THE WEST INDIAN HURRICANES OF SEPTEMBER, 1906.

By E. B. GARRIOTT, Professor of Meteorology.

Tropical storm development was exceptionally active in American waters during September, 1906. In seeking the causes of
this activity we find an apparent contributory condition in the distribution of atmospheric pressure over the region of observation. In the West Indies and adjacent waters barometric pressure was unusually low, while in the more northern latitudes of the Atlantic, and more especially from the Azores over the British Isles, the barometer averaged above normal, and after the 17th was remarkably high. This arrangement of air pressure overlying the Atlantic naturally produced an unusually strong flow of air from the more northern latitudes toward the Tropics, and in this accelerated movement of air currents is found a recognized associated cause of tropical storm development. In fact a distortion or reversal of the usual order of barometric distribution invariably produces weather of abnormal types over considerable areas. A notable instance of this kind was presented during the winter of 1904–5 when general and excessive rains occurred throughout New Mexico, Arizona, and southern California. As stated by the Chief of the Weather Bureau at the time the cause of the heavy rains in the southwest was not local, but was associated with general abnormal atmospheric conditions over the United States that were in turn associated with abnormal conditions that obtained over a large part of the Northern Hemisphere. He stated that the association between low barometric pressure and excessive rains in the southwest and high barometric pressure and unusual cold in the north and east had been established, and that during winters of excessive cold in northern and eastern districts of the United States the winters had been unusually wet from western Texas to southern California. During September, 1906, the stormy weather in the West Indian region attended a distribution of barometric pressure over the Atlantic Ocean similar to that observed over the North American Continent during the winter storm period of 1904–5 in the southwestern portion of the United States. Numerous examples of this observed association of apparent barometric causes with weather effects can be cited. Those referred to, however, will answer the present purpose of inviting attention to an arrangement of atmospheric pressure figures prominently during certain phases of abnormal American weather.

Chart IX shows the paths of the three hurricanes of September, 1906, here discuss, over the West Indies and adjacent waters.

The approximate path of the center of this storm has been traced from a position east of Barbados, W. I., on August 31, to the region north of the British Isles, on September 15. Seven days were occupied by the storm in advancing from the ocean east of Barbados northwestward to the northern Bahamas, and two days, the 6th and 7th, in making a recurve over the Bahamas. Moving thence northeastward the center past west and north of Bermuda by the morning of the 9th and reached the region of the Banks of Newfoundland by the 10th. The subsequent path of the storm was north of the region from which observations have been received. As the barometer over the British Isles began to fall on the 11th and continued to fall rapidly until the 15th, when the center of a well-marked and energetic depression north of Scotland on an easterly course, it may be assumed that this disturbance was identical with the one that moved north of east from the Banks of Newfoundland during the 11th.

During September 1 and 2 the vortex of the storm pursued a course over the ocean east of and near the Lesser Antilles, and by the morning of the 3rd had past north of Porto Rico. No reports have been received from vessels that encountered the storm on these dates. The following, from islands of the Leeward group, indicate measures of protection that were taken on advices telegraphed from Washington.

Mr. D. Hope Ross, official in charge of the Weather Bureau office at Basseterre, St. Kitts, W. I., reports:

The morning of the 1st the barometer, which had been steadily falling since 9:30 A.M. was reading 29.75 at 6 A.M. It rose slightly, to 29.77 at time of observation, and then fell steadily until 5 P.M. to 29.64, the lowest point reached, after which it rose slowly. The wind steadily decreased from midnight of August 31, and at 12:30 p.m. of September 1 the velocity was less than 3 miles an hour. Shortly after it increased slightly, shifting during the afternoon from north to northwest, and then north-southwest. It blew steadily from that quarter until the afternoon of September 3, when it increased in force, and reached a maximum velocity of 60 miles an hour at 3:35 to 3:40 a.m. of the 4th, with an extreme velocity for one minute of 70 miles per hour at 3:36 a.m. Rainfalls were heavy, and varied from about 6 to 13 inches at different points on the island. Thetelegram of advice received the morning of the 1st was issued as a precautionary warning. This was done especially by telegraph, to Government offices and other centers in town, and to outlying districts, and all possible information was given to calms. Comparatively little damage was done by the storm. Owing to the prohibition of telephones lines communication to outlying points on the island was temporarily cut off; many trees were uprooted, and a few small houses were blown down; but everyone being prepared there appears to have been no further damage.

The following letter, dated September 4, from Mr. Christopher H. Payne, American Consul at St. Thomas, W. I., indicates the character of the disturbance during its passage over the region of the Virgin Islands:

Your cablegram of September 1, 1906, received, for which I beg of you to accept my sincere thanks; also the business people of this place, as your timely warning has saved millions to shipping in this harbor. I sincerely hope that you will find it a pleasure in advising me of all future disturbances during this dreary season. I beg to assure you this office is at your command at all times in whatever way we can serve you in your great work.

The Weather Bureau observer at San Juan, P. R., reports:

The storm apparently followed the course forecast in the message received September 1. All vessels were advised to remain in port; the advice was repeated several times, and no vessel has been reported. Vieques is the reporting station nearest to the path of the storm; no material damage was caused on that island although 8.48 inches of rain fell on the 4th. The maximum wind velocity at San Juan was 35 miles an hour from the west on the 3rd.

