT TAMPA, FL VENFI 27.07 -82.45 11.6 NDBC VENICE, FL MCYFI 27.91 -82.42 10 NOS-NWLON 872607 - 10L PORT TAMPA, FL VENFI 27.91 -82.42 10 NOS-NWLON 872607 - 10L PORT TAMPA, FL VAD14 25.25 -82.21 2.8 COMPS W. FL SEA-COOS BGCF1 26.40 -81.88 12 COMPS BIG CARLOS PASS, FL SANFI 24.46 -81.88 13.1 NDBC SAND KEY, FL FMRFI 24.65 -81.87 6.1 NOS-NWLON 8725205 - FORT MYERS, FL KYWF1 24.55 -81.81 6.4 NOS-NWLON 872018 - MAYPORT (BAR PILOTS DOCK), FL SMF1 24.63 -81.43 10 NOS-NWLON 872018 - MAYPORT (BAR PILOTS DOCK), FL SAUF1 29.86 -81.26 16.5 NDBC ST AUGUSTINE, FL SMF1 24.63 -81.11 48.5 N	SAPFI	27.76	-82.03	0.1	NOS-NWLON	8/20520 - SI. PETERSBURG, FL	
OP111 27.80 -82.55 10 NOS-NWLON 87/26007 - OLD PORT TAMPA, FL VENFI 27.07 -82.45 11.6 NDBC VENCE, FL MCYFI 27.91 -82.42 10 NOS-NWLON 87/26667 - MCKAY BAY ENTRANCE, FL 42014 25.25 -82.21 2.8 COMPS W. FL SEA-COOS BGCF1 24.40 -81.88 12 COMPS BIG CARLOS PASS, FL SANFI 24.46 -81.88 13.1 NDBC SAND KEY, FL FMRF1 26.65 -81.81 6.4 NOS-NWLON 872550 - FORT MYERS, FL KYWF1 24.55 -81.41 6.4 NOS-NWLON 8720530 - KEY WEST, FL YPF1 30.40 -81.43 10 NOS-NWLON 8720218 - MAYPORT (BAR PILOTS DOCK), FL SAUF1 24.86 -81.26 16.5 NDBC SOMBRENO KEY, FL LONF1 24.84 -80.60 7 NDBC LONG KEY, FL LONF1 24.84 -80.66 7 NDBC ALUGUSTINE, FL JUNF1 24.43 -80.50 5 NDBC	PMAFI	27.64	-82.56	10	NOS-NWLON	8726384 - PORT MANATEE, FL	
VENFI 27.01 -82.45 11.6 NDBC VENICE, FL WCYFI 27.91 -82.42 10 NOS NWLON 8726667 - MCKAY BAY ENTRANCE, FL 42014 25.25 -82.21 2.8 COMPS BIG CARLOS PASS, FL SANFI 24.46 -81.88 12 COMPS BIG CARLOS PASS, FL FMRF1 26.65 -81.87 6.1 NOS-NWLON 8725520 - FORT MYERS, FL FMF1 26.65 -81.81 6.4 NOS-NWLON 872520 - FORT MYERS, FL FMPF1 30.67 -81.47 6.4 NOS-NWLON 872018 - KEY WEST, FL MYPF1 30.40 -81.43 10 NOS-NWLON 872018 - KEY WEST, FL SMKF1 24.63 -81.11 4.85 NDBC SOMBRENO KEY, FL VCAF1 24.63 -81.14 4.5 NDBC SOMBRENO KEY, FL VCAF1 24.43 -80.60 47 NDBC LONG KEY, FL VCAF1 24.43 -80.60 47 NDBC ALLIGATOR REEF TRDF1 28.42 -80.59 6.4 NOS-NWLON 8	OPIFI	27.86	-82.55	10	NOS-NWLON	8/2000/ - OLD PORT TAMPA, FL	
MCYFI 27.91 -82.42 10 NOS-NWLON 87/2060/- MICKAY BAY ENTRANCE, PL 42014 25.25 -82.21 2.8 COMPS W.FL SEA-COOS BGCF1 26.40 -81.88 12 COMPS BIG CARLOS PASS, FL SANF1 24.46 -81.88 13.1 NDBC SAND KEY, FL FMRF1 24.65 -81.87 6.1 NOS-NWLON 8724520 - FORT MYERS, FL KYWF1 24.55 -81.87 6.4 NOS-NWLON 8724520 - FORT MYERS, FL FRDF1 30.67 -81.47 6.4 NOS-NWLON 8720303 - FERNANDINA BEACH, FL MYPF1 29.86 -81.31 6.4 NOS-NWLON 8720303 - FERNANDINA BEACH, FL SAUF1 29.86 -81.43 10 NOS-NWLON 8720303 - FERNANDINA BEACH, FL SAUF1 29.86 -81.43 10 NOS-NWLON 872030 - FERNANDINA BEACH, FL SMKF1 24.63 -81.11 48.5 NDBC SOMBRERO KEY, FL SAUF1 29.86 -81.26 16.5 NDBC LUIGUSTINE, FL LONF1 24.84 -80.60<	VENFI	27.07	-82.45	11.6	NDBC	VENICE, FL	
42014 25.25 -82.21 2.8 COMPS W. FL SEA-COOS BGCFI 26.40 -81.88 12 COMPS BIG CARLOS PASS, FL SANF1 24.46 -81.88 13.1 NDBC SAND KEY, FL FMRF1 26.65 -81.87 6.1 NOS-NWLON 8725520 - FORT MYERS, FL KYWF1 24.55 -81.81 6.4 NOS-NWLON 8725500 - KEY WEST, FL FMDF1 30.67 -81.47 6.4 NOS-NWLON 872030 - FERNANDINA BEACH, FL MYPF1 30.40 -81.43 10 NOS-NWLON 872018 - MAYPORT (BAR PILOTS DOCK), FL SAUF1 29.86 -81.26 16.5 NDBC SOMBRERO KEY, FL VCAF1 24.71 -81.11 48.5 NDBC SOMBRERO KEY, FL VCAF1 24.71 -81.11 6.4 NOS-NWLON 8723970 - VACA KEY, FL LONF1 24.84 -80.60 7.5 NDBC LONG KEY, FL LONF1 24.84 -80.60 47.5 NDBC ALLIGATOR REEF TRDF1 28.42 -80.59 6.4 NOS-NWLON	MCYFI	27.91	-82.42	10	NOS-NWLON	8/2000/ - MCKAY BAY ENTRANCE, FL	
BGC+1 26.40 -81.88 12 COMPS BIG CARLOS PASS, FL SANFI 24.46 -81.88 13.1 NDBC SAND KY, FL FMRF1 26.65 -81.87 6.1 NOS-NWLON 8725520 - FORT MYERS, FL KYWF1 24.55 -81.81 6.4 NOS-NWLON 8725520 - FORT MYERS, FL MYPF1 30.67 -81.47 6.4 NOS-NWLON 872030 - FERNANDINA BEACH, FL MYPF1 30.40 -81.43 10 NOS-NWLON 872018 - MA YPORT (BAR PILOTS DOCK), FL SAUF1 29.86 -81.26 16.5 NDBC SOMBRENO KEY, FL VCAF1 24.43 -80.60 7 NDBC SOMBRENO KEY, FL LONF1 24.44 -80.86 7 NDBC LONG KEY, FL LONF1 24.44 -80.60 47.5 NDBC ALLIGATOR REEF TRDF1 28.42 -80.59 6.4 NOS-NWLON 8721604 - TRIDENT PIER, FL 40NM ENE OF ST AUGUSTINE, FL 3-meter discus buoy, ARES payload MLRF1 25.01 -80.38 15.8 NDBC MULASES REEF, FL 6-meter NOMAD buoy, ARES paylo	42014	25.25	-82.21	2.8	COMPS	W. FL SEA-COOS	
SANFI 24.40 -81.88 15.1 NDBC SAND KEY, H. FMRFI 24.65 -81.87 6.1 NOS-NWLON 8724520 - FORT MYERS, FL KYWFI 24.55 -81.81 6.4 NOS-NWLON 8724580 - KEY WEST, FL FRDF1 30.67 -81.47 6.4 NOS-NWLON 8720030 - FERNANDINA BEACH, FL MYPF1 29.86 -81.43 10 NOS-NWLON 8720030 - FERNANDINA BEACH, FL SAUF1 29.86 -81.43 10 NOS-NWLON 8720100 - FERNANDINA BEACH, FL SMKF1 24.63 -81.11 48.5 NDBC ST. AUGUSTINE SMKF1 24.63 -81.11 48.5 NDBC SOMBRERO KEY, FL LONF1 24.84 -80.66 7 NDBC LONG KEY, FL ALIGATOR REEF TRDF1 24.90 -80.50 5 NDBC SOLOUSTINE, FL 40NM ENE OF ST AUGUSTINE, FL 3-meter discus buoy, ARES payload MLR1 25.01 -80.38 15.8 NDBC CANAVERAL 20 NM EAST OF CAPE CANAVERAL, FL 6-meter NOMAD buoy, ARES payload VAKF1 25.73 -80.10 43.9	BGCFI	26.40	-81.88	12	COMPS	BIG CARLOS PASS, FL	
FMRF1 26.65 -81.87 6.1 NOS-NWLON 8725520 - FOR MYERS, FL KYWF1 24.55 -81.81 6.4 NOS-NWLON 8724580 - KEY WEST, FL FRDF1 30.67 -81.47 6.4 NOS-NWLON 872030 - FERNANDINA BEACH, FL MYPF1 30.40 -81.43 10 NOS-NWLON 872030 - FERNANDINA BEACH, FL SAUF1 29.86 -81.26 16.5 NDBC ST. AUGUSTINE SMKF1 24.63 -81.11 48.5 NDBC SOMBRERO KEY, FL VCAF1 24.71 -81.11 6.4 NOS-NWLON 8723970 - VACA KEY, FL LONF1 24.84 -80.86 7 NDBC LONG KEY, FL LONF1 24.84 -80.60 47.5 NDBC ALLIGATOR REEF TRDF1 28.42 -80.59 6.4 NOS-NWLON 8721604 - TRIDENT PIER, FL 40NM ENE OF ST AUGUSTINE, FL 3-meter discus buoy, ARES payload MLRF1 25.01 -80.38 15.8 NDBC MOLASSES REEF, FL 6-meter NOMAD buoy, ARES payload VAKF1 25.73 -80.16 9.1 NOS-NWLON 8723214 -	SANF1	24.46	-81.88	13.1	NDBC	SAND KEY, FL	
KYWF1 24.55 -81.81 6.4 NOS-NWLON 8724580 - KEY WEST, FL FRDF1 30.67 -81.47 6.4 NOS-NWLON 872030 - FERNANDINA BEACH, FL MYPF1 30.67 -81.43 10 NOS-NWLON 8720130 - FERNANDINA BEACH, FL SAUF1 29.86 -81.26 16.5 NDBC SOMBREO KEY, FL VCAF1 24.63 -81.11 48.5 NDBC SOMBREO KEY, FL LONF1 24.84 -80.60 47.5 NDBC LONG KEY, FL LONF1 24.84 -80.60 47.5 NDBC ALLIGATOR REEF TRDF1 28.42 -80.59 6.4 NOS-NWLON 8721604 - TRIDENT PIER, FL 41012 30.00 -80.50 5 NDBC ST24064 - TRIDENT PIER, FL 3-meter discus buoy, ARES payload MLRF1 25.01 -80.38 15.8 NDBC MOLASSES REEF, FL 6-meter NOMAD buoy, ARES payload VAKF1 25.73 -80.16 9.1 NOS-NWLON 8723214 - VIRGINIA KEY, FL 6-meter NOMAD buoy, ARES payload VAKF1 25.79 -80.10 43.9 NDBC	FMRF1	26.65	-81.87	6.1	NOS-NWLON	8725520 - FORT MYERS, FL	
FRDF1 30.67 -81.47 6.4 NOS-NWLON 8720030 - FERNADINA BEACH, FL MYPF1 30.40 -81.43 10 NOS-NWLON 8720030 - FERNADINA BEACH, FL SMUF1 29.86 -81.26 16.5 NDBC ST. AUGUSTINE SMKF1 24.63 -81.11 48.5 NDBC SOMBRERO KEY, FL VCAF1 24.71 -81.11 6.4 NOS-NWLON 8723970 - VACA KEY, FL LONF1 24.84 80.86 7 NDBC LONG KEY, FL ALRF1 24.90 -80.60 47.5 NDBC ALLIGATOR REEF TRDF1 28.42 -80.50 5 NDBC ST. AUGUSTINE, FL 40NM ENE OF ST AUGUSTINE, FL 3-meter discus buoy, ARES payload MLRF1 25.01 -80.38 15.8 NDBC MOLASSES REEF, FL	KYWF1	24.55	-81.81	6.4	NOS-NWLON	8724580 - KEY WEST, FL	
MYPF1 30.40 -81.43 10 NOS-NWLON 8720218 - MAYPORT (BAR PILOTS DOCK), FL SAUF1 29.86 -81.26 16.5 NDBC ST. AUGUSTINE SMKF1 24.63 -81.11 48.5 NDBC SOMBRERO KEY, FL VCAF1 24.71 -81.11 6.4 NOS-NWLON 8723970 - VACA KEY, FL LONF1 24.84 -80.86 7 NDBC LONG KEY, FL LONF1 24.90 -80.60 47.5 NDBC ALLIGATOR REEF TRDF1 28.42 -80.59 6.4 NOS-NWLON 8721604 - TRIDENT PIER, FL 3-meter discus buoy, ARES payload MLRF1 25.01 -80.38 15.8 NDBC MOLASSES REEF, FL	FRDF1	30.67	-81.47	6.4	NOS-NWLON	8720030 - FERNANDINA BEACH, FL	
SAUFI 29.86 -81.26 16.5 NDBC ST. AUGUSTINE SMKFI 24.63 -81.11 48.5 NDBC SOMBREN KEY, FL VCAFI 24.71 -81.11 6.4 NOS-NWLON 8723970 - VACA KEY, FL LONFI 24.84 -80.86 7 NDBC LONG KEY, FL ALRFI 24.90 -80.60 47.5 NDBC ALLIGATOR REEF TRDF1 28.42 -80.59 6.4 NOS-NWLON 8721604 - TRIDENT PIER, FL 41012 30.00 -80.50 5 NDBC ST. AUGUSTINE, FL 40NM ENE OF ST AUGUSTINE, FL 3-meter discus buoy, ARES payload MLRF1 25.01 -80.38 15.8 NDBC MOLASSES REEF, FL 6-meter NOMAD buoy, ARES payload VAKF1 25.73 -80.16 9.1 NOS-NWLON 8723214 - VIRGINIA KEY, FL FWYF1 25.59 -80.10 43.9 NDBC FOWEY ROCKS, FL LKWF1 26.61 -80.03 13.7 NDBC LAKE WORTH, FL SPGF1 26.69 -79.00 9.8 NDBC CANAVERAL EAST 120NM EAST OF CAPE CANAVERAL 6	MYPF1	30.40	-81.43	10	NOS-NWLON	8720218 - MAYPORT (BAR PILOTS DOCK), FL	
SMKFI 24.63 -81.11 48.5 NDBC SOMBRERO KEY, FL VCAFI 24.71 -81.11 6.4 NOS-NWLON 8723970 - VACA KEY, FL LONFI 24.84 -80.86 7 NDBC LONG KEY, FL ALRF1 24.90 -80.60 47.5 NDBC ALLIGATOR REEF TRDF1 28.42 -80.59 6.4 NOS-NWLON 8721604 - TRIDENT PIER, FL 41012 30.00 -80.50 5 NDBC ST. AUGUSTINE, FL 40NM ENE OF ST AUGUSTINE, FL 3-meter discus buoy, ARES payload MLRF1 25.01 -80.38 15.8 NDBC MOLASSES REEF, FL 6-meter NOMAD buoy, ARES payload VAKF1 25.73 -80.16 9.1 NOS-NWLON 8723214 - VIRGINA KEY, FL FWYF1 25.59 -80.10 43.9 NDBC FOWEY ROCKS, FL LKWF1 26.61 -80.03 13.7 NDBC LAKE WORTH, FL SPGF1 26.69 -79.00 9.8 NDBC SETTLEMENT POINT, GBI 41010 28.91	SAUF1	29.86	-81.26	16.5	NDBC	ST. AUGUSTINE	
VCAFI 24.71 -81.11 6.4 NOS-NWLON 8723970 - VACA KEY, FL LONFI 24.84 -80.86 7 NDBC LONG KEY, FL ALRFI 24.90 -80.60 47.5 NDBC ALLIGATOR REEF TRDFI 28.42 -80.59 6.4 NOS-NWLON 8721604 - TRIDENT PIER, FL 3-meter discus buoy, ARES payload MLRFI 25.01 -80.38 15.8 NDBC MOLASSES REEF, FL	SMKF1	24.63	-81.11	48.5	NDBC	SOMBRERO KEY, FL	
LONFI 24.84 -80.86 7 NDBC LONG KEY, FL ALRFI 24.90 -80.60 47.5 NDBC ALLIGATOR REEF TRDFI 28.42 -80.59 6.4 NOS-NWLON 8721604 - TRIDENT PIER, FL 41012 30.00 -80.50 5 NDBC ST21604 - TRIDENT PIER, FL 3-meter discus buoy, ARES payload MLRFI 25.01 -80.38 15.8 NDBC MOLASSES REEF, FL 6-meter NOMAD buoy, ARES payload VAKFI 25.73 -80.16 9.1 NOS-NWLON 8723214 - VIRGINIA KEY, FL 6-meter NOMAD buoy, ARES payload VAKFI 25.79 -80.10 43.9 NDBC FOWEY ROCKS, FL 5 LKWF1 26.61 -80.03 13.7 NDBC LAKE WORTH, FL 5 5 SPGF1 26.69 -79.00 9.8 NDBC CANAVERAL EAST 120NM EAST OF CAPE CANAVERAL 6-meter NOMAD buoy, ARES payload 41010 28.91 -78.55 NDBC CANAVERAL EAST 120NM EAST OF CAPE CANAVERAL 6-meter NOMAD buoy, ARES payload	VCAF1	24.71	-81.11	6.4	NOS-NWLON	8723970 - VACA KEY, FL	
ALRFI 24.90 -80.60 47.5 NDBC ALLGATOR REEF TRDF1 28.42 -80.59 6.4 NOS-NWLON 8721604 - TRIDENT PIER, FL 3-meter discus buoy, ARES payload 41012 30.00 -80.59 6.4 NOS-NWLON 8721604 - TRIDENT PIER, FL 3-meter discus buoy, ARES payload MLRF1 25.01 -80.38 15.8 NDBC MOLASSES REEF, FL 6-meter NOMAD buoy, ARES payload VAKF1 25.73 -80.16 9.1 NOS-NWLON 8723214 - VIRGINIA KEY, FL 6-meter NOMAD buoy, ARES payload VAKF1 25.59 -80.10 43.9 NDBC FOWEY ROCKS, FL LKWF1 26.61 -80.03 13.7 NDBC EATTLEMENT POINT, GBI 41010 28.91 -78.55 5 NDBC CANAVERAL EAST 120NM EAST OF CAPE CANAVERAL 6-meter NOMAD buoy, ARES payload VAKF1 26.60 -79.00 9.8 NDBC ETTLEMENT POINT, GBI 41010 28.91 -78.55 5 NDBC CANAVERAL EAST 120NM EAST OF CAPE CANAVERAL 6-meter NOMAD buoy, ARES	LONF1	24.84	-80.86	7	NDBC	LONG KEY, FL	
TRDFI 28.42 -80.59 6.4 NOS-NWLON 8721604 - TRIDENT PIER, FL 3-meter discus buoy, ARES payload 41012 30.00 -80.50 5 NDBC ST. AUGUSTINE, FL 40NM ENE OF ST AUGUSTINE, FL 3-meter discus buoy, ARES payload MLRFI 25.01 -80.38 15.8 NDBC MOLASSES REEF, FL 6-meter NOMAD buoy, ARES payload VAKFI 25.73 -80.16 9.1 NOS-NWLON 8723214 - VIRGINIA KEY, FL 6-meter NOMAD buoy, ARES payload VAKFI 25.59 -80.10 43.9 NDBC FOWEY ROCKS, FL 5 SETTLEMENT POINT, GBI LKWF1 26.61 -80.03 13.7 NDBC LAKE WORTH, FL 5 SPGF1 26.69 -79.00 9.8 NDBC SETTLEMENT POINT, GBI 5 41010 28.91 -78.55 5 NDBC CANAVERAL 20NM EAST OF CAPE CANAVERAL 6-meter NOMAD buoy, ARES payload 41010 28.91 -78.55 5 NDBC CANAVERAL EAST 120NM EAST OF CAPE CANAVERAL 6-meter NOMAD buoy, ARES payload	ALRF1	24.90	-80.60	47.5	NDBC	ALLIGATOR REEF	
41012 30.00 -80.50 5 NDBC ST. AUGUSTINE, FL 40NM ENE OF ST AUGUSTINE, FL 3-meter discus buoy, ARES payload MLRF1 25.01 -80.38 15.8 NDBC MOLASSES REEF, FL 6-meter NOMAD buoy, ARES payload VAKF1 25.70 -80.18 5 NDBC CANAVERAL 20 NM EAST OF CAPE CANAVERAL, FL 6-meter NOMAD buoy, ARES payload VAKF1 25.73 -80.16 9.1 NOS-NWLON 8723214 - VIRGINIA KEY, FL 6-meter NOMAD buoy, ARES payload FWYF1 25.61 -80.03 13.7 NDBC LAKE WORTH, FL 5 SETLEMENT POINT, GBI SPGF1 26.61 -80.03 13.7 NDBC CANAVERAL EAST 120NM EAST OF CAPE CANAVERAL 6-meter NOMAD buoy, ARES payload 41010 28.91 -78.55 5 NDBC CANAVERAL EAST 120NM EAST OF CAPE CANAVERAL 6-meter NOMAD buoy, ARES payload CMRC3 23.80 -76.10 10 CREWS/AOML NORTH NORMAN'S REEF, BAHAMAS 6-meter NOMAD buoy, ARES payload	TRDF1	28.42	-80.59	6.4	NOS-NWLON	8721604 - TRIDENT PIER, FL	
MLRF1 25.01 -80.38 15.8 NDBC MOLASSES REEF, FL 41009 28.50 -80.18 5 NDBC CANAVERAL 20 NM EAST OF CAPE CANAVERAL, FL 6-meter NOMAD buoy, ARES payload VAKF1 25.73 -80.16 9.1 NOS-NWLON 8723214 - VIRGINIA KEY, FL 6-meter NOMAD buoy, ARES payload VKWF1 25.59 -80.03 13.7 NDBC FOWEY ROCKS, FL 6-meter NOMAD buoy, ARES payload LKWF1 26.61 -80.03 13.7 NDBC LAKE WORTH, FL 5 SPGF1 26.99 -79.00 9.8 NDBC CANAVERAL EAST 120NM EAST OF CAPE CANAVERAL 6-meter NOMAD buoy, ARES payload 41010 28.91 -78.55 5 NDBC CANAVERAL EAST 120NM EAST OF CAPE CANAVERAL 6-meter NOMAD buoy, ARES payload CMRC3 23.80 -76.10 10 CREWS/AOML NORTH NORMANS REEF, BAHAMAS	41012	30.00	-80.50	5	NDBC	ST. AUGUSTINE, FL 40NM ENE OF ST AUGUSTINE, FL	3-meter discus buoy, ARES payload
41009 28.50 -80.18 5 NDBC CANAVERAL 20 NM EAST OF CAPE CANAVERAL, FL 6-meter NOMAD buoy, ARES payload VAKF1 25.73 -80.16 9.1 NOS-NWLON 8723214 - VIRGINIA KEY, FL 6-meter NOMAD buoy, ARES payload VMKF1 25.59 -80.10 43.9 NDBC FOWEY ROCKS, FL - LKWF1 26.61 -80.03 13.7 NDBC LAKE WORTH, FL - SPGF1 26.69 -79.00 9.8 NDBC SETTLEMENT POINT, GBI - 41010 28.91 -78.55 5 NDBC CANAVERAL EAST 120NM EAST OF CAPE CANAVERAL 6-meter NOMAD buoy, ARES payload CMRC3 23.80 -76.10 10 CREWS/AOML NORTH NORMAN'S REEF, BAHAMAS -	MLRF1	25.01	-80.38	15.8	NDBC	MOLASSES REEF, FL	
VAKFI 25.73 -80.16 9.1 NOS-NWLON 8723214 - VIRGINIA KEY, FL FWYF1 25.59 -80.10 43.9 NDBC FOWEY ROCKS, FL LKWF1 26.61 -80.03 13.7 NDBC LAKE WORTH, FL SPGF1 26.69 -79.00 9.8 NDBC SETTLEMENT POINT, GBI 41010 28.91 -78.55 5 NDBC CANAVERAL EAST 120NM EAST OF CAPE CANAVERAL 6-meter NOMAD buoy, ARES payload CMRC3 23.80 -76.10 10 CREWS/AOML NORTH NORMAN'S REEF, BAHAMAS	41009	28.50	-80.18	5	NDBC	CANAVERAL 20 NM EAST OF CAPE CANAVERAL, FL	6-meter NOMAD buoy, ARES payload
FWYF1 25.59 -80.10 43.9 NDBC FOWEY ROCKS, FL LKWF1 26.61 -80.03 13.7 NDBC LAKE WORTH, FL SPGF1 26.69 -79.00 9.8 NDBC SETTLEMENT POINT, GBI 41010 28.91 -78.55 5 NDBC CANAVERAL EAST 120NM EAST OF CAPE CANAVERAL 6-meter NOMAD buoy, ARES payload CMRC3 23.80 -76.10 10 CREWS/AOML NORTH NORMAN'S REEF, BAHAMAS	VAKF1	25.73	-80.16	9.1	NOS-NWLON	8723214 - VIRGINIA KEY, FL	
LKWF1 26.61 -80.03 13.7 NDBC LAKE WORTH, FL SPGF1 26.69 -79.00 9.8 NDBC SETTLEMENT POINT, GBI 41010 28.91 -78.55 5 NDBC CANAVERAL EAST 120NM EAST OF CAPE CANAVERAL 6-meter NOMAD buoy, ARES payload CMRC3 23.80 -76.10 10 CREWS/AOML NORTH NORMAN'S REEF, BAHAMAS	FWYF1	25.59	-80.10	43.9	NDBC	FOWEY ROCKS, FL	
SPGF1 26.69 -79.00 9.8 NDBC SETTLEMENT POINT, GBI 41010 28.91 -78.55 5 NDBC CANAVERAL EAST 120NM EAST OF CAPE CANAVERAL 6-meter NOMAD buoy, ARES payload CMRC3 23.80 -76.10 10 CREWS/AOML NORTH NORMAN'S REEF, BAHAMAS	LKWF1	26.61	-80.03	13.7	NDBC	LAKE WORTH, FL	
41010 28.91 -78.55 5 NDBC CANAVERAL EAST 120NM EAST OF CAPE CANAVERAL 6-meter NOMAD buoy, ARES payload CMRC3 23.80 -76.10 10 CREWS/AOML NORTH NORMAN'S REEF, BAHAMAS 6-meter NOMAD buoy, ARES payload	SPGF1	26.69	-79.00	9.8	NDBC	SETTLEMENT POINT, GBI	
CMRC3 23.80 -76.10 10 CREWS/AOML NORTH NORMAN'S REEF, BAHAMAS	41010	28.91	-78.55	5	NDBC	CANAVERAL EAST 120NM EAST OF CAPE CANAVERAL	6-meter NOMAD buoy, ARES payload
	CMRC3	23.80	-76.10	10	CREWS/AOML	NORTH NORMAN'S REEF, BAHAMAS	

