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The Structure of Typhoon Irma (1974)
As Revealed by 700-mb Aircraft Data

David P. Jorgensen |

ABSTRACT. Instrumented-aircraft data for five days representing,
roughly, the entire life cycle of the typhoon are analyzed. The
data analyses are presented as horizontal cross sections and
profiles of eight meteorological parameters: relative tangential
wind, actual and relative radial wind, adjusted temperature,
relative humidity, mixing ratio, adjusted D-value, and adjusted
equivalent potentfal temperature. From computations of the degree
of balance between the tangential wind field and the pressure
gradient field of the typhoon it is found that on all days, regard-
less of storm state or motion, the pressure field was almost exactly
in gradient balance with the relative tangential wind field in the
eyewall region, at 700 mb. ' The feature of the wind field that
primarily distinguished the most intense phase of the storm
(November 26) from the other days was the sharp decrease in the
windspeed profile with radial distance away from the storm ceater.
The windspeed profile on the other days was very flat, with little
dropoff in windspeed with radial distance.

1. INTRODUCTION

The gathering of meteorological data from tropical cyclones by
instrumented aircraft has been a regular procedure since the early 1950's.
Thorough examination of storms of different character has been conducted,
principally by LaSeur and Hawkins (1963), Colon (1964), Hawkins and Rubsam
(1968), Hawkins and Imbembo (1976), and Shea and Gray {1973), who composited
13 years of radial profile observations of Atlantic hurricanes. Recently,
Willoughby et al. (1981) have noted the occurrence of secondary wind maxima,
and their propagation and appareat effect on storm evolution in rather
symmetric Atlantic hurricanes. The majority of these analyses, however, were
carried out on Atlantic nurricanes. Recent investigations by a U.S. Air Force
C~130 aircraft equipped with the new Airborne Weather Recording System (AWRS)
in the Western Pacifie provided an opportunity to examine the structure of a
typhoon. This 1s the first case of a well-instrumented aircraft gathering
data in a Western Pacific typhoon. The goals of this research were (1) to
judge the quality of the Western Pacific data in respect Lo data gathered by
research aireraft in Atlantic hurricanes, and (2) to compare structures of a
mature Western Pacific typhoon and Atlantic hurricanes.

Typhoon Irma developed in the Western Pacific south of Guam on November
21, 1974, as a depression in the monsoon trough (fig. 1) and was the last
typhoon of the 1974 season. The storm drifted northwestward from November 21
to 25; then its track became westerly (Annual Typhoon Report, 1974). The
periods of aircraft investigations are indicated in fig. 1. The data gathered
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Figure l.--Joint Typhoon Warning Center's best track of Typhoon Irma
{(from the Annual Typhoon Report, 1974).

by the aircraft represent several phases of the storm as it underwent
development, Starting as a weak—to-moderate typhoon {November 24 and 25, with
maximum flight level winds* 38 and 52 o s l, respectively), Irma developed
into a strong, late-season typhoon {November 26, with maximum fiight level
winds at 72 m s !) and returned to tropical storm strength after passage over
Manila (maximum flight level winds were 26 m s ! on November 28 and 29) before
curving northward.

The synoptic conditions on November 24 (not shown) indicate the relative
wedakness of the 70U-mb flow, which was characteristic of the period November
24 through 29, the strong anticyclone south of China, and the weak trough to
the north ot the storm. Ley and Elsberry (1976) studied the track of this
storm and tried to predict it with a nested-grid model, with scme success.
Although the storm was forecast in real time to recurve to the north because
ol its Interaction with the trough, the building of the ridge to the north and
west apparently influenced the storm to take a westward course. The
abnormally large ‘size of Irma (as compared with Atlantic hurricanes) is also
indicated by the extent of its circulation. Defense Meteorological Satellite
Program (DMSP) photographs (fig. 2) for November 25-28 show the cloud cover
vxtending vver 10° of longitude and latitude before landfall at Manila.