During the 4th and 5th the center of disturbance moved northwestward toward the northern Bahamas, passing north of Turks Island on the 4th. During the 6th and 7th it gradually recurved east of the northern Bahamas and was severely felt by vessels navigating that region. At 3 a.m., September 7, the three-masted schooner John Rose, John Douglas, master, in latitude north 28° 37', longitude west 77° 4', had a barometer reading of 29.01. This vessel was coal laden for Key West, and was held before the wind on a southwest course and crossed the path of the storm ahead of the center. The shift of the wind encountered was from northeast to north and northwest, but there were no cross seas until after the center had passed. By the morning of the 8th the storm had completed its recurve to the northeastward. On the morning of that day Bermuda, and Llyod's, London, were cable that a tropical disturbance was approaching Bermuda from the southwest. By the morning of the 9th the center had past west and north of Bermuda and the reading of the barometer at Hamilton was 29.18 inches. The storm was exceptionally severe in the trans-Atlantic steamer tracks on the 10th and 11th. The experience of the North German Lloyd steamship Koenigin Luise indicates the intensity of the storm in the region of the Grand Banks. This steamer encountered the hurricane September 10 in latitude north 39° 15', longitude west 55° 15', and at 8 P.M. the barometer read 28.06 inches. The vessel was unable to resume full speed until 5 A.M. of the 11th, fourteen hours after the storm began. The subsequent course and character of this storm will doubtless be determined by vessel reports that are not now available.

THE ATLANTIC COAST STORM OF SEPTEMBER 17.

Unsettled weather conditions over the West Indies followed the passage of the storm of August 31–September 11 over the
Western Atlantic, and on the 12th there was evidence of a slight depression near Porto Rico. From this position it moved to the neighborhood of the Windward Channel by the 13th, where there were indications of its presence on the 14th, after which it appeared to pass northward over the ocean. During the 16th falling barometer and increasing northerly winds along the south Atlantic coast showed the presence of a barometric disturbance off that coast, but an absence of reports from the great ocean area rendered it impossible to locate the center of the disturbance or to determine its future course. On the morning of the 17th its close approach to the Carolina coast was shown, and by 1 p.m. it had reached the coast line north of Charleston, where the barometer at that hour read 29.44 inches and the wind had reached a velocity of 46 miles an hour from the west. At Wilmington the maximum velocity had been 52 miles an hour from the northeast. After crossing the coast line the storm lost strength rapidly, and during its subsequent course to the lower Ohio Valley and thence northeastward its energy was expended in heavy rains. Damage on land by wind was of a minor character, and no serious injury to property has been reported. The damage to shipping along the coast between Charleston and Wilmington was very considerable, and crops were destroyed near Georgetown where the storm moved inland. West Indian stations in the indicated line of its advance were notified on the 12th and 13th of the character of the slight barometric depression from which this storm sprang. During the succeeding two days its presence off southern coasts was but faintly indicated by land observations. On the 15th advice was received that there was evidence of a disturbance between the Carolina coast and Bermuda that was apparently moving northward. The storm that struck the South Carolina coast was a small tornado-like development in the southern end, or, tail, of the disturbance referred to, and its origin and course was a product of oceanic atmospheric conditions that were not shown by land observations.

The observer of the Weather Bureau at Charleston, S. C., reports as follows regarding this storm:

On the day preceding the storm no unusual phenomena were observed at this station. The barometer began to fall at 11 p.m., of the 16th, and fell steadily until it reached a minimum of 29.44 inches at 1 p.m. of the 17th, after which it rose rapidly. Light to moderate northeasterly winds continued during the 16th, shifted to northwest at 5 a.m., 17th, and increased to south at 5 p.m., from which quarter it continued until midnight. From 11 a.m. to 9 p.m. it blew a moderate and at times a fresh gale, the highest velocity, 48 miles an hour, occurring at 3:30 p.m. By midnight it had diminished to 32 miles an hour.

The damage to buildings in Charleston was small, not exceeding $1,000, and was confined principally to small buildings. At Georgetown, S. C., a small town 60 miles northeast from Charleston, the damage was estimated at $15,000. The winds being offshore during the storm, the storm tide did not exceed the normal high tide more than one and a half feet, and consequently no damage resulted from high water in exposed portions of the city.

The Caribbean Sea Storm of September 23-27, 1906.

This was the severest disturbance that has visited the Gulf coast since the occurrence, on September 8, 1900, of the storm that devastated Galveston. That storm advanced from the eastern Caribbean Sea to the Texas coast during September 1 to 8, 1900. The September, 1906, storm was first definitely located over the western portion of the Caribbean Sea on the 22d and crossed the Gulf coast line west of Mobile the morning of the 27th. After leaving the Yucatan Channel, on the 24th, the storm moved almost due northward over the Gulf of Mexico. During this period there was an almost equal chance for the center to swing to the northeastward over the Florida Peninsula and thence along the Atlantic coast, or to the northwestward to the Texas coast. Daily advices and warnings based upon careful calculations announced, however, that its course would probably be northward toward the central Gulf coast, and beginning on the 23d Gulf shipping was advised to remain in port. When a storm of this type is hundreds of miles from reporting coast stations it appears that its intensity and exact course cannot be accurately determined. The warnings issued during the four days of its progress over the Gulf were based upon an assumption that the disturbance possessed in full degree the intensity that usually characterizes storms that advance from the Caribbean Sea over the Gulf of Mexico; and day by day the statement was clearly made that conditions dangerous to shipping would exist over the central and east Gulf. So far as known the warnings were heeded, and vessels did not venture into the threatened district. It is a fact, indeed, that of the millions of dollars of damage an infinitesimal portion was done to shipping in the open Gulf. The monetary value of vessels and cargoes thus protected, and the number of human lives safeguarded, can not now be calculated. Adequate protection could not have been made against damage and destruction by banked up water from the Gulf that swept over harbors, bays, inlets, and low-lying coasts, and from washouts due to torrential rains that attend storms of this character. The center of the storm crossed the coast line near and west of Mobile at about 8 a.m., seventy-fifth meridian time, of the 27th.