B-3. Buoy, C-MAN, and NOS Platform Locations (cont'd)

Station	Lat	Lon	Height (m)	Station Provider	Station Location	Payload Comments
FPKG1	32.03	-80.9	6.7	NOS-NWLON	8670870 - FORT PULASKI, FL	
41008	31.40	-80.87	5	NDBC	GRAY'S REEF, SAVANNAH, GA	3-meter discus buoy, ARES payload
SPAG1	31.38	-80.57	50	SIO	U.S. NAVY TOWER R2 GA	
FRPS1	32.34	-80.46	10	NOS-NWLON	8668498 - FRIPPS INLET, SC	
41033	32.28	-80.41	3	Caro-COOPS	FRIPP NEARSHORE (FRP 2)	
SECG1	30.80	-80.32	35	NC-COOS	U.S. NAVY TOWER R4 GA	
SKMG1	31.53	-80.24	50	SIO	U.S. NAVY TOWER M2R6 GA	
TYBG1	31.63	-79.92	34	SIO	U.S. NAVY TOWER R8 GA	
FBIS1	32.68	-79.89	9.8	NDBC	FOLLY ISLAND, SC	
SCIS1	32.86	-79.71	10	NOS-NWLON	8664941 - S CAPERS ISLAND, SC	
41029	32.81	-79.63	3	Caro-COOPS	CAPERS NEARSHORE (CAP 2)	
41030	32.52	-79.34	3	Caro-COOPS	CAPERS MID-SHELF (CAP 3)	
41004	32.51	-79.10	5	NDBC	EDISTO, CHARLESTON, SC	3-meter discus buoy, VEEP payload
MROS1	33.66	-78.92	10	NOS-NWLON	8661070 - SPRINGMAID PIER, SC	
SNSN7	33.87	-78.51	10	Caro-COOPS	8659897 - SUNSET BEACH, NC	
41024	33.83	-78.48	3	Caro-COOPS	SUNSET NEARSHORE (SUN 2)	
IMDN7	34 21	77.80	10	CODMD	8658163 - JOHNNY MERCER PIER,	
51011 147	54.21	-77.00	10	CORM	WRIGHTSVILLE BEACH, NC	
41038	34.14	-77.71	3	CORMP	ILM2, WRIGHTSVILLE BEACH, NC	
FPSN7	33.49	-77.59	44.2	NDBC	FRYING PAN SHOALS, N C	
41013	33.48	-77.58	5	NDBC	FRYING PAN SHOALS, NC BUOY	3-meter discus buoy, DACT payload
41037	33.99	-77.36	3	CORMP	ILM3, WRIGHTSVILLE BEACH, NC	
41035	34.48	-77.28	5	NDBC	ONSLOW BAY, NC	3-meter discus buoy, ARES payload
CLKN7	34.62	-76.52	9.8	NDBC	CAPE LOOKOUT, NC	
41002	32.28	-75.19	5	NDBC	S HATTERAS - CHARLESTON, SC	6-meter NOMAD buoy, VEEP payload

B-3. Buoy, C-MAN, and NOS Platform Locations (cont'd)

Station	Lat	Lon	Height	Station Provider	Station Location	Payload Comments
BLTM2	39.27	-76.58	10(m)	NOS-NWLON	8574680 - BALTIMORE, MD	
FSKM2	39.22	-76.53	10	NOS-NWLON	8574728 - FRANCIS SCOTT KEY BRIDGE, MD	
YKTV2	37.23	-76.48	10	NOS-NWLON	8637689 - YORKTOWN, VA	
LWTV2	38.00	-76.47	10	NOS-NWLON	8635750 - LEWISETTA, VA	
CBIM2	38.32	-76.45	10	CBOS	CHESAPEAKE BIO LAB WEATHER STATION,	
					MD	
SLIM2	38.32	-76.45	10	NOS-NWLON	8577330 - SOLOMON'S ISLAND, MD	
TPLM2	38.90	-76.44	18	NDBC	THOMAS POINT, MD	
CRYV2	36.89	-76.34	10	NOS-NWLON	8638595 - SOUTH CRANEY ISLAND, VA	
YKRV2	37.25	-76.33	10	NOS-NWLON	8637611 - YORK RIVER E. REAR RANGE LIGHT,	
					VA	
MNPV2	36.78	-76.30	10	NOS-NWLON	8639348 - MONEY POINT, VA	
TCBM2	39.12	-76.25	10	NOS-NWLON	8573364 - TOLCHESTER BEACH, MD	
HPLM2	38.59	-76.13	10	CBOS	HORN POINT WEATHER STATION MD	
CBBV2	36.97	-76.11	13	NOS-NWLON	8638863 - CHESAPEAKE BAY BRIDGE TUNNEL,	
					VA	
CAMM2	38.57	-76.07	6.1	NOS-NWLON	8571892 - CAMBRIDGE, MD	
BISM2	38.22	-76.04	10	NOS-NWLON	8571421 - BISHOPS HEAD, MD	
RPLV2	37.54	-76.02	10	NOS-NWLON	8632837 - RAPPAHANNOCK LIGHT, VA	
CHYV2	36.93	-76.01	10	NOS-NWLON	8638999 - CAPE HENRY, VA	
KPTV2	37.17	-75.99	6.4	NOS-NWLON	8632200 - KIPTOPEKE, VA	
CHCM2	39.53	-75.81	10	NOS-NWLON	8573927 - CHESAPEAKE CITY, MD	
DUCN7	36.18	-75.75	20.4	NDBC	DUCK PIER, NC	
CHLV2	36.90	-75.71	43.3	NDBC	CHESAPEAKE LIGHT, VA	
WAHV2	37.61	-75.69	10	NOS-NWLON	8631044 - WACHAPREAGUE, VA	
DELD1	39.58	-75.59	10	NOS-NWLON	8551762 - DELAWARE CITY, DE	
RDYD1	39.56	-75.57	10	NOS-NWLON	8551910 - REEDY POINT, DE	
41025	35.15	-75.29	5	NDBC	DIAMOND SHOALS	3-meter discus buoy, ARES payload
PHBP1	39.93	-75.14	6.4	NOS-NWLON	8545240 - PHILADELPHIA, PA	
LWSD1	38.78	-75.12	10	NOS-NWLON	8557380 - LEWES, DE	
BRND1	38.99	-75.11	10	NOS-NWLON	8555889 - BRANDYWINE SHOAL LIGHT, DE	
CMAN4	38.97	-74.96	12.2	NOS-NWLON	8536110 - CAPE MAY, NJ	
44014	36.58	-74.83	5	NDBC	64 NM EAST OF VIRGINIA BEACH, VA	3-meter discus buoy, DACT payload
AVAN4	39.09	-74.72	10	NDBC	STEVENS INST	
44009	38.46	-74.70	5	NDBC	26 NM SOUTHEAST OF CAPE MAY, NJ	3-meter discus buoy, VEEP payload
ACMN4	39.38	-74.42	15	Stevens Inst	ATLANTIC CITY MARINA, NJ	
ACYN4	39.36	-74.42	10	NOS-NWLON	8534720 - ATLANTIC CITY, NJ	
BRBN4	39.61	-74.20	10	Stevens Inst	AVALON, NJ	
44004	38.46	-70.69	5	NDBC	HOTEL 200 NM EAST OF CAPE MAY,NJ	6-meter NOMAD buoy, ARES payload

Station	Lat	Lon	Height	Provider	Station Location	Payload Comments
44137	41.83	-60.94	5(m)	Env Canada	EAST SCOTIA SLOPE	-
44141	42.10	-56.22	5	Env Canada	LAURENTIAN FAN	
44024	42.31	-65.93	4	GoMOOS	BUOY N - NORTHEAST CHANNEL	2-meter discus buoy
44142	42.50	-64.02	5	Env Canada	LA HAVE BANK	
44038	43.62	-66.55	4	GoMOOS	BUOY L0102 - SCOTIAN SHELF	2-meter discus buoy
44140	43.75	-51.74	5	Env Canada	TAIL OF THE BANK	
44034	44.11	-38.11	4	GoMOOS	BUOY I0103 - EASTERN MAINE SHELF	2-meter discus buoy
44139	44.26	-57.39	5	Env Canada	BANQUREAU BANKS	
44258	44.54	-63.35	5	Env Canada	HALIFAX HARBOR	
44036	45.20	-66.02	4	GoMOOS	BUOY K0102 - SAINT JOHN	2-meter discus buoy
44251	46.44	-53.39	5	Env Canada	NICKERSON BANK	
44150	46.85	-64.64	5	Env Canada	LA HAVE BANK	3-meter discus buoy
44255	47.28	-57.35	5	Env Canada	NE BURGEO BANK	

Station	Lat	Lon	Height	Station Provider	Station Location	Payload Comments
51003	19.16	-160.74	5 (m)	NDBC	205 NM SOUTHWEST OF HONOLULU, HI	6-meter NOMAD buoy, VEEP payload
51002	17.15	-157.79	5	NDBC	215 NM SOUTH SOUTHWEST OF HILO, HI	6-meter NOMAD buoy, ARES payload
51004	17.52	-152.51	5	NDBC	SE HAWAII 185 NM SOUTHEAST OF HILO, HI	6-meter NOMAD buoy, ARES payload
42056	19.87	-85.06	10	NDBC	YUCATAN BASIN	12-meter discus buoy, ARES payload
42057	14.99	-79.99	10	NDBC	WESTERN CARIBBEAN	10-meter discus buoy, ARES payload
42058	14.98	-74.99	10	NDBC	CENTRAL CARIBBEAN	10-meter discus buoy, ARES payload
LPPR1	17.94	-67.05	10	CREWS/AOML	LA PARGUERA, PR	
SRVI1	17.78	-64.76	10	CREWS/AOML	ST. CROIX, USVI	
41100	15.90	-57.90	3.6	Meteo France	LESSER ANTILLES	
41101	14.60	-56.20	3.6	Meteo France	EAST OF MARTINIQUE	
41040	14.50	-53.02	5	NDBC	WEST ATLANTIC	6-meter NOMAD buoy, ARES payload
41041	14.53	-46.00	5	NDBC	MIDDLE ATLANTIC	6-meter NOMAD buoy, ARES payload
41026	12.00	-38.00	5	Caro-COOPS	SUNSET MID-SHELF (SUN 3)	