* lhe maximum winds tabulated on the track in fig. ! are from the Annual
iypliven Report {1Y74) and are not necessarily the same as those recorded
by the aircraftt. Typhoon forecasters use several data sources, in-
cluding aircraft, to arrive at best-track and intensity estimates. The
track and intensities indicated in fig. | represent a compromise (or a
smonth) over the many data sources to maintain a consistent picture.
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Figure 2.--Series'of Defense Meteorological Satellite Program (DMSP}
visible photographs of Irma from November 24 through November 28, 1974.
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The aircraft were sent out from Anderson Air Force Base, Guam, and Kadena
Air Force Base, Ukinawa. The AWRS system was undergoing operational testing
and evaluation in tropical cyclone reconnaissance. A complete description of
the AWRS test and evaluation can be found in Melhart and Fister (1975). The
AWRS was so developed that a high degree of confidence can be placed in the
inertial navigation system and the determinstion of flight level winds. The
primary parameters measured by the system and recorded on magnetic tape at the
rate of omne observation per second are radar altitude, pressure altitude,
drift angle, magnetic heading, ground speed, true air speed, wind direction,
windspeed, latitude, longitude, air temperature, dew point, and static
pressure, . All other parameters, such as equivalent potential temperature
(eE), mixing ratio, and D-value (difference between the absolute and pressure
altitude), are computed from these basic parameters. No radar data were
available from this aircraft. Data were recorded on magnetic tape at the rate
of one observation per second. In this study, however, only one observation
per 10 seconds 1s used, primarily to speed the processing. The data were not
smoothed or despiked, except when gradient wind was computed.

2. DATA COMPOSITING METHOD

Data gathered from these investigative flights were composited with
respect to the storm center. The storm's motion has been removed from the
relative wind plots. This method assumes that the storm is in a steady state
over the data collection interval and that the storm's motion is accurately
known. The usual method is to compute the storm track from radar positions.
This was not possible for the Irma data set, since no on-board radar was being
photographed. Instead, the storm track was computed by "fixing" the apparent
center from the aircraft data (centering D-value profile, looking for wind
minima) on each pass through Irma's eye. Only dara within the radius of
maximum wind were used to 9efing ihe SLOTm center. A 1inear SCOrm traeck was

then fitted to these eye observations. There were, in general, two or three

aye penetrations, except on November 24 when only one pass was made through
the eye. In that case, the Joint Typhoon Warning Center's best track was used
in conjunction with the one observation.

The thermodynamic data (temperature and dewpoint) were adjusted to the
7GU-mb level by the mean tropical lapse rate to compensate for small
departures (10 mb) of the airecraft from this level. This adjustment would
result in no more than a few tenths of a degree correction no matter what
realistic lapse rates were used (standard atmospheric, mean tropical, or mean
hurricane); for simplicity and the maintenance of continuity with other
studies, the mean tropical lapse rate was used. The D-value (departure from
standard atmosphere) was adjusted with the hypsometric equation (see

Appendix).

Temperature data were also corrected for an apparent 1.5°C too—-cold bias
that was deduced by a hydrostatic consistency check when the aircraft
ascended/descended upon takeoff/landing. This bias was also noted by Lewis
and Jorgensen (1978) in a study of Atlantic Hurricane Gertrude based upon data
trom the same aircraft taken om October 1, 1974,




BEST DOCUMENT AVAILABLE

20
D S B M B PO S R B S B B B B L
L ey ;‘ ; ;.. ..s |
* T
o * o] -
rs
- LN 4’!‘
"~ e -
i~ LT T T T T e
20 vl .
Ny ‘
S
e AN —
\\
~
40 = SN _ ard
\\
— \'\
ok - LT |
= \“‘\‘ e e
80 b -
| NOVEMBER 24, 1974 ]
700mb, FLIGHT LEVEL.
100 eSS T SN TN TS TN N N N RN SN S S 11 1
80 50 40 20 0 26 4 50 80 00 120

Figure 3.-—November 24 flight track.

3. STORM STRUCTURE ON NOVEMBER 24

At 0OU000Z on November 24, lrma was approximately 100 km due west of Guan,
moving west-northwest at about 5 @ s 1, The AWRS aivcraft flew a 9.7-hour
mission from Guam; however, 2 tape malfunction on board destroyed most of the
data gathered. Figure 3 presents the part of the flight track for which data
are available.