The Tampa Tribune, of September 30, 1906, commented editorially on the storm as follows:

The great storm in the Gulf has given an excellent demonstration of the effects, accuracy, and practical utility of the Government weather forecasts. It was on last Sunday that the Weather Bureau office in Tampa flew its warnings of the approach of a great tropical storm that was appearing in the region of the Yucatan Channel. From that time on the Bureau sent daily and urgent warnings of the progress of the disturbance. As the storm came within the area of more intimate observation, its character, severity, and direction were more closely reported. The second day before it struck the coast, special warnings were sent to Gulf ports for the guidance of shipping, with the most urgent advice that vessels remain in port till after the disturbance. It is already known that many vessels heeded this warning and were without doubt saved because of it. * * * That the storm would strike the middle Gulf coast with great fury was the notification of the first day. The system of distribution of storm-warning advice is so complete that not only did places having telegraph and telephone service receive the warnings, but the intelligence and prompt action of all employees and agents of the Bureau every failing camp received timely warning. Acting on advice people in exposed localities sought places of safety, and vessels either remained in port or sought shelter in protected places along the rivers and bays.
Every precaution was taken to reduce the damage from the approaching storm to a minimum. On the morning of the 27th there was about three feet of backwater in the river at New Orleans, indicating a storm tide at the mouth of the river of six feet or more. Such a high tide is exceedingly dangerous, and for the timely precautions taken there would have doubtless been much loss of life and property. The highest wind velocity reached at New Orleans was 49 miles an hour from the north-west at 8 a.m. of the 27th, and the lowest barometer on record for the storm during the summer months, 29.14 inches, was reached at 8:15 a.m. of the 27th (see fig. 1). The storm was severe east of New Orleans, but the damage was less there than in the lower valley and in Louisiana. The damage to crops that could not be moved or protected was great. At Burwood the tide was over the wharf, which is eight feet above mean Gulf level. Railroads and crops suffered great damage.

Fig. 1.—Barogram, New Orleans, La., September 25-28, 1906.

It is impossible to estimate the amount of damage that was caused by the storm in this section, but it amounts to several million dollars. Shipping remained in port and prepared for the storm, and there have been no great losses reported. The losses in this section were exceptionally small for such a storm, and this is attributed by the press and public to the timely warnings issued by the Weather Bureau, as indicated by the following extracts from editorials that appeared in the local press.

The Times-Democrat of September 28, 1906:

While only meager details of the damage wrought by the storm on the Gulf littoral are obtainable on account of injury to the telegraph service, the reports indicate severe losses of property at several points on the coast, much suffering and inconvenience in a number of communities, and possibly a loss of life. No doubt the losses would have been much greater but for the timely and accurate warning given by the United States Weather Bureau. Notice that the disturbance was approaching the coast, and that it was unusually severe in character, enabled shipping interests to avoid the dangers of the open sea, and very greatly minimized the damage incident to the violent visitation. Because of the high standard of efficiency reached by the Weather Bureau, and the extension of the service to West Indian points, we may now escape many disasters of the character hitherto experienced during these meteorological disturbances; indeed with reasonable care we should be able to reduce our losses on the coast, and in the Gulf, to the minimum.

The Daily Picayune of September 29, 1906:

When the full record of the damage from the recent storm will be made up it will be found that although the property loss has been quite extensive the total loss of life has not been numerous, largely as in many less severe storms of even less magnitude. This fact was probably due to the timely warning of the storm's approach, which enabled everybody likely to be especially exposed to take proper precautions.

Pensacola, Fla.

This was the most terrific storm in the history of Pensacola, or since the village of Pensacola, on Santa Rosa Island, was swept away 170 years ago. The greatest loss was to the shipping interests; a large number of schooners and other vessels were cast ashore. The damage to the wharves and docks was estimated at $50,000. The greatest damage was done by the high winds and infalling sand-filled rain in the hope of reaching Pensacola; the storm was lashed by strong winds and rain from the northwest. The wind reached 60 miles per hour (at 1:07 a.m.), every effort was made to protect property and life and people were driven from their homes along the water front. Trees were uprooted; houses were unraveled, and vessels in the harbor began to drag their anchors, being slowly but surely forced upon the beach. At the height of the storm (between 3 and 4 a.m.) the water rose 8½ feet above the normal high-water mark, being the highest known. The great protection afforded by Santa Rosa Island saved Pensacola from more severe suffering. The entire water front that was inundated, the water reaching many houses; some were either carried away or nearly so. A large tree fell upon the main dock and was driven ashore. Nine men in the United States Navy were killed, a number of persons were drowned or washed away. A large portion of the town on the south side of the bay was destroyed; the main dock was destroyed. The greatest damage was done by the high winds that have escaped damage. Port Miami has suffered very severely, and Port Mc Rae is entirely razed, the ruins of the old fort standing alone on the shore. [Figs. 2, 3, and 4 show some effects of the storm, and fig. 5 reproduces the barograph trace at Pensacola.]