B-4. *A* Platfo

3-4. ASOS/METAR Platform Locations	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 102 102 103 104 105 105 101 93 101 94 93 101 94 95 105 105 105 105 105 105 105 10	124 121 136 13 123 123 123 123 125 122 126 131 129 128	90 147 145 140 140 141 144 143 144 143 144 145 148 148 148 148 148 148 148 148	163 162 157 158 53 159 164 53 165 165 165 165 165 165 165 165							
Station Lat Lon KRND 29.53 -98.28 KMFE 29.53 -98.29 KMFE 30.74 -98.24 KSEP 32.22 -98.18 K25R 26.44 -98.13 KEBG 26.43 -98.12 KMKL 27.71 -98.07 KBKS 27.71 -98.05 KNOG 27.89 -98.03 KALI 27.74 -98.03 KALI 27.74 -98.03 KALI 27.74 -98.03 KAIT 29.90 -97.83 KOOP 31.42 -97.80 KATT 30.32 -97.72 KROR 27.78 -97.69 KATT 30.32 -97.77 KRBM 30.20 -97.68 KGDJ 32.377 -97.69 KATS 30.18 -97.68 KHLE 10.88 -97.45 KNGW 27.77 -97.45	Provider Station Location NWS RANDOLPHARETX FAA MCALLEN MILLER INTLARPT, MCALLEN, FAA BURNET MUNI ARPT, BURNET, TX NWS EDINBURG INTL ARPT, TX NWS EDINBURG INTL ARPT, TX NWS BROOKS CO ARPT, TX FAA MINERAL WELLS MUNI ARPT, NEW BRAI NWS ORANCE GROVE NALF, TX NWS AUSTIN/SAN ANTONIO NEXRAD & SCD, TJ FAA MINERAL WELLS MUNI ARPT, NEW BRAI NWS AUSTIN/SAN ANTONIO NEXRAD & SCD, TJ FAA ALUCE INTL ARPT, ALICE, TX NWS SAN MARCOS (AWOS) TX NWS SAN MARCOS (AWOS) TX NWS GATESVILLE/CITY-CO ARPT, TX NWS GATESVILLE/CITY-CO ARPT, TX NWS GATESVILLE/CITY-CO ARPT, TX NWS GANEDRY MUNI ARPT, ALICE, TX NWS GATESVILLE/CITY-CO ARPT, TX NWS GATESVILLE/CITY-CO ARPT, TX NWS GATESVILLE/CITY-CO ARPT, TX NWS GATESVILLE/CITY-CO ARPT, TX NWS GATENT-MEROSTROMINTL ARPT, TX NWS G	# 86 TX 87 889 90 91 92 92 93 93 94 92 93 94 95 (96 97 98 99 100 101 102 103 104 104 105 106 106 107 108 108 109 100 111 TX 112 HRISTI, TX 113 17X 114 X 117 ISABEL, TX 119 122 120 123 133 134 136 137 138 138 136 139 140 141 142 142 143 144 144 144 144 146	Station KGLS KLES KLES KLEK KLEK KLEK KGCH KLEK KGCH KGCT KBPT KLCH KLCH KLCH KLCH KLCH KLCH KLCH KLCH	Lat Lon 29.27 -94.87 31.24 -94.75 31.58 -94.75 31.58 -94.75 31.58 -94.75 32.35 -94.65 32.35 -94.65 32.35 -94.65 32.35 -94.65 32.35 -94.63 30.89 -94.03 27.95 -93.98 32.45 -93.82 30.07 -93.80 32.54 -93.75 32.54 -93.35 30.83 -93.34 30.83 -93.34 30.83 -93.30 31.40 -93.28 31.105 -93.18 30.22 -93.15 31.100 -92.07 28.08 -92.77 31.100 -92.69 20.75 -92.68 32.51 -92.69 23.13 -92.57 31.30 -91.30 31.33 -92.57	Provider Stat FAA GAI FAA LUF NWS NAC NWS PHI FAA LUF NWS PHI FAA LUF NWS PHI FAA LUF NWS PHI NWS HIG NWS JAS NWS JAS NWS JAS NWS SAE NWS SAE NWS SAE NWS SAE NWS SAE NWS SAE NWS CAR NWS<	tion Location VIESTON SCHOLES APPT, GALVESTON, TX FKIN ANGELINA CTY ARPT, LUFKIN, TX COGDOCHES (AWOS) TX LUPSOIL PLATFORM, TX VEVIEWGREGG CO. T X HISLAND LA RT ARTHUR JEFFERSON CO, BEAUMONT, TX SPER COBELL FLD ARPT, TX KE CHARLES RGNL ARPT, SHREVEPORT, LA ANGE CO ARGNL ARPT, LA KEVEPORT DOWNTOWN ARPT, SHREVEPORT, LA HISLAND 264C (SA WRS), LA RSDALE AFB LA ST CAMERON S60, LA AUREGARD RGNL ARPT, LA MEGON HELPORT LA ASON RIDGE FTPOL, LA TT POLK (ARWY) LA PLATFORM, LA ENAULT AIRPARK LA TCHITOCHES, LA LENDON LARPT, LA LERTON LANDING, LA ST CAMERON 360 (SAWRS), LA EXANDRIA INT, ARPT, ALEXANDRIA, LA EXANDRIA INTL ARPT, ALEXANDRIA, LA REACOASTAL CITY LA NEOR ERGIL LA UTH MARSH ISLAND IA WIBERIA ACADIANA RGNL, NEW IBERIA, LA REHOUSE MEM ARPT/IA STROP LA US UTH MARSH SLAND 1A WIBERIA ACADIANA RGNL, NEW IBERIA, LA REHOUSE MEM ARPT/IA STROP LA US UTH MARSH SLAND LA WIBERIA ACADIANA RGNL, NEW IBERIA, LA REHOUSE MEM ARPT/IA STROP LA US UTH MARSH SLAND LA WIBERIA ACADIANA RGNL, ALEXANDRIA, LA REHOUSE MEM ARPT/IA STROP LA US UTH MARSH SLAND LA WIBERIA ACADIANA RGNL, NEW IBERIA, LA REHOUSE MEM ARPT/IA STROP LA US UTH MARSH SLAND LA WIGE PHALULAR TONN (LA SUBL ARPT, MSCH ARPT, MCOME, LA LIJANO SOUTH SA MONDI MUN ARPT, LA LILIANO SOUTH SA MONDI MUN ARPT, LA LILIANO SOUTH AFOURCHE ARPT, MCOME, LA ELIALAREY ANA ARPT, MCOME, LA LILIANS SINTA ARPT, MCOURE, AL XEON HOWRON ARPT, MOBILE, AL LILIANO SOLAR STANDA LA WORLEANS NAS LA W ORLEANS NAS LA W ORLEANS NAS LA W ORLEANS NAS LA W O						
	I	8-4. AS	OS/ME	TAR P	latform Locations (cont'	' d)		-				
-------------	----------------	-----------------------	----------------------------------	-----------------	--	--	---	---	---	------------------	-----------------	--
	2	2 0 ¹ 3	× ⁸ 4 • 7 5 6 9			-7	42 33 • • 43 34 • 43 50	9	80			
					COOP DODA DODON X FAA NWS 17 18	28 26 29 26 29 26 29 26 29 25 3 20	45 46 × 36 5 48 40 40 30 37	54 55 3 57 51 58 55 51 58 52 60 4 63 63	3 5 5 6 6 70			
	2	5			26		41 44 ~ 1	64 64	73 71 975 68 × 62 2 9 97 4 95	76	778	79 25
tion IDZ	Lat 30.70	Lon -87.02	Height 10 (m)	Provider NWS	Station Location MILTON/WHITING FIELD S	# 41	Station KEYW	Lat 24.55	Lon -81.75	Height 10 (m)	Provider NWS	Station Location KEY WEST INTL ARPT
ISE IFJ	30.72 30.51	-87.02 -86.95	10 10	NWS NWS	MILTON/WHITING FIELD NAS-N. MILTON/PENSACOLA NALF	42 43	KJAX KNIP	30.50 30.23	-81.69 -81.68	10	NWS DODn	JACKSONVILLE IN IL ARP I JACKSONVILLE NAS
IRT	30.43	-86.68	10	NWS	HURLBURT FLD (AF)	44	KNQX	24.57	-81.68	10	DODn	KEY WEST NAS
OBL VPS	30.42 30.48	-86.68 -86.53	10 10	NWS NWS	AFCWCNTFS EGLINAEB	45 46	KNAE K901	29.14 29.12	-81.63 -81.57	10 10	NWS NWS	ASTOR/BOMBING RANGEDET ASTOR NAS
GI	30.65	-86.52	10	NWS	DUKE FLD/EGLIN AUX	47	KCRG	30.34	-81.51	8	FAA	JACKSONVILLE CRAIG MUNI ARP
EW	30.78	-86.52	10	FAA	BOB SIKES ARPT, CRESTVIEW	48	KISM	28.29	-81.44	10	NWS	KISSIMMEE MUNI ARPT
FN	30.39	-86.47 -85.69	10	FAA FAA	BAY CO ARPT, PANAMA CITY	49 50	KNKB KSGJ	30.40 29.96	-81.42 -81.34	10	NWS	ST AUGUSTINE ARPT
AM	30.07	-85.58	10	NWS	TYNDALLAFB	51	KORL	28.55	-81.34	10	FAA	ORLANDO EXECUTIVE ARPT
1AI AF	30.84 29.73	-85.18 -85.03	10	FAA NWS	MAKIANNA MUNI ARPT APALACHICOLA ARPT	52 53	KMCO KSFB	28.42 28.78	-81.33 -81.24	8 10	NWS FAA	OKLANDO INTL ARPT, O RLANDO ORLANDO SANFORD ARPT
LH	30.39	-84.35	10	NWS	TALLAHASSEE RGNL ARP T	54	KOMN	29.30	-81.11	10	NWS	ORMOND BCHMUNIARPT
)J TY	30.07 29.63	-83.57 -83.11	10 10	NWS NWS	PERRY -FOLEY ARPT, CROSS CITY ARPT CROSS CITY	55 56	KDAB KMTH	29.17 24 73	-81.07 -81.05	10 10	NWS FAA	DAYTONA BCH INTL ARP T MARATHON ARPT
E	27.91	-82.69	10	FAA	ST. PETERSBURG ARPT	57	KEVB	29.06	-80.95	10	NWS	NEW SMYRNA BCH MUNI ARPT
'G RF	27.77	-82.63	8 10	FAA	ALBERT-WHITTED ARPT	58 59	KTIX KTTS	28.52 28.62	-80.80 -80.72	10	NWS NWS	TITUSVILLE NASA SHUTTI E ECUTV
Q	27.40	-82.56	10	FAA	SARASOTA-BRADENTON ARPT	60	KMLB	28.10	-80.64	10	FAA	MELBOURNE INTL ARPT
PA CE	27.96	-82.54	8	NWS	TAMPA INTL ARPT, TAMPA	61	KCOF	28.23	-80.61	10	DODa	COCOA BCH PATRICK AFB
CF KV	27.85 28.47	-82.52 -82.45	10	IN W S FAA	MACDILL AFB, IAMPA HERNANDO CO. ARPT	62 63	KIMB	25.64 27.66	-80.44 -80.41	10	faa FAA	VIIA/KENDALL-TAMIAMI AKPT VERO BEACH MUNI ARPT
PF	27.92	-82.45	10	NWS	PETER O KNIGHT ARPT/ TAMPA	64	KA	25.61	-80.41	10	NWS	MIAMI NEXRAD
3W DF	27.70	-82.40	10	NWS	TAMPA BAY FL TAMPA VANDENBUDG ADD T	65 66	KHST	25.48	-80.38	10	NWS FA A	HOMESTEAD AFB
NV	29.69	-82.33	10	FAA	GAINESVILLE RGNL ARP T	67	KMIA	27.30	-80.38	8 10	NWS	MIAMI INTL ARPT, MIA MI
F	29.17	-82.22	10	NWS	OCALA_MUNI_(AWOS)	68	KOPF	25.91	-80.28	10	FAA	OPA LOCKA ARPT, MIAMI
M.	28.00 27.98	-82.16 -82.02	10 10	NWS NWS	PLANT CITY MUNI ARPT LAKELAND RGNI	69 70	KHWO KSUA	26.00 27.18	-80.23 -80.22	10 10	FAA NWS	HOLLY WOOD N PERRY ARPT (ASO STUART/WITHAM FLD ARPT
Đ	26.92	-81.99	10	FAA	PUNTA GORDA ARPT	71	KFXE	26.20	-80.13	10	FAA	FT. LAUDERDALE EXECUTIVE ARI
G	28.97	-81.97	10	NWS	THE VILLAGES ,FL	72	KFLL	26.07	-80.15	10	FAA	FT LAUD/HOLLYWOOD IN TLART
0	30.22 30.22	-81.88 -81.88	10 10	DODn NWS	CECIL FLD NAS FL CECIL FLD NAS FL	73 74	KPBI KPMP	26.68 26.25	-80.12 -80.12	10 10	NWS FAA	WEST PALM BCH POMPANO BEACH
Ĩ	26.59	-81.86	8	FAA	FT MYERS PAGE FIELD	75	KBCT	26.38	-80.11	10	NWS	BOCA RATON ARPT
\$7	28.82	-81.81	10	FAA	LEESBURG MUNI ARPT	76	MYBS	25.73	-79.30	10	INTL	ALICE TOWN/S BIMINI, BA
(27.95 26.15	-81.78 -81.77	10	NWS	DAKTOW MUNIARPI NAPLES MUNIARPT	77 78	MYGF	26.70 26.55	-78.97 -78.70	10	INTL	WESTEND INTLARPT, BA FREEPORT INTLARPT, BA
V	26.53	-81.77	10	FAA	FT. MYERS SW RGNL ARPT	79	MYNN	25.05	-77.47	10	INTL	NASSAU INTL ARPT, BA
3	28.06	-81.76	10	FAA	WINTER HAVEN'S GILBE RT ARPT							

ŧ

;