There were only two of the local steamers in operation on the morning of the 28th, the North, and the Quiaquapen. The weather was very bad, and the vessels were turned back. They were stranded and the timetable was replaced by a 10-foot channel. The storm was so severe that the vessels could not leave the harbor. The weather was very bad, and the vessels were turned back. They were stranded and the timetable was replaced by a 10-foot channel. The storm was so severe that the vessels could not leave the harbor. The weather was very bad, and the vessels were turned back. They were stranded and the timetable was replaced by a 10-foot channel. The storm was so severe that the vessels could not leave the harbor. The weather was very bad, and the vessels were turned back. They were stranded and the timetable was replaced by a 10-foot channel. The storm was so severe that the vessels could not leave the harbor.
electric light, and trolley wires, $20,000; to foliage of the city, including cost of clearing streets, $50,000; to railroads by tides from the sea and washouts by heavy rains, $125,000; total estimated damage in Pensacola, immediate anchorage, and waterfront as stated above, $2,120,000. In addition to the above we have an item that can hardly be estimated; that is, the washing away of lots along the waterfront caused by the water rushing out to seek its level in the Gulf after the storm had past from the water to the land surface; in many places there were embankments eight feet high where now there is a depth of water measuring five feet.

In the vicinity of Pensacola the damage is estimated to be: to navy-yard, forts, etc., $1,100,000; by tides along the shores of East Bay, Escambia Bay, etc., $125,000; by tides in St. Andrew Bay, "12 inches above anything in past nineteen years", $500; by tides and wind at Apalachicola, Fla., $29,000; by winds and rain at Goulding, Fla., $15,000; to timber and turpentine interests in Escambia and Santa Rosa counties, $40,000.

The estimated damage by wind and wave, and height of tides at Pensacola during the severe storms of the past twenty-seven years, is as follows:

<table>
<thead>
<tr>
<th>Date</th>
<th>Damage</th>
<th>Tide above normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 3, 1898</td>
<td>$31,169</td>
<td>4.5</td>
</tr>
<tr>
<td>October 8, 1894</td>
<td>$490,000</td>
<td>5.5</td>
</tr>
<tr>
<td>July 7, 1896</td>
<td>$123,000</td>
<td>3.0</td>
</tr>
<tr>
<td>August 13, 1903</td>
<td>$1,169</td>
<td>1.0</td>
</tr>
<tr>
<td>February 27, 1902</td>
<td>2,120,000</td>
<td>10.0</td>
</tr>
</tbody>
</table>

The following tidal heights from Pensacola eastward will give an idea of the wave that attended the storm of September 25-27, 1906: Pensacola Bay, 10 feet; East Bay, 9 feet; St. Andrew Bay, 8 feet; Apalachicola Bay, 5 feet.

During the past twenty-seven years there have been eighteen days on which the wind attained or exceeded a velocity of 60 miles an hour at Pensacola, of these the maximum velocities of 80 miles or more, were the following: August 20, 1888, 60, sw.; October 4, 1888, 65, sw.; October 8, 1894, 65, ne.; July 7, 1896, 72, n.; August 15, 1901, 70, sw.; December 28, 1901, 60, sw.; September 27, 1906, 83, s.

The Pensacola Journal, September 30, 1906, remarked:

The efficiency of the service of the United States Weather Bureau in giving warning of approaching storms was never better demonstrated than during the recent hurricane, the first warning of which was received and sent out by the observer at Pensacola on September 22, four days before the gale became dangerous in this vicinity.

Mobile, Ala.

The storm of September 25-27 was more destructive than any other in the meteorological history of the station, involving a greater loss of property, more numerous marine disasters, and greater destruction to timber.

The storm approached this section without any optical premonitory signs or noticeable cloud formations. Cloudy weather with stratus clouds began on the morning of the 26th, and there was occasional sunshine until about noon of the 26th; and only light rain, at times a mere drizzle, was recorded during a part of this period. On the 26th the fall in
barometer pressure and the increase in wind velocity, which had been gradual, became more rapid toward night. The wind, which was remarkable for the severity and suddenness of its gusts, reached a maximum velocity of 25 miles an hour between 5 and 6 p.m. and higher velocities were attained during succeeding intervals until a maximum of 35 miles, from the east, for five minutes, was reached at 7:15 a.m. of the 27th, and a single mile was made in somewhat less than a minute; after which lower velocities were recorded and no high velocities occurred after 11 a.m. The direction of the wind varied from north to northeast till midnight of the 26-27th, then it was northeast till 6 a.m., then east prevailed with momentary gusts from the northeast and southeast till 8:30 a.m., and southeast afterwards with occasional gusts from the east.

The lowest reading of the barometer, 28.84 inches, was reached at 6:30 a.m. [See fig. 6.]

The rain, which was continuous from 12:35 p.m. of the 26th, at times became a heavy downpour. The amount which fell from 12:35 p.m. of the 26th to 7:20 p.m. of the 27th was 6.40 inches.