xvi

			• 12		*2.			8	0 126	× 🖕	•141 × 147	1592 160 163
					45 47 70 81 8	13 × 90	99 2	-108	•117 •118 125	132	138 145	
		26	10	3	20 50 51 61 TZ	- 84 ×	198	105 1	12 123	28 134	B9 9144	148 153 15781 165
		3 9	11	21	2 C 5 12 12 1	93 9	596)		×	* 131 *	140-143	
		4 0	16	•	27 36 42 52 X 78				121 134	RT	145	154
		19530	14	1	28 × 3 40 43 • 54 58 68	9	8 103	110 113	×	135	142	
		*	1	×	41 ⁴⁹ ⁶³ ⁷ 1 ³ 2 ₄₀	53	102	× 109		30		
		6		. 3	30 4 61 ~~		10	7	5	101	000	8
		•	18	29.25	52 56	85	,	< 114 1	25		000 <i>a</i> 000n	
		3	13 🕌		31 82	• ~	104	-	<i>,</i>	ž	NTL_METAR	
					7 * .	86 91/	P	105	-			
		2			46 66 72	• 3	2.91		B- 4	I. ASC)S/MET	AR
		×	14 3	20 24 ••• ×	(¹⁶ 34 53 ²³	3			Pla	tform	Locati	ons (cont'd)
				22	→ ³⁸ • 59 ⁶ _07	2 89						
		95				8						
#	Station	Lat	Lon	Provid	ler Station Location		#	Station	Lat	Lon	Provider	Station Location
2	KGZH	31.42	-87.05	FAA	EVERGREEN MIDDLETON FLD, EVERGREEN, AL		84 85	KJYL	32.65	-81.60	NWS	SHELBY MUNI ARPI, NC SYLVANIA/PLANTATION AIRPARK, GA
3 4	KDCU K3A1	34.66 34.27	-86.94 -86.86	FAA NWS	DECATUR PRYOR FLD, DECATUR, AL FOLSOM FLD ARPT, AL	:	86 87	KLHW KNBQ	31.88 30.79	-81.57 -81.56	NWS NWS	FT STEWART/WRIGHT GA KINGS BAY NAVAL STN, GA
5 6	KHSV KEET	34.64 33.18	-86.77 -86.78	NWS FAA	HUNTSVILLE INTL/ JONES FLD, HUNTSVILLE, AL ALABASTER SHELBY CO ARPT, ALABASTER, AL	. :	88 89	KBQK KSSI	31.25 31.15	-81.47 -81.39	NWS FAA	BRUNSWICK/GLYNCO GA BRUNSWICK MALCOLM MCKINNON ARPT, GA
7	KBMX	33.17	-86.77	NWS	BIRMINGHAM NEXRAD, AL		90	KHKY	35.74	-81.38	FAA	HICKORY RGNL ARPT, HICKORY, NC
9	KHUA	34.68	-86.68	NWS	REDSTONE ARMY AIRFLD, AL		91 92	KIPJ	35.48	-81.16	NWS	LINCOLNTON NC
10 11	KM82 KMDQ	34.86 34.86	-86.56 -86.56	NWS NWS	MADISON CO EXEC ARPT, AL MADISON CO EXEC ARPT, AL		93 94	KAKH KSVN	35.20 32.02	-81.16 -81.15	FAA NWS	GASTONIA MUNI ARPT, GASTONIA, NC HUNTER (AAF) GA
12 13	KMQY KMGM	36.02 32.30	-86.52 -86.41	NWS NWS	SMYRNA, TN MONTGOMERY DANNELLY ARPT, AL		95 96	K29J KUZA	34.98 34.98	-81.06 -81.06	NWS FAA	ROCK HILL, SC ROCK HILL YORK CO ARPT, ROCK HILL, SC
14	K79J	31.32	-86.40	NWS	ANDALUSIA/OPP ARPT AL		97	KTOI	31.96	-81.01	FAA	TROY MUNI ARPT, TROY, AL
15	KMAF K8A0	34.23	-86.26	NWS	ALBERTVILLE MUNI ARP T, AL		98 99	KSVH	35.97	-80.99	NWS	STATESVILLE MUNI ARPT, NC
17 18	KGAD KALX	33.97 32.91	-86.08 -85.96	NWS NWS	GADSEN MUNI (AWOS) AL THOMAS C RUSSELL FLD ARPT, AL		100 101	KCLT KGMU	35.22 35.22	-80.96 -80.96	NWS FAA	CHARLOTTE DOUGLAS INTL ARPT, NC GREENVILLE DOWNTOWN ARPT, GREENVILLE, SC
19 20	KANB KSXS	33.59 31.35	-85.86 -85.85	FAA NWS	ANNISTON METRO ARPT, ANNISTON, AL SCHELL AHP AL		102 103	KOGB KMMT	33.46 33.92	-80.85 -80.80	FAA NWS	ORANGEBURG ARPT, ORANGEBURG, SC MCENTIRE ANG BASE SC
21	K4A9	34.47	-85.72	NWS	ISBELL FLD ARPT, AL		104	KNBC	32.48	-80.72	NWS	BEAUFORT MCAS SC
22	KAUB	31.28	-85.72 -85.50	NWS	AUBURN UNIV. (AMOS) AL		105	KHXD	32.22	-80.71	NWS	HILTON HEAD (AWOS) SC
24 25	KDHN KAUO	31.32 32.62	-85.45 -85.43	FAA NWS	DOTHAN RGNL ARPT, DOTHAN, AL AUBURN-OPELIKA APT AL		107 108	KEQY KRUQ	33.01 35.65	-80.62 -80.52	FAA NWS	MONROE ARPT, MONROE, NC SALISBURY/ROWAN CO ARPT, NC
26 27	KCHA KFFC	35.03 34.35	-85.20	NWS FAA	CHATTANOOGA/LOVELL, TN PEACHTREE CITY FLACON FLD ATLANTA GA		109	KFTY KSSC	33.77 33.97	-80.52 -80.47	FAA NWS	ATLANTA FULTON CO ARPT, ATLANTA, GA SHAW AFB/SUMTER SC
28	KRMG	34.34	-85.15	NWS	ROME RB RUSSELL ARPT, ROME, GA		111	KEXX	35.78	-80.30	NWS	LEXINGTON DAVIDSON CO ARPT, NC
29 30	KLGC	33.01	-85.08	NWS	LA GRANGE/CALLAWAY ARPT, GA		112	KCAE	33.94	-80.15	NWS	COLUMBIA METROPOLITAN ARPT, COLUMBIA, SC
31 32	KLSF KCSG	32.33 32.52	-85.00 -84.93	NWS NWS	FORT BENNING GA COLUMBUS METRO ARPT GA		114 115	KIGC KCHS	32.90 32.90	-80.05 -80.04	NWS NWS	CHARLESTON AFB SC CHARLESTON INTL ARPT, CHARLESTON, SC
33 34	K11J KBU	31.40 31.40	-84.90 -84.89	NWS NWS	EARLY CO ARPT, GA EARLY CO ARPT GA		116 117	KNEX KHBI	32.92 35.65	-79.98 -79.90	NWS NWS	NISE CHARLESTON SC ASHEBORO MUNI ARPT, NC
35	KDNN	34.72	-84.87	NWS	DALTON MUNI ARPT, GA		118	KW44	35.65	-79.90	NWS	ASHEBORO MUNI ARPT, NC
37	KCCO	33.31	-84.77	NWS	NEWNAN COWETA ARPT, GA		120	K45J	34.89	-79.76	NWS	ROCKINGHAM-HAMLET ARPT, NC
38 39	KBGE KRYY	30.97 34.01	-84.64 -84.60	NWS	DECATUR CO INDUS AIR PARK, GA MARIETTA/COBB CO ARPT, GA		121 122	KFLO KHFF	34.19 35.03	-79.73 -79.50	FAA NWS	FLORENCE RGNL ARPT, FLORENCE, SC MACKALL AAF NC
40 41	KMGE KATL	33.92 33.62	-84.52 -84.44	NWS NWS	DOBBINS AFB/MARIETT GA ATLANTA HARTSFLD INT LARPT, ATLANTA, GA		123 124	KSOP KMEB	35.23 34.78	-79.40 -79.37	NWS FAA	SOUTHERN PINES AWOS NC MAXTON/LAURINBURG MAXTON ARPT, NC
42 43	K47A KPDK	34.31 33.87	-84.42 -84.27	NWS FAA	CHEROKEE CO ARPT, GA ATLANTA DEKLAB-PEACHTREE ARPT GA		125	KTTA KIGX	35.58 35.94	-79.10 -79.06	NWS FAA	SANFORD-LEE CO RGNL ARPT, NC CHAPEL HILL WILLIAMS ARPT CHAPEL HILL NC
44	KOPN	32.95	-84.26	NWS	THOMASTON -UPSON CO ARPT, GA		127	KLBT	34.61	-79.06	FAA	LUMBERTON MUNI ARPT, LUMBERTON, NC
45 46	KABY	31.54	-84.23	FAA	ALBANY SW GA RGNL ARPT, ALBANY, GA		128	KFBG	35.17	-79.02	NWS	FORT BRAGG/SIMMONS NC
47 48	KMRX KTYS	35.82 35.82	-83.98 -83.98	NWS NWS	KNOXVILLE KNOXVILLE MUNI		130 131	KMYR KFAY	33.68 34.98	-78.93 -78.88	NWS FAA	MYRTLE BEACH (CIV) SC FAYETTEVILLE RGNL NC
49 50	KLZU K6A3	33.98 35.19	-83.96 -83.86	NWS NWS	LAWRENCEVILLE/GWINNETT CO, GA ANDREWS, NC		132 133	KRDU K37W	35.89 35.38	-78.78 -78.73	NWS NWS	RALEIGH DURHAM INTL, RALEIGH, NC ERWIN/HARNETT CO ARP T. NC
51	KRHP	35.19	-83.86	NWS	ANDREWS -MURPHY ARPT, NC		134	KHRJ	35.38	-78.73	NWS	ERWIN/HARNETT CO ARPT, NC
53	KMGR	31.08	-83.80	NWS	MOULTRIE MUNI ARPT, GA		136	KCPC	34.27	-78.71	NWS	COLUMBUS CO MUNI ARPT, NC
54 55	KWDR KMCN	33.98 32.68	-83.67 -83.65	NWS NWS	WINDER -BARROW ARPT, GA MACON MIDDLE RGNL ARPT, MACON, GA		137 138	KEYF KRAX	34.60 35.67	-78.58 -78.49	NWS NWS	CURTIS L BROWN JR FLD ARPT, NC RALEIGH/DURHAM NEXRAD, NC
56 57	KWRB K1A5	32.63 35.22	-83.60 -83.42	NWS NWS	WARNER ROBINS AFB GA MACON CO ARPT, NC		139 140	KJNX KCTZ	35.54 34.98	-78.39 -78.36	NWS NWS	SMITHFLD/JOHNSTON CO ARPT, NC SAMPSON CO ARPT/CLIN TON, NC
58 59	KAHN	33.95	-83.33	NWS FA A	ATHENS BEN EPPS ARPT, ATHENS, GA		141 142	KLHZ	36.02	-78.33	NWS NWS	LOUISBURG/FRANKLIN CO ARPT, NC
60	KFZG	31.68	-83.27	NWS	FITZGERALD MUNI ARPT, GA		143	KDPL	35.00	-77.98	NWS	KENANSVILLE/DUPLIN CO, NC
61 62	KMLJ KVAD	33.14 30.97	-83.24 -83.20	NWS	MILLEDGEVILLE/BALDWIN CO ARPT, GA MOODY AFB/VALDOSTA GA		144 145	KGSB KGWW	35.33 35.46	-77.96	NWS	GOLDSBORO-WAYNE MUNI ARPT, NC
63 64	K3J7 KDBN	33.60 32.57	-83.14 -82.99	NWS NWS	GREENE CO RGNL ARPT, GA DUBLIN/W H BUD BARRON ARPT, GA		146 147	KILM KRWI	34.27 35.85	-77.90 -77.90	NWS FAA	WILMINGTON INTL ARPT, WILIMINGTON, NC ROCKY MOUNT WILSON ARPT, ROCKY MOUNT, NO
65 66	KCEU KDOH	34.67 31.47	-82.88 -82.85	FAA NWS	CLEMSON -OCONEE CO ARPT, CLEMSON, SC DOUGLAS MUNI ARPT, GA		148 149	KISO KOAI	35.33 34.83	-77.62 -77.62	NWS NWS	KINSTON/STALLINGS NC JACKSONVILLE (AWOS) NC
67	K27A	34.10	-82.82	NWS	ELBERT CO ARPT/PATZ FLD, GA		150	KNCA	34.72	-77.45	NWS	NEW RIVER MCAS NC
68 69	KII Y KAND	33.78 34.50	-82.82 -82.71	NWS FAA	ANDERSON CO ARPT, ANDERSON, SC		151 152	KOCW	35.63 35.57	-77.05	NWS	WASHINGTON/WARREN FLD APRT, NC
70 71	KAVL KHQU	35.43 33.53	-82.54 -82.52	NWS NWS	ASHVILLE RGNL ARPT, ASHVILLE, NC THOMSON, GA		153 154	KEWN KNJM	35.07 34.68	-77.05 -77.03	FAA NWS	NEW BERN CRAVEN RGNLARPT, NEW BERN, NC BOGUE FLD MCALF NC
72 73	KAMG	31.54 31.25	-82.51	FAA	ALMA BACON CO ARPT, ALMA, GA WAYCROSS/WARE CO. GA		155 156	KMHX KNKT	34.78 34.90	-76.88 -76.88	NWS DODp	NEWPORT NC CHERRY POINT MCAS NC
74	KBHC	31.71	-82.39	NWS	BAXLEY MUNI ARPT, GA		157	KNIS	34.89	-76.86	NWS	CHERRY POINT MCAS, NC
76	KUDI	32.19	-82.38 -82.37	NWS	VIDALIA MUNI APRT, GA		158	KMRH	36.03	-76.57	NWS	EDENTOR/NORTHEASTERN ARPT, NC
77 78	KGSP KGRD	34.91 34.25	-82.21 -82.15	NWS FAA	GREER GREENVILLE-SPARTANBRG ARPT, SC GREENWOOD CO ARPT, GREENWOOD, SC		160 161	KBUY KNBT	36.05 35.02	-76.47 -76.46	FAA NWS	BURLINGTON ALAMANCE RNGL ARPT, NC PINEY ISLAND BT11 BOMBING RG, NC
79 80	KDNL KAGS	33.47 33.37	-82.04 -81.96	FAA NWS	AUGUSTA DANIEL FLD ARPT, AGUSTA, GA AUGUSTA BUSH FLD, AUGUSTA, GA		162 163	KMQI KFFA	35.92 36.02	-75.70 -75.67	NWS NWS	MANTEO/DARE CO RGNL NC KILL DEVIL HILLS/FIR ST FLT ARPT. NC
81	KFQD	35.43	-81.94	NWS	RUTHERFORDTON/MARCHMAN FLD, NC		164	KHSE	35.23	-75.62	NWS	HATTERAS BILLY MITCH ELL FLD, NC
82 83	KMRN	35.82	-81.61	NWS	MORGANTON-LENOIR ARPT, NC		100	кпАI	33.21	-13.33	11 11 2	CALE HALLERAD NU

Ľ	3-4. A	SOS/I	META	AR Platfor	m Locations (co	nt'd)						
	9 <mark>0</mark>		● 25	80	9 57	90		× 129	151	154) 5	61_163	165
	2 12	11	₽ 27	● 48 ●	50 • 64	×	12	14 كلم 8	5 9 9146 8	158	×	166 167
		-	∑ ● 3	2 37 44 5	1	101 91	120 × 124	0130	14748	15916	0 162	164
40	1	7	× 28	·● ₄₃ ● ·	~	92 93 ×	121 ×	• • • • • • • • • • • • • •	144	2 ∬56		10
46	•	ş		38	66 78		1237	₽ 134	41 19 918	1		4·U
	10	2		×	Berry Bry	11	4	133	143	F		
	×.		31 X		58 × 1/2 • 81	99	12	×138	550			
	22		29 😐	40 47		& • • • • •		\ 😽	40			
	Č	2	20		63 🧕 🤵	3 🖓 89 (🏹	200 1: South 1	×	42			
	5 <mark>0</mark>			/ sg	0 _ 60 ⁹ 70 g 🕲		125_	7				
	-		26	42	× 62 73 74		\$ 126	136				
		16	- ⁴⁸ /	•	77	67	122	<u>ر</u>				
>	ی 👛	15 ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	34 46	55	94 N	f est		O COOF ■ DODa	,		
	4	×	9 ²⁴ 23		♥ 69 ~ ♥	07	. V		🕤 DODn 🗙 FAA			
	• 14	18	-		50 71	88 1 1 1			INTL_ NW/S	METAR		
			-223	13 45 39 X	^{`oo} ^{c7} oo		• 👗		_			
	<u>_</u> { <u></u>	17	30	● 41 49	³³ × 85 ♥ ♥							
	-		×	@ 36		Land and	SUL BULLE	75				
Lat 39.95	Lon -81.90	Height 10 (m)	Provid NWS	er Station Location ZANESVILLE N	n MUNI, OH	# 85	Station KASJ	Lat 36.30	Lon -77.17	Height 10	Provider NWS	Station Location AHOSKIE/TRI-CO ARPT, NC
40.87 40.88	-81.88 -81.83	10 10	NWS NWS	WOOSTER/WA SMITHVILLE/V	YNE COARPT, OH WOOSTER, OH	86 87	KDCA KAKQ	38.85 36.98	-77.03 -77.00	10 8	NWS NWS	WASHING TON REAGAN NATL ARE WAKEFIELD MUNI ARPT, WAKEFI
37.06 38.31	-81.80 -81.72	10 10	NWS NWS	TAZEWELL CO CHARLESTON	D ARPT, VA NEXRAD,WV	88 89	KFKN KADW	36.70 38.82	-76.90 -76.87	10 10	NWS NWS	FRANKLIN/JB ROSE ANDREWS AFB, MD
36.20 38.37	-81.65 -81.60	10 10	NWS NWS	BOONE/WATA CHARLESTON	UGA CO HOS P HELIPAD, NC /KANAWHA, WV	90 91	KSEG KCXY	40.82 40.22	-76.86 -76.86	10 10	FAA FAA	SELINSGROVE PENN VALLEY ARP HARRISBURG CAPITAL CITY ARPI
37.60	-81.56	10	NWS	KEE FLD ARPT	T, WV	92 93	KTHV KMDT	40.20	-76.77	10	FAA FAA	YORK MUNI ARPT, YORK, PA MIDDI ETOWN HARRISBURG INTI
39.35	-81.43	10	FAA	PARKERSBUR	G/WILSON, WV	94	KFYJ	37.52	-76.76	10	NWS	MID PENINSULA RGNL ARPT, VA
36.43	-81.42	10	NWS	JEFFERSON/AS	SHE CO AR PT, NC	95 96	KJGG	37.24	-76.72	10	NWS	WILLIAMSBURG-JAMESTOWN ARI
40.47 36.90	-81.42	10	NWS	MARION/WYT	HEVILLE	97	KFAF	39.17	-76.62	10	NWS	FT EUSTIS/FELKER
37.30 37.78	-81.20 -81.12	8 10	FAA NWS	BLUEFIELD M BECKLEY MEN	ERCER CO. ARPT, WV MORIAL, WV	99 100	KDMH KSFQ	39.28 36.68	-76.62 -76.60	10 10	NWS NWS	BALTIMORE/INNER HARB OR (ASO SUFFOLK MUNI ARPT, VA
36.22 36.77	-81.10 -80.82	10 10	NWS NWS	N WILKESBOR HILLSVILLE	RO/WILKES CO ARPT, NC	101 102	KMUI KPHF	40.43 37.13	-76.57 -76.49	10 10	NWS FAA	MURI AAF/INDIANTOWN, PA NEWPORT NEWS INTL ARPT, VA
37.13 38.69	-80.68 -80.65	10	NWS NWS	DUBLIN/NEW BRAXTON CO	RIVER VALLEY, VA ARPT. WV	103 104	KNAK KBUY	38.98 36.05	-76.48 -76.47	10	NWS FAA	US NAVAL ACAD ANNAPOLIS, MD BURLINGTON ALAMANCE RNGL A
40.18	-80.65	10	FAA	WHEELING/OF	HIO CO, WV	105	KNUI	38.15	-76.42	10	NWS	ST INIGOES/WEBSTER FLD, MD
37.20	-80.42	10	NWS	ROANOKE/BL	ACKBURG, VA	100	KNHK	38.28	-76.40	10	DODn	PATUXENT RIVER NAS, MD
37.22 41.03	-80.42 -80.41	10	NWS	NEW CASTLE	MUNI ARPT, PA	108	KLFI KCPK	37.08	-76.37	10	NWS	CHESAPEAKE MUNI ARPT, VA
37.87 40.77	-80.40	10 10	NWS NWS	LEWISBURG/G BEAVER FALL	REENBRIE, WV S ARPT, PA	110	KLNS KNGU	40.12 36.93	-76.30 -76.28	8 10	FAA DODn	ELIZABETHTOWN, LITITZ, PA NORFOLK NAS/CHAMBER
40.13 39.00	-80.28 -80.27	10 10	NWS NWS	WASHINGTON UPSHUR CO R	I (AWOS), PA GNL ARPT, WV	112 113	KORF KECG	36.90 36.26	-76.19 -76.17	10 10	NWS FAA	NORFOLK INTERNATIONAL ARPT, ELIZABETH CITY CG ARPT, NC
36.13 39.30	-80.22 -80.22	10 10	FAA FAA	WINSTON-SAI CLARKSBURG	LEM/SMITH, NC G/BENEDUM, WV	114 115	KAPG KNFE	39.47 36.70	-76.17 -76.13	10 10	NWS NWS	PHILLIPS AAF/ABERDN, MD FENTRESS/NAS AUX, VA
40.50	-80.22	10	NWS	PITTSBURG IN MARTINSVILL	TTL, PA	116	KESN	38.80	-76.07	10	NWS	EASTON/NEWMAN FLD, M D
37.32	-79.97	10	NWS	ROANOKE REG	GIONAL ARPT, VA	118	KONX KOW7	36.40	-76.02	10	NWS	CURRITUCK CO ARPT, NC
40.78 36.10	-79.93	10	NWS	GREENSBORO	PIEDMONT TRIAD INTL, NC	119	KRDG	40.38	-75.97	10	FAA	READING/SPAATZ FLD,PA
40.55 39.65	-79.93	10	FAA	MORGANTOW	/N/HART FLD, WV	121	K40N KMFV	39.98	-75.77	10	NWS	MELFA/ACCOMACK ARPT
36.44 38.88	-79.85 -79.85	10 10	NWS NWS	ROCKINGHAN ELKINS/RAND	I CO SHILOH ARPT, NC OLPH FLD	123 124	KILG KPTW	39.68 40.23	-75.60 -75.55	10 10	NWS FAA	WILMINGTON ARPT, DE POTTSTOWN LIMERICK ARPT, PA
36.44 37.95	-79.85 -79.83	10 10	NWS NWS	ROCKINGHAM HOT SPRINGS/	ACO SHILOH ARPT, NC INGALLS	125	KSBY KWAL	38.34 37.94	-75.51 -75.47	8 10	FAA NWS	SALISBURY WICOMICOR GNL ARF WALLOPS ISLAND FLIGHT, VA
40.21 40.28	-79.83	10 10	NWS NWS	MONONGAHE LATROBE/WES	LA/ROSTRAVER ARPT, PA STMORLAND, PA	127 128	KDOV KABE	39.13 40.65	-75.47 -75.43	10 10	NWS NWS	DOVER AFB, DE ALLENTOWN-BETHLEHEM, PA
36.57 37.32	-79.33 -79.21	10 10	FAA NWS	DANVILLE REG	GIONAL AR PT, DANVILLE, VA ARPT, LYNCHBURG, VA	129 130	KMPO KUKT	41.13 40.44	-75.38 -75.38	10 10	FAA NWS	MT POCONO, MT POCONO, PA OUAKERTOWN ARPT. PA
38.98	-79.13	10	NWS	PETERSBURG/	GRANT CO ARPT, WV	131	KGED KLOM	38.68 40.14	-75.37	10	FAA	GEORGETOWN SUSSEX CO ARPT, I WINGS ELD ARPT, PA
36.28	-78.98	10	NWS	ROXBORO/PEI	RSON CO ARPT, NC	133	KPHL	39.88	-75.25	10	NWS	PHILADELPHIA INTL PA
40.32	-78.84	10	FAA	JOHNSTOWN C	CAMBRIA AR PT, JOHNSTOWN,	PA 135	KNXX	40.20	-75.15	10	DODn	WILLOW GROVE NAS
36.36	-78.53	10	NWS	HENDERSON-G	OXFORD ARPT, NC	130	KDYL	40.33	-75.12	10	FAA	DOYLESTOWN ARPT, PA
38.13 37.35	-78.45 -78.43	10 10	FAA NWS	CHARLOTTES FARMVILLE	VILLE ALBEMARLE ARPT, VA	138 139	KMIV KPNE	39.37 40.08	-75.07 -75.02	10 10	FAA NWS	MILLVILLE MUNI, NJ PHILADELPHIA NW, PA
41.04 41.05	-78.42	10 10	FAA NWS	CLEARFIELD I CLEARFIELD,	LAWRENCE ARPT, PA PA	140 141	KWWD KTYZ	39.02 39.95	-74.92 -74.92	10 10	NWS NWS	WILDWOOD (AWOS), NJ MONMOUTH BCH (ASOS), NJ
39.15 36.69	-78.15 -78.05	10 10	NWS NWS	WINCHESTER S HILL/MECKI	RGNL LENBURG-BRUNSWICK	142 143	KN91 KVAY	38.95 39.95	-74.88 -74.85	10 10	NWS FAA	CAPE MAY (CGS), NJ MT HOLLY S JERSEY RGNL, NJ
38.25 39.40	-78.05 -77.98	10 10	NWS FAA	ORANGE CO A MARTINSBUR	RPT, VA G RGNL	144 145	KTTN K12N	40.28 41.02	-74.82 -74.73	10 10	FAA NWS	TRENTON/MERCER CO. N J ANDOVER AEROFLEX, NJ
38.01	-77.97	10	NWS	LOUISA CO /FI	REEMAN FLD, VA	146	KSJB KN52	40.62	-74.67	10	NWS	SOMERVILLE, NJ
40.85	-77.85	10	NWS	STATE COLLE	GE, PA	147 148 140	KSMQ	40.62	-74.67	10	FAA	SOMERVILLE SOMERSETARPT, N
40.85 39.70	-77.73	10	FAA	HAGERSTOWN	N WASHINGTON CO. RGNL, , MI	D 150	KACY	39.45	-74.00	10	NWS	ATLANTIC CITY INTL, NI
56.44 39.08	-77.57	10	FAA NWS	RUANOKE RA LEESBURG/GC	PID5/HALIFAX ARPT, NC DFREY	151 152	KMMU KDIX	40.80 39.95	-74.42 -74.41	10	NWS	MOKKISTOWN MUNI, NJ PHILADELPHIA NEXRAD, PA
37.18 38.72	-77.52 -77.52	10 10	NWS NWS	PETERSBURG MANASSAS M	(AWOS) UNI (AWOS)	153 154	KNEL KCDW	40.03 40.88	-74.35 -74.28	10 10	NWS NWS	LAKEHURST NAS, NJ CALDWELL/ESSEX CO., NJ
36.69 38.98	-77.48 -77.48	10 10	NWS NWS	EMPORIA-GRE STERLING VA	EENSVILLE RGNL ARPT, VA	155 156	KEWR KBLM	40.70 40.18	-74.17 -74.13	10 10	NWS NWS	NEWARK INTL ARPT, NJ BELMAR-FARMDALF. NI
38.40	-77.46	10	NWS	STAFFORD RG	GNL ARPT, VA PT	157	KTEB	40.85	-74.07	10	NWS	TETERBORO ARPT, NJ NEW YORK CITY, NY
39.63	-77.45	10	NWS	CAMP DAVID,	MD ADDT WASHINGTON DC	159	KLGA	40.77	-73.90	10	NWS	NY LA GUARDIA, NY
37.71	-77.45	10	FAA	RICHMOND A	SHLAND HANOVERCO, VA	160	KHPN	40.63	-73.70	10	FAA	WHITE PLAINS, NY
39.73 39.73	-77.43 -77.43	10 10	NWS NWS	SITE R, PA FT RITCHIE, M	ſD	162 163	KFRG KISP	40.73 40.80	-73.42 -73.10	10 10	FAA FAA	FARMINGDALE/REPUBLIC, NY ISLIP LONG ISLAND MC ARTHUR A
39.73 39.42	-77.43 -77.37	10 10	NWS NWS	FT RITCHIE/SI FREDERICK M	TE R, MD IUNI ARPT, MD	164 165	KHWV KOKX	40.82 40.87	-72.86 -72.86	10 10	FAA NWS	BROOKHAVEN ARPT, NY BROOKHAVEN, NY
37.51 38.50	-77.32 -77.30	10 10	NWS NWS	RICHMOND IN QUANTICO M	ITL ARPT, RICHMOND, VA CAF	166 167	KFOK KHTO	40.85 40.97	-72.63 -72.25	10 10	FAA NWS	WEST HAMPTON BCH, NY EAST HAMPTON. NY
38.72	-77.18	10	NWS	FT BELVOIR/D	DAVISO	168	KMTP	41.08	-71.92	10	NWS	MONTAUK ARPT, NY