During the morning of the 26th, the tide reached within six inches of the top of the wharf; it then receded and was one or two feet below the level of the wharf till about 6 a.m. of the 27th; a rise then began and in about half an hour the water was near the top of the wharf; by 7:45 a.m. it had come into the third street from the river, and at 10 a.m. it attained its maximum stage, exceeding about a foot the stage reached during the hurricane of 1885. During that memorable storm the water was about six feet above the wharf. In the hurricane of 1901 the tide did not reach so high a stage as in 1885. Markings at the Cotton Exchange Building indicate 18 inches higher water in 1906 than in 1885, and these differ but slightly from the average of measurements taken by Mr. Wright Smith. Mr. Smith's figures for the high water occasioned by the last three storms are as follows: 1893, 3.80 feet above mean tide; 1901, 8.25 feet; 1885, 2.87 feet.

The following is a list of storms with wind velocities of over fifty miles an hour which have occurred at Mobile since 1872:

August 29, 1885. Maximum wind velocity 56 miles from the southeast; water 3 feet deep over wharves; estimated damage, $10,000.

April 14, 1892. Maximum wind velocity 60 miles from the southeast; estimated damage, $25,000.

October 2, 1893. Maximum wind velocity 72 miles from the southeast; several vessels ashore; wholesale business district inundated, and stage of water said to be higher than at any time since 1852; seven lives lost in Mobile County; estimated damage by Insurance Co., $60,000; by winds, $50,000; storm more destructive on Mississippi and Louisiana coasts.

August 15, 1901. Maximum wind velocity 60 miles from the southeast; a number of small vessels lost; wholesale business section inundated; no loss of life; estimated damage by Insurance Co., $75,000; by winds, $35,000.

September 27, 1899. About twenty buildings, mostly houses in the residential section of Mobile, demolished. Nearly all buildings were more...
or less damaged. Windows were blown in, chimneys fell, tin roofs rolled up, slates and shingles ripped off so that few interiors of houses escaped damage by the rain. In some places heavy timbers were carried considerable distances. Many merchants in the wholesale district had elevated their wares, but the tide exceeded all previous stages and damaged the lowermost goods. All electric services were totally crippled, the telegraph wires being down by 3 a.m. of the 27th. The roads were made impassable by prostrated trees. There was only one life lost in Mobile. The wharves were greatly damaged and shipping suffered considerably. The official list of American vessels wrecked, kept at the office of the collector of customs, is not yet complete. Unofficial records of all marine disasters show that in Mobile Bay and River there were 11 steamships, 17 barges and schooners, and 4 steamboats ashore or sunk, 12 tugboats sunk, ashore, or capsized, and numerous barges and smaller craft which met a similar fate. There are also 11 steamships, barges, and many smaller vessels dismantled or otherwise damaged. In Mobile the estimated damage to buildings and electric services by the wind is $500,000 and by the tide, $50,000. The damage to merchandise by the tide is $150,000, and by the rain and wind $250,000. The damage to vessels owned in Mobile is $175,000. The damage to railroads entering Mobile is estimated at $500,000.

Within a radius of 70 miles from Mobile about one half of all the timber boxed for turpentine production and from 5 to 35 per cent of all other timber has been blown down. It is not yet known how much may be utilized, and it is impracticable to approximate the loss as it is variously estimated from ten million to one hundred million dollars.

At Fort Morgan an anemometer, which owing to its worn condition registers velocities 5 per cent too low, was in temporary use during the storm. During the eight hours and forty-eight minutes ending at 2:45 a.m., at which time the aluminum anemometer cups were whirled off the steel arms, it recorded 250 miles. Several times after midnight a maximum velocity of 85 miles was recorded for a period of five minutes; 3 miles were recorded in two minutes, which is at the rate of 90 miles an hour; this, with a 5 per cent correction added, is more than 94 miles an hour.

Lieut. B. L. Brookway, of the U.S. Revenue steamer Winona, which was at Scranton, Miss., during the storm, sends the following memoranda, thru the observer at Mobile:

<table>
<thead>
<tr>
<th>Date</th>
<th>Hour</th>
<th>Barometer reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 25-26</td>
<td>midnight</td>
<td>29.82</td>
</tr>
<tr>
<td></td>
<td>8:00 p.m.</td>
<td>29.85</td>
</tr>
<tr>
<td>Do</td>
<td>8:00 a.m.</td>
<td>29.87</td>
</tr>
<tr>
<td>Do</td>
<td>noon</td>
<td>29.87</td>
</tr>
<tr>
<td>September 26-27</td>
<td>midnight</td>
<td>29.84</td>
</tr>
<tr>
<td></td>
<td>8:00 a.m.</td>
<td>29.87</td>
</tr>
<tr>
<td>Do</td>
<td>8:00 p.m.</td>
<td>29.90</td>
</tr>
<tr>
<td>Do</td>
<td>8:00 a.m.</td>
<td>29.90</td>
</tr>
<tr>
<td>Do</td>
<td>noon</td>
<td>29.90</td>
</tr>
<tr>
<td>September 27-28</td>
<td>8:00 a.m.</td>
<td>29.90</td>
</tr>
<tr>
<td>Do</td>
<td>noon</td>
<td>29.90</td>
</tr>
</tbody>
</table>

From the beginning of the blow till 7 a.m. the wind was north-northeast. The tide ran flood (opposite to the direction of the wind) until 7 a.m., when the barometer was at its lowest. For about fifteen minutes after 7 a.m. the wind was s. by e. in the lull. Then it shifted to the south-southwest and blew with terrific force. The barometer began to rise, and the tide ran ebb with the same force it had run flood, the tide again running in the direction opposite to the wind.