F	Station	Lat	Lon	Provider	Station Location	#	Station	Lat	Lon	Provider	Station Location
	KELZ	42.11	-77.99	FAA	WELLSVILLE MUNI ARPT, NY	57	K1P1	43.78	-71.75	NWS	PLYMOUTH MUNI ARPT, NH
1	KDSV	42.57	-77.72	FAA	DANSVILLE, NY	58	KAYE	42.57	-71.60	NWS	FORT DEVENS/AYER MA
1	KROC	43.12	-77.67	NWS	ROCHESTER/MONROE CO, NY	59	KHIE	44.35	-71.55	FAA	WHITEFIELD (ASOS) NH
1	KPEO	42.64	-77.05	FAA	PENN YAN ARPT, PENN YAN, NY	60	KASH	42.78	-71.52	NWS	NASHUA/BOIRE FIELD NH
i.	KELM	42.16	-76.90	FAA	ELMIRA CORNING RGNL ARPT, ELMIRA, NY	61	KSFZ	41.92	-71.50	NWS	PAWTUCKET (AWOS) RI
i	KITH	42.48	-76.45	NWS	ITHACA/TOMPKINS CO., NY	62	KCON	43.20	-71.50	NWS	CONCORD MUNI NH
1	KFZY	43.35	-76.39	FAA	FULTON/OSWEGO CTY ARPT, NY	63	KPVD	41.723	-71.43	NWS	PROVIDENCE GREEN STATE ARPT, RI
-	KSYR	43.11	-76.10	NWS	SYRACUSE HANCOCK INTL ARPT	64	KMHT	42.93	-71.43	FAA	MANCHESTER AIRPARK NH
•	KART	44.00	-76.02	FAA	WATERTOWN INTL ARPT, NY	65	KOQU	41.60	-71.42	NWS	N. KINGSTON/QUONSET RI
0	KBGM	42.21	-75.98	NWS	BINGHAMTON RGNL ARPT	66	KLCI	43.57	-71.42	NWS	LACONIA MUNI (AWOS) NH
1	KGTB	44.05	-75.73	NWS	FORT DRUM/WHEELER, NY	67	KMWN	44.27	-71.30	NWS	MOUNT WASHINGTON NH
2	KAVP	41.33	-75.72	NWS	WILKES-BARRE SCRANTON INTL ARPT	68	KBED	42.47	-71.29	FAA	BEDFORD HANSCOM FIELD, BEDFORD, MA
3	KOGS	44.68	-75.47	NWS	OGDENSBURG INTL, NY	69	KUUU	41.53	-71.28	FAA	NEWPORT STATE ARPT, NEWPORT, RI
4	KRME	43.23	-75.40	NWS	GRIFFISS AFB/ROME, NY	70	KBML	44.58	-71.18	FAA	BERLIN MUNI NH
5	KUCA	43.14	-75.38	FAA	UTICA ONEIDA CO ARPT, UTICA, NY	71	KOWD	42.19	-71.17	FAA	NORWOOD MEMORIAL ARPT, NORWOOD, MA
6	KMSS	44.93	-74.85	FAA	MASSENA/RICHARDS, NY	72	KLWM	42.71	-71.13	FAA	LAWRENCE MUNI ARPT, LAWRENCE, MA
7	KMSV	41.70	-74.80	NWS	MONTICELLO (AWOS), NY	73	KMQE	42.22	-71.12	NWS	EAST MILTON (ASOS), MA
8	KMGJ	41.52	-74.27	FAA	MONTGOMERY/ORANGE CTY ARPT, NY	74	KBOX	42.37	-71.03	NWS	BOSTON MA
.9	KSLK	44.40	-74.20	FAA	SARANAC LAKE/ADIRONDACK, NY	75	KTAN	41.88	-71.02	FAA	TAUNTON MUNI ARPT, TAUNTON, MA
:0	KSWF	41.50	-74.10	NWS	NEWBURGH/STEWART, NY	76	KBOS	42.36	-71.02	NWS	BOSTON LOGAN INTL ARPT, BOSTON, MA
:1	KSCH	42.85	-73.93	NWS	SCHENECTADY ARPT, NY	77	KEWB	41.68	-70.96	FAA	NEW BEDFORD MUNI ARP T, MA
:2	KPOU	41.63	-73.88	FAA	POUGHKEEPSIE DUTCHESS CO ARPT, NY	78	KIZG	43.98	-70.95	FAA	FRYEBURG (ASOS) ME
:3	KALY	42.69	-73.83	NWS	ALBANY WFO & SCD, NY	79	KNZW	42.15	-70.93	NWS	SOUTH WEYMOUTH NAS MA
:4	KALB	42.75	-73.80	NWS	ALBANY, NY	80	KDAW	43.28	-70.93	FAA	ROCHESTER/SKYHAVEN ARPT, NH
:5	KALB	42.75	-73.80	NWS	ALBANY CO ARPT, ALBANY, NY	81	K6B1	43.28	-70.92	NWS	ROCHESTER, NH
:6	K44N	41.70	-73.73	NWS	MILLBROOK/SKY ACRES, NY	82	KBVY	42.58	-70.92	FAA	BEVERLY MUNI ARPT, BEVERLY, MA
:7	KGFL	43.34	-73.61	FAA	GLENS FALLS ARPT, GLENS FALLS, NY	83	KPSM	43.08	-70.82	NWS	PEASE AFB/PORTSMOUT NH
:8	KPLB	44.69	-73.52	FAA	PLATTSBURGH/CLINTON CNTY ARPT, NY	84	KPYM	41.91	-70.73	FAA	PLYMOUTH MUNI ARPT, PLYMOUTH, MA
:9	KDXR	41.37	-73.48	FAA	DANBURY MUNI, CT	85	KSFM	43.40	-70.72	NWS	SANFORD MUNI (AWOS) ME
0	KPBG	44.65	-73.47	NWS	PLATTSBURGH AFB, NY	86	K3B2	42.10	-70.68	NWS	MARSHFIELD ARPT MA
1	KPSF	42.42	-73.29	FAA	PITTSFIELD MUNI ARPT, PITTSFIELD, NY	87	KMVY	41.39	-70.62	FAA	MARTHA'S VINEYARD ARPT, MA
2	K5B5	42.89	-73.25	NWS	BENNINGTON, VT	88	KRUM	44.53	-70.53	NWS	RUMFORD ME
13	KDDH	42.89	-73.25	FAA	BENNINGTON MORSE STATE ARPT, VT	89	KFMH	41.65	-70.52	NWS	OTIS ANGB MA
:4	KAQW	42.70	-73.17	FAA	NORTH ADAMS HARRIMAN, MA	90	KPWM	43.65	-70.32	NWS	PORTLAND INTL JET ME
5	KAQW	42.70	-73.17	FAA	NORTH ADAMS MA	91	KLEW	44.05	-70.28	NWS	AUBURN-LEWISTON ME
6	KBTV	44.47	-73.15	NWS	BURLINGTON INTL, VT	92	KHYA	41.67	-70.27	FAA	HYANNIS BARNSTABLE MUNI ARPT, MA
:7	KOXC	41.48	-73.13	NWS	OXFORD (AWOS) CT	93	KGYX	43.89	-70.26	NWS	GRAY ME
8	KRUT	43.53	-72.95	NWS	RUTLAND STATE (AWOS) VT	94	KPVC	42.07	-70.22	NWS	PROVINCETOWN (AWOS) MA
19	KMMK	41.51	-72.83	FAA	MERIDEN MARKHAM MUNI APT, CT	95	KCQX	41.69	-69.99	FAA	CHATHAM MUNI ARPT, CHATHAM, MA
0	KBAF	42.15	-72.72	FAA	WESTFIELD/BARNES MA	96	KCHH	41.67	-69.97	NWS	CHATHAM MA
1	KBDL	41.93	-72.68	NWS	HARTFORD/BRADLEY CT	97	KNHZ	43.88	-69.93	NWS	BRUNSWICK NAS ME
2	KHFD	41.73	-72.65	FAA	HARTFORD/BRAINARD CT	98	KAUG	44.32	-69.80	FAA	AUGUSTA STATE ARPT ME
3	KMVL	44.53	-72.62	FAA	MORRISVILLE (ASOS) VT	99	KIWI	43.97	-69.72	FAA	WISCASSET ME
4	KMPV	44.20	-72.57	FAA	BARRE-MONTPELIER VT	100	KWVL	44.53	-69.68	NWS	WATERVILLE (AWOS) ME
5	KCEF	42.20	-72.53	NWS	CHICOPEE/WESTOVER MA	101	KGNR	45.47	-69.58	NWS	GREENVILLE (AMOS) ME
6	KVSF	43.35	-72.52	FAA	SPRINGFIELD/HARTNES VT	102	KGNR	45.47	-69.58	NWS	GREENVILLE (AMOS) ME
7	KLEB	43.63	-72.30	FAA	LEBANON MUNI NH	103	K40B	46.62	-69.53	NWS	CLAYTON LAKE, ME
8	KORE	42.57	-72.28	FAA	ORANGE MUNI ARPT, ORANGE, MA	104	KRKD	44.07	-69.10	NWS	ROCKLAND/KNOX (AWOS) ME
.9	KEEN	42.90	-72.27	NWS	KEENE/DILLANT (AWOS) NH	105	KBGR	44.80	-68.83	FAA	BANGOR INTL ARPT ME
0	K9B2	44.93	-72.20	NWS	NEWPORT VT	106	KMLT	45.65	-68.68	FAA	MILLINOCKET MUNI ME
1	KIJD	41.74	-72.18	FAA	WILLIMANTIC WINDHAM ARPT, CT	107	KBHB	44.45	-68.37	NWS	BAR HARBOR (AWOS) ME
2	K1V4	44.42	-72.02	NWS	ST. JOHNSBURY (AMOS) VT	108	KFVE	47.28	-68.32	FAA	FRENCHVILLE, ME
3	KAFN	42.80	-72.00	FAA	JAFFREY NH	109	KPQI	46.68	-68.05	NWS	PRESQUE ISLE (AWOS), ME
:4	KORH	42.27	-71.88	NWS	WORCESTER (AMOS) MA	110	KCAR	46.87	-68.02	NWS	CARIBOU MUNI, ME
5	KWST	41.35	-71.80	FAA	WESTERLY STATE ARPT, WESTERLY, RI	111	KLIZ	46.95	-67.88	NWS	LORING AFB/LIMESTON, ME
6	KFIT	42.55	-71.76	FAA	FITCHBURG MUNI ARPT, FITCHBERG, MA	112	KHUL	46.12	-67.80	FAA	HOULTON INTL ARPT, ME
						113	KEPO	44.92	-67.00	NWS	EASTPORT ME

#	Station	Lat	Lon	Station Location	#	Station	Lat	Lon	Station Location
1	CWHY	45.32	-72.25	MONT-ORFORD QB	63	CWBK	45.76	-62.68	CARIBOUNS
2	CWQH	45.36	-71.81	LENNOXVILLE, QB	64	CYTN	45.61	-62.62	TRENTON MUNI ARPT NS
3	CYSC	45.43	-71.68	SHERBROOKE ARPT QB	65	CZSP	46.45	-62.57	ST PETERS PE
4	CWPQ	45.63	-70.55	MONTREAL-EST QB	66	CXMY	44.98	-62.48	MALAY FALLS NS
5	CERM	47.42	-68.32	EDMUNSTON NB	67	CWBV	44.81	-62.33	BEAVER ISLAND (MAPS) NS
6	CYSL	47.16	-67.83	ST LEONARD ARPT NB	68	CWEP	46.45	-61.97	EAST POINT (MARS) PE
7	CWIY	47.15	-67.82	ST LEONARD AUTO8 NB	69	CWGU	45.87	-61.90	CAPE GEORGE (AUTO8) NS
8	CWSS	45.20	-67.25	ST STEPHEN (MARS) NB	70	CWGR	47.42	-61.80	ILES-DE-LA-MADELEIN QB
9	CXGM	44.71	-66.80	GRAND MANAN SAR CS NB	71	CYGR	47.42	-61.78	ILES DE LA MADELEIN QB
10	CWSG	49.08	-66.73	CAP CHAT (MAPS) QB	72	CWHP	49.08	-61.70	HEATH POINT (MAPS) QB
11	CWZF	45.97	-66.65	FREDERICTON AQUATIC NB	73	CXTD	45.61	-61.68	TRACADIENS
12	CAFC	45.92	-66.60	FREDERICKTON CDA CS NB	74	CYPD	45.67	-61.38	PORT HAWKESBURY NS
13	CYFC	45.87	-66.53	FREDERICTON ARPTNB	75	CWFU	52.23	-61.32	LITTLE MACATINA NF
14	CWPE	45.07	-66.47	POINT LEPREAU NB	76	CWZQ	46.53	-61.08	GRAND ETANG (AUTO8) NS
15	CYCX	45.83	-66.43	GAGETOWN (CAN-MIL) NB	77	CWRN	45.35	-60.98	HART ISLAND (MAPS) NS
16	CZCR	47.98	-66.33	CHARLOAUTONB	78	CXNM	46.82	-60.67	NORTH MOUNTAIN NS
17	CWVU	44.28	-66.33	BRIER ISLAND (AUT) NS	79	CWXO	43.88	-60.55	ROWAN GORILLA III NS
18	CYCL	47.98	-66.33	CHARLO ARPT NB	80	CWRW	45.72	-60.23	FOURCHU HEAD (MAPS) NS
19	CYQI	43.83	-66.08	YARMOUTH ARPT NS	81	CWEF	47.23	-60.13	ST PAUL ISL (MAPS) NS
20	CYSJ	45.32	-65.88	SAINT JOHN ARPT NB	82	CYQY	46.17	-60.05	SYDNEY ARPT NS
21	CYID	44.55	-65.78	DIGBY ARPT (AWRS) NS	83	CAQY	46.17	-60.05	SYDNEY RCS NS
22	CZBF	47.63	-65.75	BATHURST ARPT (AWRS) NB	84	CWSA	43.93	-60.02	SABLE ISLAND NS
23	CWCP	43.45	-65.47	BACCARO POINT NS	85	CYSA	43.93	-60.00	SABLE ISLAND (APT) NS
24	CWCO	47.00	-65.47	CHATHAM (AUTO8) NB	86	CXWR	47.71	-59.31	WRECKHOUSE NF
25	CACO	47.00	-65.45	MIRAMICHI RCS NB	87	CWOF	47.57	-59.18	PORT BASQUES (AUTO) NF
26	CYCH	47.00	-65.45	CHATHAM (CAN-MIL)NB	88	CWZB	47.56	-59.16	PORT-AUX-BASQUES, NF
27	CWOC	48.02	-65.33	NEW CARLISLE1 QB	89	CYJT	48.53	-58.55	STEPHENVILLE ARPT NF
28	CWSF	49.25	-65.33	CAP MADELEINE (MAPS) QB	90	CXRH	49.57	-57.88	ROCKY HARBOUR CS NF
29	CWKG	44.43	-65.20	KEJIMKUJIK 1 NS	91	CWBF	47.62	-57.63	BURGEO (AUTO) NF
30	CAKC	46.77	-65.00	KOUCHIBOUGUAC CS NB	92	CWBD	47.61	-57.61	BURGEONF
31	CAFY	45.60	-64.95	FUNDY PARK CS NB	93	CWDX	50.23	-57.60	DANIEL'S HARBOUR (AUTO) NF
32	CYZX	44.98	-64.92	GREENWOOD (CAN-MIL) NS	94	CWDH	50.24	-57.58	DANIEL'S HARBOUR NF
33	CWXS	47.80	-64.83	BAS CARAOUET NB	95	CYDF	49.22	-57.40	DEER LAKE ARPT NF
34	CWPJ	47.07	-64.80	PT. ESCUMINAC(MAPS) NB	96	CWHU	48.58	-57.23	STAR BROOK NF
35	CABT	46.42	-64.77	BUCTOUCHE CDA CS NB	97	CWXI	51.02	-57.10	FEROLLE PT. (MAPS) NF
36	CYOM	46.12	-64.68	MONCTON ARPT NB	98	CWDA	50.72	-56.12	ENGLEE (MAPS) NF
37	CWWE	43.98	-64.67	WESTERN HEAD (MARS) NS	99	CWDW	51.38	-56.10	ST ANTHONY NF
38	CWMI	48.02	-64.50	MISCOU ISL (MARS) NB	100	CYAY	51.38	-56.09	ST ANTHONY ARPT NF
39	CYGP	48.77	-64.48	GASPEARPTOB	101	CWDI	48.97	-56.07	BADGER (MARS) NF
40	CXKT	45.07	-64.48	KENTVILLENS	102	CWZN	47.37	-55.80	SAGONA ISL (MAPS) NF
41	CAPR	45.42	-64.35	PARRSBORONS	103	CWAG	49.91	-55.66	LASCIENE
42	CWRZ	48.42	-64.32	CAP D'ESPOIR (MAPS) OB	104	CWAX	51.37	-55.63	ST ANTHONY NF
43	CWBY	49.83	-64 30	PORT ME NIER (MARS) OB	105	CWFY	48 17	-55.48	CONNERIVER NF
44	CXLB	44.35	-64.30	LUNENBERGNS	106	CWDS	46.92	-55.38	ST LAWRENCE NF
45	CYPN	49.83	-64.28	PORT MENIER (MAN) QB	107	CXWT	47.14	-55.33	WINTERLANDNF
46	CWAH	45.84	-64.26	AMHERST NS	108	CWHW	49.27	-54.88	COMFORT COVE NF
47	CXNP	45.75	-64.23	NAPPAN AUTO NS	109	CWDO	49.68	-54.80	TWILLINGATE (MAPS) NF
48	CWNE	47.08	-64.00	NORTH POINT (AUTO8) PE	110	CXGD	48.94	-54.58	GANDER ARPT CS NF
49	CWSD	46.43	-63.85	SUMMERSIDE (AUTO8) PE	111	CYOX	48.95	-54.57	GANDER INTL ARPT NF
50	CYSU	46.43	-63.83	SUMMERSIDE (CAN-MIL)PE	112	CWAR	47.29	-54.00	ARGENTIA NF
51	CXBP	46.23	-63.73	CONFEDERATION BRIDGE PE	113	CXTP	48.56	-53.97	TERRA NOVA NATL PARK CS NF
52	CWAZ	44.72	-63.68	BEDFORD NS	114	CWXJ	47.82	-53.90	BULL ARM AUTO8 NF
53	CXMP	46.30	-63.58	MAPLEPLAINSPE	115	CWZY	47.82	-53.87	GBS PLATFORM NF
54	CXMI	44.60	-63.53	MCNABS ISLAND NS	116	CWYI	49.12	-53.58	POOLS ISLAND NF
55	CWAW	44 63	-63 52	SHEARWATER IETTY NS	117	CWFH	46.72	-53.48	ST SHOTTS NE
56	CYAW	44 63	-63 50	SHEARWATER (CAN-MIL) NS	118	CXSA	47.26	-53 29	SALMONIER NATURE PARK NE
57	CYHZ	44.88	-63.50	HALIFAX INTL ARPT NS	119	CWVA	48.67	-53.12	BONAVISTA NF
58	CZDB	45.42	-63.47	DEBERT NS	120	CWRA	46.65	-53.07	CAPE RACE (MARS) NF
59	CWUR	45 37	-63 27	TRURO (MARS) NS	120	CWWI	47.52	-52.98	LONGPONDNE
60	CAHR	46 35	-63 17	HARRINGTON CDA CS PE	121	CWVW	48 17	-52.93	GRATES COVE (AUTO) NF
61	CYYG	46.28	-63.13	CHARLOTTETOWN ARPT PE	122	CXSW	47 52	-52.78	ST IOHN'S WEST CDA CS NF
62	CAOH	45.23	-63.05	LIPPER STEWIACKERCS NS	123	CYYT	47.62	-52.73	ST IOHN'S ARPT NE
	011011	40.20	05.05	CITERSTE WINCHERCOND	127	0111	47.02	52.15	51 551115711411111

					70	~~~,		τ vγ	
#	Station	Lat	Lon	Station Location	#	Station	Lat	Lon	Station Location
1	CTPP	18.57	-72.32	CAMP_CANARGUS HA	38	MYSM	24.05	-74.53	COCKBURN/SAN_SALVAD BA
2	KQAR	18.58	-72.30	PORT_AU_PRINCE HA	39	TAPA	17.12	-61.78	COOLIDGE_ARPT AT
3	MDBH	18.22	-71.10	BARAHONA DR	40	TBPB	13.07	-59.48	GRANTLEY_ADAMS_INTL BR
4	MDHE	18.47	-69.97	HERRERA DR	41	TDCF	15.53	-61.40	CANEFIELD_AIRPORT DO
5	MDLR	18.42	-68.95	LA_ROMANA_INTL_ARPT DR	42	TDPD	15.53	-61.30	MELVILLE_HALL_ARPT DO
6	MDPC	18.57	-68.37	PUNTA_CANA DR	43	TDPR	15.30	-61.40	ROSEAU DO
7	MDPP	19.75	-70.55	PUERTO_PLATA_INTL DR	44	TFFF	14.60	-61.00	LE_LAMENTIN MR
8	MDSD	18.43	-69.67	CAUCEDO/DE_LAS_AMER DR	45	TFFJ	17.90	-62.85	GUSTAVIA/ST BARTHEL MF
9	MDST	19.47	-70.70	SANTIAGO_INTL_ARPT DR	46	TFFR	16.27	-61.52	LE_RAIZET/GUADELOUP MF
10	MKJP	17.93	-76.78	NORMAN_MANLEY/KINGS JM	47	TGPY	12.00	-61.78	POINT_SALINES_INTL GD
11	MKJS	18.50	-77.92	SANGSTER/MONTEGO JM	48	TIST	18.33	-64.97	CAMALIE/CYRIL_E. VI
12	MTCH	19.75	-72.18	CAP-HAITIEN_INTL HA	49	TISX	17.70	-64.80	CHRISTIANSTED/ALEXA VI
13	MTPP	18.57	-72.30	PORT-AU-PRINCE_ARPT HA	50	TJBQ	18.50	-67.13	AQUADILLA/BORINQUEN PU
14	MUBA	20.35	-74.50	BARACOA_(CIV/MIL) CU	51	TJMZ	18.27	-67.15	MAYAGUEZ/EUGENIOPU
15	MUBY	20.40	-76.62	BAYAMO CU	52	TJNR	18.25	-65.63	ROOSEVELT_ROADS_NAS PU
16	MUCA	21.78	-78.78	CIEGO_AVILA/VENEZUE CU	53	TJPS	18.02	-66.57	PONCE/MERCEDITA PU
17	MUCC	22.45	-78.32	CAYO_COCO/JARDINES_DEL_RAY	54	TJSJ	18.43	-66.00	LUIS MUNOZ ARPT, SAN JUAN PR
18	MUCF	22.15	-80.40	CIENFUEGOS(CIV/MIL) CU	55	TKPK	17.30	-62.68	GOLDEN_ROCK AT
19	MUCL	21.62	-81.55	CAYO_LARGO_DEL_SUR CU	56	TKPN	17.20	-62.58	CHARLESTOWN/NEWCAST AT
20	MUCM	21.42	-77.85	CAMAGUEY/IGANCIO CU	57	TLPC	14.02	-61.00	CASTRIES/VIGIE LC
21	MUCU	19.97	-75.85	SANTIAGO_DE_CUBA CU	58	TLPL	13.75	-60.95	HEWANORRA_INTL_ARPT LC
22	MUGM	19.90	-75.13	GUANTANAMO_BAY_NAS CU	59	TNCA	12.50	-70.02	REINA_BEATRIX_INTL NU
23	MUGT	20.08	-75.15	GUANTANAMO CU	60	TNCB	12.15	-68.28	FLAMINGO_AIRPORT NU
24	MUHA	22.98	-82.40	HAVANA/JOSE_MARTI CU	61	TNCC	12.20	-68.97	HATO_ARPT_(CIV/MIL) NU
25	MUHG	20.78	-76.32	HOLGUIN_(CIV/MIL) CU	62	TQPF	18.20	-63.05	WALL_BLAKE VI
26	MUMO	20.65	-74.92	MOA_(MIL) CU	63	TRPM	16.75	-62.17	BLACKBURNE/PLYMOUTH AT
27	MUMZ	20.33	-77.12	MANZANILLO CU	64	TSTT	18.33	-64.98	CYRIL E. KING INTL A RPT,
28	MUNG	21.83	-82.78	NUEVA_GERONA_(MIL) CU					ST. TOMAS, USVI
29	MUPR	22.42	-83.68	PINAR_DEL_RIO_NORTE CU	65	TSTX	17.7	-64.80	CHRISTIANSTED ARPT,
30	MUSC	22.50	-79.95	ABEL_SANTAMARIA CU					ST. CRIOX, USVI
31	MUVR	23.13	-81.28	VARADERO CU	66	TTCP	11.15	-60.85	CROWN_PT./SCARBOROU TD
32	MUVT	20.95	-76.95	LAS_TUNAS/VICTORIA CU	67	TTPP	10.62	-61.35	PIARCO_INTL_ARPT TD
33	MWCB	19.68	-79.89	GERRARD_SMITH_INTL/CAYMAN_	68	TTPT	11.15	-60.83	CROWN_POINT_ARPT TD
34	MWCR	19.28	-81.35	OWEN_ROBERTS_INTL GC	69	TUPJ	18.45	-64.53	BEEF_ISL/ROADTOWN VI
35	MYEF	23.57	-75.89	EXUMA_INTL BA	70	TVSV	13.13	-61.20	ARNOS_VALE/KINGSTON LC
36	MYEG	23.50	-75.77	GEORGE_TOWN/EXUMA BA					
37	MYIG	20.95	-73.68	MATTHEW_TOWN/INAGUA BA					

#	Station	Lat	Lon	Height	Station Location	#	Station	Lat	Lon	Height	Station Location
1	MMCN	27.32	-112.30	10 (m)	SANTA ROSALIA	32	MMMY	25.78	-100.1	10 (m)	MONTERREY/GEN MARIA
2	MMLT	26.02	-111.35	10	LORETO	33	MMAA	16.77	-99.75	10	ACAPULCO/G. ALVAREZ
3	MMHO	29.07	-110.97	10	HERMOSILLO INTL	34	MMNL	27.43	-99.57	10	NUEVO LAREDO INTL
4	MMGM	27.97	-110.93	10	GUAYMAS INTL ARPT	35	MMTO	19.35	-99.57	10	TOLUCA/JOSE MARIA
5	MMLP	24.07	-110.37	10	LA PAZ INTL ARPT	36	MMCB	18.92	-99.25	10	CUERNAVACA
6	MMSD	23.15	-109.70	10	SAN JOSE DEL CABO	37	MMMX	19.43	-99.10	10	MEXICO CITY/LICENCI
7	MMLM	25.68	-109.08	10	LOS MOCHIS ARPT	38	MMCV	23.72	-98.97	10	CIUDAD VICTORIA APT
8	MMCL	24.82	-107.40	10	CULIACAN (CITY)	39	MMTL	20.08	-98.37	10	TULANCINGO
9	MMMZ	23.17	-106.27	10	MAZATLAN/G BUELNA	40	MMRX	26.02	-98.23	10	REYNOSA INTL ARPT
10	MMCU	28.70	-105.97	10	CHIHUAHUA INTL ARPT	41	MMPB	19.03	-98.20	10	PUEBLA
11	MMPR	20.68	-105.25	10	PUERTO VALLARTA/LIC	42	MMTM	22.28	-97.87	10	TAMPICO/GEN FJ MINA
12	MMEP	21.52	-104.90	10	TEPIC	43	MMMA	25.77	-97.53	10	MATAMOROS INTL
13	MMZO	19.15	-104.57	10	MANZANILLO INTL	44	MMPA	20.50	-97.47	10	POZA RICA/PALIZADA
14	MMDO	24.13	-104.53	10	DURANGO ARPT	45	MMPS	15.87	-97.08	10	PUERTO ESCONDIDO
15	MMIO	25.45	-103.98	10	SALTILLO	46	MMOX	16.97	-96.73	10	OAXACA/XOXOCOTLAN
16	MMIA	19.27	-103.58	10	COLIMA	47	MMBT	15.78	-96.27	10	BAHIAS DE HUATULCO
17	MMZP	20.75	-103.47	10	ZAPOPAN (MIL)	48	MMVR	19.15	-96.18	10	GEN. HERIBERTO JARA
18	MMTC	25.53	-103.45	10	TORREON ARPT	49	MMIT	16.45	-95.08	10	IXTEPEC OX
19	MMGL	20.52	-103.32	10	DON MIGUEL/GUADALAJ	50	MMMT	18.10	-94.58	10	MINATITLAN
20	MMZC	22.90	-102.68	10	ZACATECAS ARPT	51	MMTG	16.75	-93.12	10	TUXTLA GUTIERREZ A
21	MMAS	21.88	-102.30	10	AGUASCALIENTES	52	MMTB	16.45	-93.07	10	TUXTLA GUTIERREZ
22	MMLC	17.98	-102.22	10	LAZARO CARDENAS	53	MMVA	18.00	-92.82	10	VILLAHERMOSA
23	MMPN	19.40	-102.03	10	URUAPAN/GEN RA YON	54	MMTP	14.78	-92.38	10	TAPACHULA
24	MMLO	21.00	-101.48	10	DEL BAJIO/LEON	55	MMCE	18.65	-91.80	10	CIUDAD DEL CARMEN
25	MMZH	17.60	-101.47	10	IXTAPA-ZIHUATANEJO	56	MMCP	19.85	-90.55	10	CAMPECHE/IGNACIO
26	MMMV	26.88	-101.42	10	MONCLOVA	57	MMMD	20.98	-89.65	10	MERIDA INTL ARPT
27	MMMM	19.85	-101.03	10	MORELIA NEW	58	MMCT	20.64	-88.45	10	CHICHEN-ITZA
28	MMSP	22.15	-100.98	10	SAN LUIS POTOSI	59	MMCM	18.50	-88.30	10	CHETUMAL
29	MMPG	28.70	-100.52	10	PIEDRAS NEGRAS	60	MMCZ	20.53	-86.93	10	COZUMEL (CIV/MIL)
30	MMQT	20.60	-100.38	10	QUERETARO	61	MMUN	21.03	-86.87	10	CANCUN INTL ARPT
31	MMAN	25.87	-100.23	10	MONTERREY INTL ARPT						

xxii

#	Station	Lat	Lon	Station Location	#	Station	Lat	Lon	Station Location
1	MGRT	14.53	-91.67	RETALHULEU (MIL) GU	27	MHTR	15.93	-85.93	TRUJILLO HO
2	MGQZ	14.83	-91.52	QUEZALTENANGO GU	28	MHNJ	16.47	-85.92	GUANAJA HO
3	MGHT	15.32	-91.47	HUEHUETENANGO GU	29	MHCA	14.90	-85.91	CATACAMAS HO
4	MGSJ	13.92	-90.82	SAN JOSE (CIV/MIL) GU	30	MNRS	11.42	-85.83	RIVAS NK
5	MGGT	14.58	-90.52	GUATEMALA/LA AURORA GU	31	MRLB	10.60	-85.55	LIBERIA/TOMAS GUARD CS
6	MGCB	15.48	-90.32	COBAN GU	32	MRNC	10.15	-85.45	NICOYA CS
7	MGFL	16.92	-89.88	FLORES/SANTA ELENAGU	33	MNJU	12.10	-85.37	JUIGALPA NK
8	MGTK	16.90	-89.85	TIKAL GU	34	MRCH	9.98	-84.78	CHACARITA CS
9	MGZA	14.97	-89.53	ZACAPA GU	35	MROC	10.00	-84.22	SAN JOSE/SANTAMARIA CS
10	MHSR	14.78	-88.78	SANTA ROSA DE COPAN HO	36	MRPV	9.95	-84.15	TOBIAS BOLANOS INTL CS
11	MGPB	15.72	-88.60	PUERTO BARRIOS(MIL) GU	37	MHIC	17.40	-83.93	ISLAS DEL CISNE HO
12	MZBZ	17.53	-88.30	BELIZE INTL ARPT BH	38	MHPL	15.22	-83.80	PUERTO LEMPIRA HO
13	MHLE	14.33	-88.17	LA ESPERANZA HO	39	MNBL	12.00	-83.77	BLUEFIELDS NK
14	MHLM	15.45	-87.93	LA MESA/PEDRO SULA HO	40	MRPM	8.95	-83.47	PALMAR SUR CS
15	MHAM	13.28	-87.67	AMAPALA/LOS PELONAS HO	41	MNPC	14.05	-83.37	PUERTO CABEZAS(MIL) NK
16	MHSC	14.38	-87.62	SOTO CANO AB HO	42	MRLM	10.00	-83.05	LIMON INTL ARPT CS
17	MHTE	15.72	-87.48	TELA HO	43	MPCH	9.43	-82.52	CAPTAIN MANUEL NINO PM
18	MHTG	14.05	-87.22	TEGUCIGALPA/TONCONT HO	44	MPDA	8.40	-82.42	DAVID/ENRIQUE MALEK PM
19	MHCH	13.30	-87.18	CHOLUTECA HO	45	MPBO	9.35	-82.25	BOCAS DEL TORO INTL PM
20	MNCH	12.63	-87.13	CHINANDEGA NK	46	MPSA	8.08	-80.95	SANTIAGO PM
21	MHYR	15.17	-87.12	YORO HO	47	MPNU	7.83	-80.28	AUGUSTO VERGARA PM
22	MHLC	15.73	-86.87	LA CEIBA/GOLOSON HO	48	MPCF	9.35	-79.87	ENRIQUE ADOLFO JIME PM
23	MHRO	16.32	-86.53	ROATAN HO	49	MPHO	8.92	-79.60	HOWARD AFB PM
24	MNMG	12.15	-86.17	MANAGUA/AUGUSTO CES NK	50	MPMG	8.98	-79.52	MARCOS A. GELABERT PM
25	MHNO	16.47	-86.07	GUANAJA HO	51	MPTO	9.05	-79.37	TOCUMEN/GEN. OMAR PM
26	MNJG	13.08	-85.98	JINOTEGA NK	52	MPLP	8.40	-78.13	LA PALMA PM