The facts, to my mind, fully prove the theory that the low barometer made the high tide, and that the wind did not force the tide in, as is the usual belief. In each case the wind was blowing with terrific force in the opposite direction to that in which the tide was running. Furthermore the tide ran flood as long as the barometer dropped and when the barometer began to rise the tide began to run.

Do you think that the low barometer and the lull in the storm indicate that we were in the center of the storm at Scranton?

The destructive tides that attend storms on our Atlantic and Gulf coasts are due in part to what are known as storm waves that are projected from the vortexes of atmospheric disturbances in which barometric gradients are very steep, and depend partly upon the force and duration of the wind from certain points of the compass. In the case of the storm of September 17 on the South Carolina coast, the duration of the onshore winds was too brief to cause a dangerous tide before the wind shifted to westerly. In the storm of September 26-27 on the middle Gulf coast, places on and near the coast west of the point where the vortex of the storm crossed the coast line experienced only northerly, or offshore, gales; and the storm wave alone, as of the South Carolina storm, was not in itself especially destructive. To the eastward of the path of the storm, however, low-lying coastal tracts were subjected to the storm wave plus the waves driven in from the Gulf by a southerly, or onshore gale.

In the Monthly Weather Review for May, 1896, Gen. E. P. Alexander, of Georgetown, S.C., gives results of a study of the destructive forces on land of tropical storms that reach the Gulf and Atlantic coasts during the hurricane season, and suggests means of protection against the winds and waves that sometimes attend these storms. The following are extracts from the article referred to:

The maximum velocity of the hurricane wind has been known to

exceed the rate of 120 miles an hour, but this is only in puffs of a few seconds’ duration, as the total movement of the wind for a whole hour rarely exceeds 60 miles. Now wind pressure is usually estimated at 2 pounds per square foot of surface when blowing perpendicular to the surface with a velocity of 20 miles per hour, 8 pounds for 40 miles, and 18 pounds for 60 miles, the pressure increasing as the square of the velocity. [It will be observed that during the Gulf storm of September 26–27, 1896, the wind maintained a velocity of 60 miles per hour at Pensacola for a whole hour.] If we assume the highest velocities and calculate the pressures by this rule, we should expect few ordinary houses to resist them. But in the wake of a storm, a study of the structures which fail and of those which resist is generally calculated to surprise an observer far more by the apparently weak than by the actually strong. The foundations must be firm and the roofs fairly well framed and attached. In new houses, by the use of wooden ceilings instead of plastering, and a few angle iron bolts, one can easily have a structure like a double box, which could be almost rolled over without injury. Old houses, badly constructed and with poor foundations, may be easily preserved by a few stout braces or inclined props on sides opposite the wind. In short the wind of a cyclone by itself seldom works serious injury. It is only where it has the water as an ally and accumulator of its forces that its ravages are great.

When a hurricane passes inland it soon becomes little more than a bit of very bad weather. Its great instrument of destruction, the so-called tidal wave or storm tide, or, more properly, storm wave, which is raised by it and which submerges the low land of the coast. Below the limit to which these waves rise is the zone of danger in a hurricane; above it is the zone of safely attained safety.

How far this danger line may extend above ordinary high tide depends so largely upon local configuration of coasts that it is only to be determined for any locality by observation. Unfortunately reliable measurements and data upon this point are rare and difficult to obtain. Popular accounts are usually exaggerated, being largely based upon the action of surface billows, which may send waves and drift far above the general level of the storm wave. A vessel, for instance, drawing eight feet may be carried by successive billows across a marsh submerged only four feet beneath the general level. I have read accounts of combinations of storm waves with tides, the highest record being the highest high-water mark, but when the action of billows is eliminated and careful measurements are made, the highest record of a storm tide above ordinary high water which I have been able to find anywhere is 8.2 feet. This limit was reached at Fort Pulaski, Ga., in the great gale of August 27, 1896, which broke all records in the history of its waters, in the destruction of life and property, and in the measured velocity of its wind, which at Charleston, for a few moments, exceeded 120 miles an hour. As this gale is one of great interest, the reader is referred to the records published in the Monthly Weather Review for October, 1896, page 466.

The following table shows the rise of the tide caused by this hurricane, and for comparison, also, the highest storm tides ever recorded at several Gulf, Atlantic, and Lake ports, as shown by records of the U. S. Coast Survey and Engineer offices.