Appendix C: DOD/NWS RAWIN/RAOB and NWS Coastal Landbased Radar Locations

APPENDIX D: PRINCIPAL DUTIES OF THE NOAA SCIENTIFIC PERSONNEL

CAUTION

Flight operations are routinely conducted in turbulent conditions. Shock-mounted electronic and experimental racks surround most seat positions. Therefore, *for safety onboard the aircraft all personnel should wear a flight suit and closed toed shoes*. For comfort, personnel should bring a jacket or sweater, as the cabin gets cold during flight.

Smoking is prohibited within 50 ft of the aircraft while they are on the ground. No smoking is permitted on the aircraft at any time.

Section 4-401, of the NOAA Safety Rules Manual state that: "Don't let your attention wander, either through constant conversation, use of cell phone or sightseeing while operating vehicles. Drivers must use caution and common sense under all conditions. Operators and passengers are not permitted to smoke or eat in the government vehicles. Cell phone use is permitted while car is parked."

GENERAL INFORMATION FOR ALL SCIENTIFIC MISSION PARTICIPANTS

Mission participants are advised to carry the proper personal identification [i.e., travel orders, "shot" records (when appropriate), and passports (when required)]. Passports will be checked by AOC personnel prior to deployment to countries requiring it. All participants must provide their own meals for in-flight consumption. AOC provides a refrigerator, microwave, coffee, utensils, condiments, ice, water, and soft drinks for a nominal fee per flight.

D.1 Field Program Director/ IFEX Chief Scientist;

- (1) Responsible to the HRD director for the implementation of the Hurricane Field Program Plan.
- (2) Only official communication link to AOC. Communicates flight requirements and changes in mission to AOC.
- (3) Only formal communication link between AOML and CARCAH during operations. Coordinates scheduling of each day's operations with AOC only after all (POD) reconnaissance requirements are completed between CARCAH and AOC.
- (4) Convenes the Hurricane Field Program Operations Advisory Panel. This panel selects missions to be flown.
- (5) Provides for pre-mission briefing of flight crews, scientists, and others (as required).
- (6) Assigns duties of field project scientific personnel. Ensures safety during the field program.

(7) Coordinates press statements with NOAA/Public Affairs.

D.2 Assistant Field Program Director

(1) Assumes the duties of the field program director in his absence.

D.3 Miami Ground Operations Center: Senior Team Leader

(1) During operations, the MGOC senior team leader is responsible for liaison between HRD base and field personnel and other organizations as requested by the field program director, the director of HRD, or their designated representatives.

D.4 Named Experiment Lead Project Scientist

- (1) Has overall responsibility for the experiment.
- (2) Coordinates the project and sub-project requirements.
- (3) Determines the primary modes of operation for appropriate instrumentation.
- (4) Assists in the selection of the mission.
- (5) Provides a written summary of the mission to the field program director (or his designee) at the experiment's debriefing.

D.5 Lead Project Scientist

- (1) Has overall scientific responsibility for his/her aircraft.
- (2) Makes in-flight decisions concerning alterations of: (a) specified flight patterns; (b) instrumentation operation; and (c) assignment of duties to on-board scientific project personnel.
- (3) Acts as project supervisor on the aircraft and is the focal point for all interactions of project personnel with operational or visiting personnel.
- (4) Conducts preflight and post flight briefings of the entire crew. Completes formal checklists of safety, instrument operations noting malfunctions, problems, etc.
- (5) Provides a written report of each mission day's operations to the field program director at the mission debriefing.

D.6 Cloud Physics Scientist

- (1) Has overall responsibility for the cloud physics project on the aircraft.
- (2) Briefs the on-board lead project scientist on equipment status before takeoff.
- (3) Determines the operational mode of the cloud physics sensors (i.e., where, when, and at what rate to sample).

- (4) Operates and monitors the cloud physics sensors and data systems.
- (5) Provides a written preflight and post flight status report and flight summary of each mission day's operations to the on-board lead project scientist at the post flight debriefing.

D.7 Boundary-Layer Scientist

- (1) Insures that the required number of AXCPs, AXBTs, and AXCTDs are on the aircraft for each mission.
- (2) Operates the AXCP, AXBT, and AXCTD equipment (as required) on the aircraft.
- (3) Briefs the on-board lead project scientist on equipment status before takeoff.
- (4) Determines where and when to release the AXCPs, AXBTs, and AXCTDs (as appropriate) subject to clearance by flight crew.
- (5) Performs preflight, inflight, and post flight checks and calibrations.
- (6) Provides a written preflight and post flight status report and a flight summary of each mission day's operations to the on-board lead project scientist at the post flight debriefing.

D.8 Radar Scientist

- (1) Determines optimum meteorological target displays. Continuously monitors displays for performance and optimum mode of operations. Thoroughly documents modes and characteristics of the operations.
- (2) Provides a summary of the radar display characteristics to the on-board lead project scientist at the post flight debriefing.
- (3) Maintains tape logs.
- (4) During the ferry to the storm, the radar scientist should record a tape of the sea return on either side of the aircraft at elevation angles varying from -20° through +20°. This tape will allow correction of any antenna mounting biases or elevation angle corrections.

D.9 Dropsonde Scientist

- (1) Processes dropsondes observations on HRD workstation for accuracy.
- (2) Provides TEMP drop message for ASDL, transmission or insures correct code in case of automatic data transmission.

D.10 Workstation Scientist

- (1) Operates HRD's workstation.
- (2) Runs programs that determine wind center and radar center as a function of time, composite flight-level and radar reflectivity relative to storm center and then process and code dropwindsonde observations.
- (3) Checks data for accuracy and sends appropriate data to ASDL computer.
- (4) Maintains records of the performance of the workstation and possible software improvements.

APPENDIX E: NOAA RESEARCH OPERATIONAL PROCEDURES AND CHECK LISTS

Hurricane Field Program Deployment Safety Checklist

The Field Program Director is responsible for making sure safety is enforced and ensuring necessary materials are in place and/or any actions have been completed before the start of the HFP. Field program participants are responsible for reviewing this checklist.

Scientist

Date _____

Before leaving AOML

- _____ 1. Contact MGOC personnel to notify departure time.
- _____ 2. Things to take
 - a. Flight bag (s)
 - b. Cell phone
 - c. List of HFP important numbers
 - d. HRD Field program plan
 - e. Flight suit

Ground transportation

- 1. Arrange for ground transportation
- _____ 2. Visual inspection of government vehicle
 - a. Make sure tires do not appear to be flat
 - b. Check for any cracked/broken lights, windshield and mirrors
 - c. Check for any major dents around the vehicle
- 3. Inspection inside the government vehicle
 - a. Check all lights work properly (head and tail lights, dome lights, dashboard and turn signal lights)
 - b. Make sure the engine, oil, or temperature light does not flash. If so, contact facilities management.
 - c. Note the gas and mileage
- 4. Contents inside the government vehicle
 - a. Make sure there is first aid kit and fire extinguisher
 - b. Proper jack and lug wrench
 - c. Spare tire
 - d. Basic auto repair kit (i.e. road hazard reflector or flares)
 - e. Consider carrying a flashlight
- _____ 5. If possible, return vehicle with full tank (regular unleaded gasoline)
- 6. **Note** mileage on AOML log when returning vehicle keys
- 7. Contact MGOC personnel upon returning

E.1 "Conditions - of - Flight" Commands

Mission participants should be aware of the designated "conditions-of-flight." There are five designated basic conditions of readiness encountered during flight. The pilot will set a specific condition and announce it to all personnel over the aircraft's PA (public address) and ICS (interphone communications systems). All personnel are expected to act in accordance with the instructions for the specific condition announced by the pilot. These conditions and appropriate actions are shown below.

- **CONDITION 1**: TURBULENCE/PENETRATION. All personnel will stow loose equipment and fasten safety belts.
- **CONDITION 2**: HIGH ALTITUDE TRANSIT/FERRY. There are no cabin stations manning requirements.
- **CONDITION 3**: NORMAL MISSION OPERATIONS. All scientific and flight crew stations are to be manned with equipment checked and operating as dictated by mission requirements. Personnel are free to leave their ditching stations.
- **CONDITION 4**: AIRCRAFT INSPECTION. After take-off, crew members will perform wings, engines, electronic bays, lower compartments, and aircraft systems check. All other personnel will remain seated with safety belts fastened and headsets on.
- **CONDITION 5**: TAKE-OFF/LANDING. All personnel will stow or secure loose equipment, don headsets, and fasten safety belts/shoulder harnesses.

E.2 Lead Project Scientist

E.2.1 Preflight

- _____1. Participate in general mission briefing.
- 2. Determine specific mission and flight requirements for assigned aircraft.
- 3. Determine from field program director whether aircraft has operational fix responsibility and discuss with AOC flight director/meteorologist unless briefed otherwise by field program director.
- 4. Contact HRD members of crew to:
 - a. Assure availability for mission.
 - b. Review field program safety checklist
 - c. Arrange ground transportation schedule when deployed.
 - d. Determine equipment status.
- 5. Meet with AOC flight director and navigator at least 3 hours before take-off for initial briefing.
- 5. Meet with AOC flight crew at least 2 hours before take-off for crew briefing. Provide copies of flight requirements and provide a formal briefing for the flight director, navigator, and pilots.
- 6. Report status of aircraft, systems, necessary on-board supplies and crews to appropriate HRD operations center (MGOC in Miami).
- 7. Before take-off, brief the on-board GPS dropsonde operator on times and positions of drop times.
- 7. Make sure each HRD flight crew members have life vests
- _____ 7. Perform a headset operation check with all HRD flight crew members. Make sure everyone can hear and speak using the headset.
- 8. Collect "mess" fee (\$2.00) from all on-board HRD flight crew members.

E.2.2 In-Flight

- 1. Confirm from AOC flight director that satellite data link is operative (information).
- _____ 2. Confirm camera mode of operation.
- _____ 3. Confirm data recording rate.
- _____ 4. Complete Lead Project Scientist Form.
- 5. Check in with the flight director to make sure the mission is going as planned (i.e. turns are made when they are supposed to be made).

E.2.3 Post flight

- _____ 1. Debrief scientific crew.
- 2. Report landing time, aircraft, crew, and mission status along with supplies (tapes, *etc.*) remaining aboard the aircraft to MGOC.

- 3. Gather completed forms for mission and turn in at the appropriate operations center. [Note: all data removed from the aircraft by HRD personnel should be cleared with the AOC flight director.]
- 4. Obtain a copy of the 10-s flight listing from the AOC flight director. Turn in with completed forms.
- 5. Obtain a copy of the radar DAT tapes and if possible a copy of the radar data-packet files should be copied onto a flash drive. Turn in with completed forms.
- 6. Obtain a copy of the all VHS videos form aircraft cameras (3-4 approx.). Turn in with completed forms.
- _____ 7. Obtain a copy of CD with all flight data. Turn in with completed forms.
- 8. Determine next mission status, if any, and brief crews as necessary.
- 9. Notify MGOC as to where you can be contacted and arrange for any further coordination required.
- _____ 10. Prepare written mission summary using **Mission Summary** form (due to Field Program Director 1 week after the flight).

Form E-2

Page 1 of 5

Lead Project Scientist Check List

Date	Aircraft	Flight ID	
------	----------	-----------	--

A. —Participants:

HRD		AOC						
Function	Participant	Function	Participant					
Lead Project Scientist		Flight Director						
Radar		Pilots						
Workstation		Navigator						
Cloud Physics		Systems Engineer						
Photographer/Observer /Guests		Data Technician						
Dropwindsonde		Electronics Technician						
AXBT/AXCP		Other						

B. Take-off and Landing Locations:

Take-Off: _____ Location: _____

Landing: _____ Location: _____

Number of Eye Pe	netrations:
------------------	-------------

C. Past and Forecast Storm Locations:

Date/Time	Latitude	Longitude	MSLP	Maximum Wind

D. Mission Briefing:

Form E-2

Page 2 of 5

E. Equipment Status (Up[↑], Down[↓], Not Available —, Not Used **O**)

Equipment	Pre-Flight	In-Flight	Post-Flight	# DATs / Cds
				/Expendables/ Printouts
Radar/LF				
Doppler Radar/TA				
Cloud Physics				
Data System				
GPS sondes				
AXBT/AXCP				
Ozone instrument				
Workstation				
Videography				

REMARKS:

Form E-2 Page 3 of 5

Mission Summary <u>Storm name</u> <u>YYMMDDA#</u> Aircraft 4 ___RF

Scientific Crew (4_ RF)
Lead Project Scientist
Radar Scientist
Cloud Physics Scientist
Dropwindsonde Scientist
Boundary-Layer Scientist
Workstation Scientist
Observers

Mission Briefing: (include sketch of proposed flight track or page #)

Mission Synopsis: (include plot of actual flight track)

Evaluation: (did the experiment meet the proposed objectives?)

Problems: (list all problems)

Expendables used in mission:	
GPS sondes :	_
AXBTs :	
Sonobuoys:	

Latitude (°)

Observer's Flight Track Worksheet

Longitude (°)

xxxvii

Page __of __

Form E-2 Page 5 of 5

Lead Project Scientist Event Log

Date ______ Flight _____ LPS _____

Time	Event	Position	Comments

E.3 Cloud Physics Scientist

The on-board cloud physics scientist (CPS) is responsible for cloud physics data collection on his/her assigned aircraft. Detailed operational procedures are contained in the cloud physics kit supplied for each aircraft. General procedures follow. (Check off and initial.)

E.3.1 Preflight

- _____1. Determine status of cloud physics instrumentation systems and report to the on-board lead project scientist (LPS).
- _____ 2. Confirm mission and pattern selection from the on-board LPS.
- _____ 3. Select mode of instrument operation.
- 4. Complete appropriate instrumentation preflight check lists as supplied in the cloud physics operator's manual.

E.3.2 In-Flight

_____1. Operate instruments as specified in the cloud physics operator's manual and as directed by the on-board LPS.

E.3.3 Post flight

- _____1. Complete summary checklist forms and all other appropriate forms.
- _____ 2. Brief the LPS on equipment status and turn in completed check sheets to the LPS.
- _____ 3. Take cloud physics data tapes and other data forms and turn these data sets in as follows:
 - a. Outside of Miami-to the LPS.

b. In Miami-to AOML/HRD. [Note: all data removed from the aircraft by HRD personnel should be cleared with the AOC flight director.]

- 4. Debrief as necessary at MGOC or the hotel during a deployment.
- _____ 5. Determine the status of future missions and notify MGOC as to where you can be contacted.

Form E-3 Page 1 of 2

Cloud Physics Scientist Check List

Date ______ Aircraft _____ Flight ID _____

A. —Instrument Status and Performance:

System	Pre-Flight	In-Flight	Downtime
PMS Probes 2D-P			
PMS Probes 2D-C			
PMS Probes FSSP			
Data System			
DRI Field Mills			
King Probe			
NCAR/NOAA CIP			
NCAR PIP			
NCAR FSSP			

B. —Remarks:

E.4 Boundary-Layer Scientist

The on-board boundary-layer scientist (BLS) is responsible for data collection from AXBTs, AXCPs, AXCTDs, BUOYs, and SST radiometers (if these systems are used on the mission). Detailed calibration and instrument operation procedures are contained in the air-sea interaction (ASI) manual supplied to each operator. General supplementary procedures follow. (Check off and initial.)

E.4.1 Preflight

- _____1. Determine the status of equipment and report results to the on-board lead project scientist (LPS).
- _____ 2. Confirm mission and pattern selection from the LPS.
- _____ 3. Select the mode of operation for instruments after consultation with the HRD/BLS and the LPS.
- 4. Complete appropriate preflight check lists as specified in the ASI manual and as directed from the LPS.

E.4.2 In-Flight

_____1. Operate the instruments as specified in the ASI manual and as directed by the on-board LPS.

E.4.3 Post flight

- 1. Complete summary checklist forms and all other appropriate forms.
- _____ 2. Brief the on-board LPS on equipment status and turn in completed checklists to the LPS.
- _____ 3. Debrief as necessary at MGOC or the hotel during a deployment.
- _____ 4. Determine the status of future missions and notify MGOC as to where you can be contacted.

Form E-4

Page 1 of 2

	in Bonobuoy Check Bir	eet Summary
Flight	Aircraft	_ Operator
Number		
(1) Probes dropped		
(2) Failures		
(3) Failures with no signal		
(4) Failures with sea surface temper	ature, but terminated ab	ove thermocline
(5) Probes that terminated above 25	0 m, but below thermoc	line
(6) Probes used by channel number	CH12	
	CH14	
	CH16	
	CH	

AXBT and Sonobuoy Check Sheet Summary

NOTES:

				Comments								
		peed		MLD (m) (#secs x 1.5)								
	5/23/04)	m Direction/S ₁		Sfc Temp. AXBT								
	k Sheet (revised (Stor		Splash Time (HHMMSS)								
	Sonobuoy Chee		g Time	Longitude (Decimal)								
	AXBT and	Storm	Landing	Latitude (Decimal)								
				Drop Time (HHMMSS)								
E-4 of 3		Number)ff Time	Channel Number								
Form Page 2		Flight	Take-C	Drop #								

E.5 Radar Scientist

The on-board radar scientist is responsible for data collection from all radar systems on his/her assigned aircraft. Detailed operational procedures and checklists are contained in the operator's manual supplied to each operator. General supplementary procedures follow. (Check off and initial.)

E.5.1 Preflight

- _____1. Determine the status of equipment and report results to the lead project scientist (LPS).
- _____ 2. Confirm mission and pattern selection from the LPS.
- 3. Select the operational mode for radar system(s) after consultation with the LPS.
- 4. Complete the appropriate preflight calibrations and check lists as specified in the radar operator's manual.

E.5.2 In-Flight

- 1. Operate the system(s) as specified in the operator's manual and as directed by the LPS or as required for aircraft safety as determined by the AOC flight director or aircraft commander.
- 2. Maintain a written commentary in the radar logbook of tape and event times, such as the start and end times of F/AST legs. Also document any equipment problems or changes in R/T, INE, or signal status.

E.5.3 Post flight

- 1. Complete the summary checklists and all other appropriate check lists and forms.
- _____ 2. Brief the LPS on equipment status and turn in completed forms to the LPS.
- _____ 3. Hand-carry all radar tapes and arrange delivery as follows:
 - a. Outside of Miami-to the LPS.
 - b. In Miami-to MGOC or to AOML/HRD. **Note**: all data removed from the aircraft by HRD personnel should be cleared with the AOC flight director.]
- _____ 4. Debrief at MGOC or the hotel during a deployment.
- _____ 5. Determine the status of future missions and notify MGOC as to where you can be contacted.

Form E-5 Page 1 of 2

HRD Radar Scientist Check List

Flight ID:	
Aircraft Number:	
Radar Operators:	
Radar Technician:	
Number of digital ma	agnetic tapes on board:
Component Systems Status:	
MARS	Computer
DAT1	DAT2
LF	R/T Serial #
TA	_ R/T Serial #
Time correction betwee	en radar time and digital time:
Radar	Post flight Summary
Number of digital tapes used: DAT1	
DAT2	
Significant down time:	
DAT1	Radar LF
DAT2	Radar TA
Other Problems:	

Form E-5

Page 2 of 2

HRD Radar Tape Log

Flight	Aircraft	Operator	Sheet	of
8		•		

LF RPM ______ TA RPM _____

(Include start and end times of DATs, as well as times of F/AST legs and any changes of radar equipment status)

Tape #	F/AST On?	Event Time (HHMMSS)	Event

Item List: DAT1, DAT2, COMP, MARS, LF, and TA. Include serial numbers of any new R/Ts.

E.6 Dropsonde Scientist

The lead project scientist (LPS) on each aircraft is responsible for determining the distribution patterns for dropwindsonde releases. Predetermined desired data collection patterns are illustrated on the flight patterns. However, these patterns often are required to be altered because of clearance problems, etc. Operational procedures are contained in the operator's manual. The following list contains more general supplementary procedures to be followed. (Check off and initial.)

E.6.1 Preflight

- _____1. Determine the status of the AVAPS and HAPS. Report results to the LPS.
- _____ 2. Confirm the mission and pattern selection from the LPS and assure that enough dropsondes are on board the aircraft.
- _____ 3. Modify the flight pattern or drop locations if requested by AOC to accommodate changes in storm location or closeness to land.
- _____ 4. Complete the appropriate preflight set-up and checklists.

E.6.2 In-Flight

- _____ 1. Operate the system as specified in the operator's manual.
- _____ 2. Ensure the AOC flight director is aware of upcoming drops.
- _____ 3. Ensure the AVAPS operator has determined that the dropsonde is (or is not) transmitting a good signal. Recommend if a backup dropsonde should be launched in case of failure.
- 4. Report the transmission of each drop and fill in the Dropwindsonde Scientist Log.

E.6.3 Post flight

- _____ 1. Complete Dropwindsonde Scientist Log.
- _____ 2. Brief the LPS on equipment status and turn in reports and completed forms.
- _____ 3. Hand-carry all dropwindsonde data tapes or CDs as follows:
 - a. Outside of Miami-to the LPS or PI.
 - b. In Miami-to AOML/HRD. **Note**: all data removed from the aircraft by HRD personnel should be cleared with the AOC flight director.]
- 4. Debrief at the MGOC or the hotel during a deployment.
- _____ 5. Determine the status of future missions and notify MGOC as to where you can be contacted.

WERTON'T IRD OF DEOFWILDEOPOLE SCIENEAST NOT (Revised 5/2002)

	UTC	UTC	do #										
Page o	at	at											
	akeoff from	ecovery at	Comments										
	Ξ.	Ř	rove, Treestl., Testatest Testatest (direction)							_			
			H										
				_	Ĺ	 <u> </u>		<u>. </u>					
			trad city to pure city(spid (stu)										
			Burface Pressure (ab)			·	, ,			<u>.</u>			
oientiet										~			
izande S	Nirector,	eratore.											
Dropwinc	TLIGHT 1	AVAPS OT	and All										
		Ĩ.	and the second										
stora	TLGAR	Nission	<u> </u>										

Storm_	ŋ	DINIMAN	niscurks 3	cientis:	ar CL						Pag.	ە 1	- of	
TIADA		FLIGHT	Director							Takeoff from		at		UTC
at a a f	ar ar) scine .	Num atora							Recovery at		at		UTC
à.	Barde XX #	Time (Dict)	(m) (**)	1600 (**)	Surface Frankurg (tb)	Wind close to surface dir/spi (b)	est D e w hgt ((m)	JEM vind (kt)	Comments			छ म Processed	ATCOM	dc #
1					ç									
			×		»									
					•									
<u>,</u>		<u>.</u>												
	5													

MARY END WE DECIMINATE Scientist Log (Revised 5/2002)

Ì

APPENDIX F: SYSTEMS OF MEASURE AND UNIT CONVERSION FACTORS

Quantity	SI Unit	Early Metric	Maritime	English
length	meter (m)	centimeter (cm)	foot (ft)	foot (ft)
distance	meter (m)	kilometer (km)	nautical	mile (mi)
			mile (nm)	
depth	meter (m)	meter (m)	fathom (fa)	foot (ft)
mass	kilogram (kg)	gram (g)		
time	second (s)	second (s)	second (s)	second (s)
speed	meter per second (mps)	centimeter per second (cm s ^{-1})	knot (kt) (nm h ⁻¹)	miles per hour (mph)
		kilometers per hour (km h ⁻¹)		
temperature	degree Celsius (°C)	degree Celsius (°C)		degree Fahrenheit (°F)
-sensible				
-potential	Kelvin (K)	Kelvin (K)		Kelvin (K)
force	Newton (N)	dyne (dy)	poundal (pl)	poundal (pl)
	(kg m s^{-2})	$(g \text{ cm s}^{-2})$		
pressure	Pascal (Pa)	millibar (mb)	inches (in)	inches (in)
	$(N m^{-2})$	$(10^3 \text{ dy cm}^{-2})$	mercury (Hg)	mercury (Hg)

Table F-1 Systems of measure: Units, symbols, and definitions

Table F-2. Unit conversion factors

Parameter	Unit	Conversions	
length	1 in	2.540 cm	
	1 ft	30.480 cm	
	1 m	3.281 ft	
distance	1 nm (nautical mile)	1.151 mi	
		1.852 km	
		6080 ft	
	1 mi (statute mile)	1.609 km	
		5280 ft	
	1° latitude	59.996 nm	
		69.055 mi	
		111.136 km	
depth	1 fa	6 ft	
		1.829 m	
mass	1 kg	2.2 lb	
force	1 N	10 ⁵ dy	
pressure	1 mb	102 Pa	
		0.0295 in Hg	
	1 lb ft ⁻²	4.88 kg m ⁻²	
speed	1 m s ⁻¹	1.9	
	at. 6 h ⁻¹	10 kt	

APPENDIX G: AIRCRAFT SCIENTIFIC INSTRUMENTATION

Instrument	Parameter	PI	Group	Electronics Location	Instrument Location	42RF	43RF
Navigational							
INE1/2	LAT, LON		AOC			Х	
GPS1/2	LAT, LON		AOC			Х	
APN-159 altimeter	Radar altitude		AOC				
(C-band)						Х	
Standard Meteorologial							
dew point	Td		AOC			Х	
Rosemount temp	T, TÕ		AOC			Х	
Static pressure	Р		AOC			Х	
Dynamic pressure	PÕ		AOC			Х	
Horizontal wind	U, V		AOC			Х	
Vertical wind	W		AOC			Х	
InfraredRadiation							
Side CO2 radiometer	Т		AOC			Х	
AOC down radiometer	SST		AOC	Under floor,	Down radiometer port	х	
Weaher Radar							
LF radar [#]	RR	Gamache	HRD	Station 3	Lower fuselage	Х	
TA Doppler radar [#]	U, V, W vs Z, RR	Gamache	HRD	Station 3	Fuselage tail	Х	
Passive Microwave							
AOC SFMR/pod #	U10, RR	Goldstein	AOC	pod	Inner right pylon	х	
USFMR (UMASS)	U10, RR	Zhang/	UMASS/	Station 7	Laser hole	Х	
A stive Mierowaya		Grang	WIINGL				
	110 1/10	Zhang/	LIMASS/	Station 7	Fore & oft		
KSCAT)	RR; U , V, W vs Z	Chang	MIRSL, NESDIS	Station	pressure domes	Х	
Passive GPS							
GPS b istatic altimeter	ocean height	Walsh	NASA GSFC, ETL	Station 5	Field mill ports (up/downlooking)	х	
Airbome Ocean Profiler							
AOC DAT recorder [#]	TS vs Z	Smith	AOC	Station 2	Free-fall chute (aft station 5)	х	
AOC AXBT receivers [#]	TS vs Z	Smith	AOC	Station 5		Х	
Dropsonde Sytems							
GPS AVAPS Dropsonde- 4CH [#]	U, TA , RH vs Z	Smith	AOC	Station 5	Aft station 5	Х	
GPS Drop sonde- full-up systemÕ	U, TA , RH vs Z	Smith	AOC	Station 5	Aft station 5	х	

Table G.1: NOAA/AOC WP-3D (N42RF) instrumentation
APPENDIX G: AIRCRAFT SCIENTIFIC INSTRUMENTATION (CONT'D)

Video Systems							
AOC video down	F(%), WD		AOC		Vert. Camera port	Х	
Side, nose video	LCL		AOC		Side, nose camera port	Х	
Cloud Mcrophysics/ Sea Spray							
DMT C IP probe ¹	Spray spectra, cloud LWC	Fairall	ETL	Station 2	Outer left pylon	Х	
DMT DAS	processor	Fairall	ETL	Station 2		Х	
2D-P PM S grey probe	Precipsize spectra, RR	R. Black	HRD/AOC	Station C3X	Outer left pylon	х	
SEA M200 DAS	processor		AOC	Station 4		Х	
Electric field mills ² (5)	3-axis electric field	R. Black	HRD			Х	
TECO O zone sampler	ozone	Carsey	AOML			Х	
Turbulence Systems							
Friehe radome gust probe system ³	UÕ, VÕ, VÕTÕ	Drennan	UM/ RSMAS	Noseradome bulkhead	Noseradome	Х	
BAT probe [#]	UÕ, VÕV ÕTÕ	French	ARL/FRD	C3X	Noseboom	Х	
FAST Hygrometer ¹	RH, qÕ	Drennan, Hubler	UM/RSMA S ,AL		fuselage	х	
LICOR -750 water vapor analyzer	qÕ	Drennan	RSMAS/ AOC	Noseradome bulkhead	NoseRadome bulkhead	Х	
On board prœessing							
HRD Workstation [#]	GPS sonde, LF radar processing, real-time Doppler processing	Griffin	HRD	Station 3		x	
Real-time data commun ications systems [#]	Real-time transmission of FL, LF radar data	Ch ang, Carswell	NESDIS	??	??	X	

1 Re-installation, user supplied 2 If upgrade funds (~12K) become available 3 Lower Priority

Installation on NOA A-43 if aircraft becomes available

* STD - data on standard DAT tape and CD- one each per aircraft

Table G.1 (Cont'd): NOAA/AOC WP-3D (N42RF) instrumentation

Experiment	GPS Dropy	windsondes	AXBTs	CADs
	G-IV	42RF	42RF	42RF
Saharan Air Layer	25	25	-	-
Aerosonde	-	25	19	19
Tropical Cyclogenesis	-	25	12	12
TC Landfall and Decay	-	25	15	15
TC Eye Mixing Module	-	-	-	-
TC Synoptic Flow (operational mission)	-	-	-	-
EMC Tasking (operational mission)	-	-	12	12

APPENDIX H: NOAA EXPENDABLE AND RECORDING MEDIA

Table H-1.1: Required expendables for 2006 experiments per flight day for 42RF and the G-IV.

	DATs ¹	CDs ²	D-Audio	DVD +R DL
Experiment			AXBTs	Nose/Side/Down
Saharan Air Layer 42RF or 49	42RF: 2 / 2 / 1 = 5	42RF: 3 / 2 / 1 = 6 49: 0 / 0 / 1 = 1	-	1 / 2 / 1 = 4
Aerosonde 42RF	2 / 2 / 1 = 5	3 / 2 / 1 = 6	6	1 / 2 / 1 = 4
Tropical Cyclogenesis 42RF	2 / 2 / 1 = 5	3 / 2 / 1 = 6	6	1 / 2 / 1 = 4
TC Landfall and Decay 42RF	2 / 2 / 1 = 5	3 / 2 / 1 = 6	6	1 / 2 / 1 = 4
TC Eye Mixing Module 42RF	-	-	-	-
TC Synoptic Flow (operational mission) 42RF or 49	-	-	-	-
EMC Tasking (operational mission) 42RF	2 / 2 / 1 = 5	3 / 2 / 1 = 6	6	-

1 DATs required for Slow and Fast flight-level / Radar data / HRD Workstation Data 2 CDs required for Slow and Fast flight-level / Cloud Physics / AVAPS

NOTE: 1 DAT and 1 CD are required for G-IV missions

Table H-1.2. Required recording media for 2006 experiments per flight day for 42RF and the G-IV

ACRONYMS AND ABBREVIATIONS

?е	equivalent potential temperature
ABL	atmospheric boundary-layer
A/C	aircraft
ACLAIM	Airborne Coherent Lidar for Advanced In-flight Measurements
AES	Atmospheric Environment Service (Canada)
AFRES	U. S. Air Force Reserve
AOC	Aircraft Operations Cent er
AOML	Atlantic Oceanographic and Meteorological Laboratory
ASDL	aircraft-satellite data link
AXBT	airborne expendable bathythermograph
AXCP	airborne expendable current probe
AXCP	airborne expendable conductivity, temperature, and depth probe
CARCAH	Chief, Aerial Reconnaissance Coordinator, All Hurricanes
CDO	central dense overcast
CIRA	Cooperative Institute for Research in the Atmosphere
C-MAN	Coastal-Marine Automated Network
CP	coordination point
CW	cross wind
DLM	deep-layer mean
DOD	Department of Defense
DOW	Doppler on Wheels
DRI	Desert Research Institute (at Reno)
E	vector electric field
EPAC	Eastern Pacific
ETL	Environmental Technology Laboratory
EVTD	extended velocity track display
FAA	Federal Aviation Administration
F/AST	fore and aft scanning technique
FEMA	Federal Emergency Management Agency
FL	flight level
FP	final point
FSSP	forward scattering spectrometer probe
GFDL	Geophysical Fluid Dynamics Laboratory
G-IV	Gulfstream IV-SP aircraft
GOMWE	Gulf of Mexico Warm Eddy
GPS	global positioning system
HL	Hurricanes at Landfall
HRD	Hurricane Research Division
INE	inertial navigation equipment
IP	initial point (or initial positionIWRS Improved Weather Reconnaissance System
JW	Johnson-Williams
Ku-SCAT	Ku-band scatterometer
LF	lower fuselage (radar)
LIP	Lightning Instrument Package
LPS	Lead Project Scientist
MCS	mesoscale convective systems
MGOC	Miami Ground Operations Center

MLD	Mixed Layer Depth
MPO	Meteorology and Physical Oceanography
NASA	National Aeronautics and Space Administration
NCAR	National Center for Atmospheric Research
NCEP	National Centers for Environmental Prediction
NDBC	NOAA Data Buoy Center
NESDIS	National Environmental Satellite, Data and Information Service
NHC	National Hurricane Center
NOAA	National Oceanic and Atmospheric Administration
NWS	National Weather Service
OML	oceanic mixed-layer
PDD	pseudo-dual Doppler
PMS	Particle Measuring Systems
POD	Plan of the Day
PPI	plan position indicator
PV	potential vorticity
RA	radar altitude
RAOB	radiosonde (upper-air observation)
RAWIN	rawinsonde (upper-air observation)
RECCO	reconnaissance observation
RHI	range height indicator
RSMAS	Rosenstiel School of Marine and Atmospheric Science
SFMR	Stepped-Frequency Microwave Radiometer
SLOSH	sea, lake, and overland surge from hurricanes (operational storm surge model)
SRA	Scanning Radar Altimeter
SST	sea-surface temperature
TA	tail (radar)
TAS	true airspeed
TC	tropical cyclone
TOPEX	The Ocean Topography Experiment
TPC	Tropical Prediction Center (at NHC)
UMASS	University of Massachusetts (at Amherst)
USACE	United States Army Corps of Engineers
USAF	United States Air Force
USWRP	U. S. Weather Research Program
UTC	universal coordinated time (U.S. usage; same as "GMT" and "Zulu" time)
VTD	velocity-track display

Acknowledgments

The preparation of HRD's 2006 **Hurricane Field Program Plan** was a team effort. The authors would like to express their appreciation to: the HRD scientists that contributed information on specific experiments; Nick Carrasco, Russell St. Fleur, Shirley Murillo, and Howard Friedman for their efforts on updating the information in the appendices of the HFP Plan and Neal Dorst for expertly drafting several of the figures.