<table>
<thead>
<tr>
<th>Location</th>
<th>Date</th>
<th>Height of tide</th>
<th>Moon’s age</th>
<th>Foot</th>
<th>Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boston, Mass.</td>
<td>April 16, 1881.</td>
<td>5.5</td>
<td>15</td>
<td>7.5</td>
<td>12</td>
</tr>
<tr>
<td>Sandy Hook, N. J.</td>
<td>September 10, 1889.</td>
<td>5.1</td>
<td>14</td>
<td>7.8</td>
<td>10</td>
</tr>
<tr>
<td>Fort Monroe, Va.</td>
<td>March 10, 1896.</td>
<td>5.1</td>
<td>10</td>
<td>7.6</td>
<td>9</td>
</tr>
<tr>
<td>Sapporo, S. Corea</td>
<td>August 18, 1896.</td>
<td>5.4</td>
<td>10</td>
<td>7.2</td>
<td>9</td>
</tr>
<tr>
<td>Fort Sumter, S. C.</td>
<td>August 22, 1883.</td>
<td>5.4</td>
<td>8</td>
<td>7.4</td>
<td>7</td>
</tr>
<tr>
<td>Fort Pickens, Ala.</td>
<td>August 27, 1896.</td>
<td>5.4</td>
<td>10</td>
<td>7.6</td>
<td>8</td>
</tr>
<tr>
<td>Mobile, Ala.</td>
<td>October 3, 1896.</td>
<td>5.8</td>
<td>10</td>
<td>8.0</td>
<td>7</td>
</tr>
<tr>
<td>Buffalo, N. Y.</td>
<td>January 9, 1889.</td>
<td>8.0</td>
<td>8</td>
<td>10.0</td>
<td>5</td>
</tr>
<tr>
<td>Detroit, Mich.</td>
<td>September 29, 1889.</td>
<td>6.4</td>
<td>8</td>
<td>9.0</td>
<td>6</td>
</tr>
</tbody>
</table>

The plane of reference is ordinary high water, and the age of the moon is given in each case to indicate whether the storm tide coincided with the normal high tides, which occur at all Atlantic ports about each full or new moon. There is no tide at Lake ports, and but little in the Gulf.

From the above we see that the serious ravages are committed by the water rather than by the wind, and that they are confined to a narrow zone seldom, if ever, reaching more than eight or nine feet above the plane of ordinary high water. Above that zone ordinarily well built houses will easily resist the winds if the house and the roof are securely framed together and the foundations are stable. If there are weak points, even cheap and ordinary props or braces which can be improvised rapidly, are very effective in breaking up vibrations and resisting the pulsics and shakes of the wind. Within the zone of danger from water, the dash of the waves and the tendency of the water to lift and float all wooden structures must be provided for. The limits of this article do not permit a full discussion of the magnitudes of these dangers and the various means by which they may be met, but it may be said briefly that pile foundations, or the equivalent, posts framed into buried timbers, are at once cheap and efficient.

WEIGHT OF SLEET ON SUSPENDED WIRES, CABLES, AND BRIDGES.

The breaking of telegraph lines and cables by the weight of the accumulated sleet, ice, and snow led us some years ago to ask that observers send to the Monthly Weather Review some observations on the weight of sleet actually observed in ordinary and extreme cases. We now renew the request. Please state the size of wire, or cable, and the weight of ice per linear foot.—C. A.

RAINY OR SNOWY WEATHER AS FORETOLD BY HALOS.

It is a well-known fact that rain, snow, and general storms are frequently preceded by the appearance of halos, and especially simple circles around the sun or moon. The relation between these phenomena has been carefully studied in Europe, but I know of nothing especially bearing on this subject in America. Would not many of our observers, both regular and voluntary, do well to look over their past records, and tabulate the dates and hours on which halos were observed, more especially the 22-degree and 45-degree circles around the moon and the sun, with a statement of the weather that followed twenty-four hours later? Doubtless the halo will be a much better guide in predicting the weather in some places than in others.—C. A.

MONTHLY REVIEW OF THE PROGRESS OF CLIMATOLOGY THROUGHOUT THE WORLD.

By C. Fitzhugh Talman, U. S. Weather Bureau.

PUBLICATION OF CLIMATOLOGICAL RETURNS FOR THE BRITISH COLONIES.

It appears from a recent report of the British Meteorological Committee1 that a proposition to provide for the publication, in convenient and accessible form, of the abundant climatological data now accumulating in nearly all the British colonies was recently considered by the Committee, and rejected on the score of expense. Following are extracts from a correspondence on this subject that past between the Colonial Office and the Treasury, which latter now has control of the Meteorological Office thru the newly constituted Meteorological Committee.

Letter from the Colonial Office to the Treasury.

DOWNING STREET,
6th August, 1895.

SIR: I am directed by Mr. Secretary Lytton to request you to inform the Lords Commissioners of the Treasury that as the result of an enquiry from the United States Weather Bureau for meteorological information with regard to Weihaiwei, he has had his attention drawn to the absence of any organization for the collection and publication of meteorological returns from the colonies generally, and for affording information to persons making enquiries as to climatic conditions in various parts of the British Empire. It would appear that to a great extent in response to a circular of the 27th of July, 1895, the Meteorological Office receive a considerable amount of information, as shown in the enclosed print, which could with a little trouble be largely increased. Owing, however, to the want of the necessary clerical assistance most of these valuable returns serve

The center of the storm past near and east of Havana at 11:30 p.m. of the 17th, with minimum barometer, at Havana, 28.88 inches, and by the morning of the 18th, had reached a position north and to the eastward of Key West, where at 3 a.m., a minimum barometric reading of 29.30 inches was registered. Moving thence northeastward to a point opposite the South Carolina coast the center recurved to the westward, and was then forced southward over the Florida Peninsula by an area of high barometer that covered the north Atlantic coast districts.

The center of the storm was over northeast from the Atlantic coast, and in its front the first snow of the season occurred at points in eastern Colorado.

The period from the 13th to 23rd was stormy in the middle Rocky Mountain districts. In Denver and Cheyenne the depth of snowfall was nearly two feet, and in the mountains of Colorado and north-central New Mexico snow fell to a depth of six to thirty-six inches. The snowstorm extended from this region over South Dakota, western Nebraska, western Kansas, the Texas panhandle, northern Arizona, and Utah. In Utah a severe windstorm set in during the night of the 20th and continued on the 21st, causing considerable damage. At Salt Lake City a maximum velocity of 52 miles an hour from the northeast was registered. Snow fell in the upper Lake region on the 29th, and a heavy fall of snow occurred in western and northeastern New York on the 30th and 31st. Following the passage of the low area (VII) that contributed to the storm period referred to, frost occurred in the interior of the Southwestern States from the 23rd to 25th.

The following from Mr. C. P. Horton, Bourne, Mass., refers to a special frost-warning service that has been in operation in the cranberry district of Massachusetts:

I have to thank you, in common with all the growers of cranberries in this section, for your timely warnings of frost, which in one case at least saved us from serious loss. I consider the service of the Bureau is of very great value to the growers of the principal crop here.

Attending an area of low barometer that moved northeastward from the Gulf of Mexico during the 5th, a small tornado past over the western portion of New Orleans about 9:30 a.m. of that date, injuring several persons and causing some damage to property.

The West Indian hurricane of the Second Decade of October, 1906.

This storm apparently had its origin over the eastern Caribbean Sea early in the second decade of the month, and drifted westward as a shallow barometric depression that covered practically the entire West Indian-Caribbean Sea region.

On the morning of the 17th, reports indicated the presence south of western Cuba of a well-defined cyclonic disturbance, and at 11 a.m. of that date storm warnings were ordered on the east Gulf, Florida, and south Atlantic coasts, and the following was telegraphed to Atlantic and Gulf ports and to Havana, Cuba: "* * * Disturbance apparently approaching western Cuba from the Caribbean Sea. Unsafe for vessels next few days off western Cuba, Florida, and south Atlantic coasts ".

The following report of a storm that visited the Nicaragua coast October 9, 1906, has been made by Dr. W. F. Thornton, Bluefields:

Colón, Panama, is the only station in the southwestern Caribbean Sea that reports by telegraph to the Weather Bureau at
Barometric pressure began to fall at that station on the 6th and continued to fall until the morning of the 9th, when a reading of 29.72 inches was reported. At 9:30 p.m. of that day the storm center, traveling in a westerly course, struck the Nicaragua coast line north of Bluefields, and did not thereafter appear within the region of telegraphic observation.

Mr. A. J. Mitchell, Observer of the Weather Bureau at Jacksonville, Fla., reports as follows:

It may be appropriate to say that ample warnings were issued in advance of the storm. Special messengers were sent to outlying points, and as far as possible thorough warning was given in Monroe, Dade, and the lower portion of Brevard counties, where the damage was greatest. At Miami many houses were blown down or damaged, and horticultural interests suffered much loss. The losses in and about Miami amounted to about $150,000. The loss of life among laborers extending the Florida East Coast Railway is placed at 124. The men lived in houseboats that were swept out to sea. The islands behind which the boats were anchored had afforded ample protection against previous storms. The stern-wheel steamer St. Lucie, used as a transport for the railway company, left Miami about noon of the 17th. The northeast storm warning was flying at that time and messages from the Central Office urged vessels to remain in port. The St. Lucie was lost and many of her passengers were drowned, but it may be well to state that the master of the vessel left port without consulting the proper officials of the railway, who always direct that proper precaution be taken on the Weather Bureau warnings.

The American Consul, José de Olivarres, at Managua, Nicaragua, under date of October 26, reports:

I have the honor to report that during the interval of two weeks, from October 8 to 22, this entire Consular District was visited by what was probably the severest rainstorm that has ever occurred in this part of the world. In the great valley lying between the two mountain systems here in western Nicaragua, in which are situated Lakes Managua and Nicaragua, the most notable characteristic of the storm was the almost continuous torrential rainfall, which in the rural districts resulted in much damage to public roads, and in the cities and towns was the cause of considerable suffering, by reason of the insufficiency of the houses to resist the ingress of the rain, which literally filtered through the tile roofs and in many instances absolutely flooded the interiors. At the consulate, notwithstanding that it is housed in one of the most substantial structures in the capital, the same conditions obtained, the floors being converted into great pools of water and it being necessary to keep the furniture constantly covered with oilcloths.

Among the poorer classes much misery, attended with a great deal of sickness and an unusual number of deaths, has been one of the most serious results of the storm.

From San Juan del Sur our consular agent reports the same character of weather, which constituted a great obstacle to the commerce and general traffic thereabouts. At Corinto, in addition to the downpour of rain there was experienced an unusually heavy sea, which badly damaged a part of the new dock in process of construction at that port.

But the severest conditions and worst results in this district are reported from our consular agent at Matagalpa, in the northern mountain section of this country. The rainfall thereabouts resulted in a number of serious floods causing extensive damage to the plantations, and washing away the roads and bridges throughout that locality. In several cases tremendous landslides, carrying away whole billelides, occurred. The crops in general suffered badly, the corn being entirely destroyed in many sections.

Taken together with the disastrous tempest that is reported to have laid waste almost the entire eastern seaboard of this country, the results of the storm in general to Nicaragua are appalling in the extreme.