The profiles for the first penetration are presented in fig. 4. The
radius of maximum winds {defined here as the distance from the center of the
eye at which the windspeed first stops jncreasing) was 130 km, and the maximum
wind was 39 m s7}. By definition, the eye is considered to be the relatively
calm area enclosed by the ring of clouds (evewall) that mark a transition zone
of sharpest inward increase nf equivalenc potential temperature and cyclonic
wind shear. The eyewall bovndary customarily is determined visually or by
radar. The Shea and Gray composites indicate that the radius of maximum wind
is displaced 5-10 km radially outward from the radius of the inner radar eye
boundary, with a weak dependence on storm strength; that is, the stronger
gtorms have less displacement. Displacement is also related to eyewall slope,
as indicated by Jorgensen {19%2). 1In this study no information is available
on the location of the eyewall clouds, and the eye is considered bounded by
the maximum wind. The extreme gize of Irma's eve is the most unusual aspect
of these data compared with other observations of both Atlantic hurricanes and
Western Pacific typhoons. The Shea and Gray composites indicate that roughly
1% of the radius of maximum wind observations are »9U km. Ball (1975) has
compiled data based on lU years of airborne recomnaissance vbservations of
reported eye diameter of Western Pacific typhooms (usually visible or radar
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Figure 4.--November 24 southeast-center inbound leg profiles:
(a) relative tangential wind; (b) actual radial wind; (c) relative
radial wind; (d) adjusted temperature.
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Figure 5.-—Continued: (g) adjusted P-value; (h) adjusted equivalent
potential temperature.

reports of eye size) and found that only 2% have eye radii >80 km. As will be
seen, the large eye size was a characteristic of Irma, in spite of substantial
changes in the maximum wind speed.

Most of the flight leg on November 24 was within the broad eye. The
relative radial compeonent of the wind shows a small outflow component
(positive) over most of the flight leg, except for a narrow region near the
tadius of maximum winds. Comparison of the actual radial prof [
relative radial component profile illustrates the effect of removing the storm
motion from the data. Even though the actual and relative wind profilies wer
nearly the same, the effect of removal of storm motion is to change tlie sign
of the radial cewponents, since the storm motien is along the direction of the
flight leg presented in fig. 5. Outflow from the eye inmto the eyewall clouds,
even at 700 mb, is a common occurrence, as Jorgensen (1982) points out for
Atlantic hurricanes.

The reiative humidity profile reveals the generally subsaturated
conditions within the broad eye. The eye temperatures were approximately 1°
to 2° warmer in the eye center than near the eyewall, and the moisture
content, mixing ratio, and absolute humidity profiles were relatively constant
through the eye except for a decrease between 40 and 70 km radial {istance.
The adjusted equivalent potential temperature profile showed an increase
of & in the presumed eyewall region between about 120 and 140 km radial
distance. The relative 6; minimum at 60 km radial distance was ln response to
the meistute minimom.

Figure 5 shows the profiles for the outbound leg from the center to the
east. Again, the relative wiand profile shows no clearly defined radius of
waxinmum wind, but a rather broad zone from about 120 ka outy rd that
apptoaches 40 m 8~1. The eye si but ca
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Figure 6.--The 700-mb relative wind streamlines on November 25 in storm—

relative coordinates. Aircraft's flight track is indicated by dashed
line.

inferred to be about 240 km in diameter. Small (<8 m s-1) relative outflow
occurred out to about 160 km. The thermodynamic quantities were similzar to
the first leg, As before, the highest temperatures were about 2°C, in the eye
center with the moisture profiles showing relative minimums in central region
(inward from 120 km radial distance). The location of the eyewall region can
be inferred from the g profile, since the eye boundary of the storm would be
expected to have a relative maximum of @, and the most rapid increase of BE
would be presumed to have occurred in the convectively active regions
surrounding the eye (Hawkins and Imbembo, 1976). The @; profile reveals such
an increase at radial distances from 110 to 120 km.

4. STORM STRUCTURE ON NOVEMBER 25

Irma's structure on November 25 is revealed by the horizontal analyses of
streamlines, isotachs, and isotherms, as well as by the profiles for the two
traverses of the eye. The storm was more intense on this day than the day

before, and the aircraft's flight pattern consisted of much longer radial
legs.
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Figure 7.--Horizontal isotach analysis at 700 mb on November 25, in
storm~relative coordinates.

4.1 Horizontal Analysis

The streamline analysis of November 25 (fig. 6) reveals a nearly
symmetric flow pattern with only a hint of cyclonic ocutflow, which is revealed
more clearly in the profiles. This would seem to indicate that the inflow
layer was confined to levels below 700 mb. The Shea and Gray composites show
that the inflow layer was primarily constrained to levels below 900 mb, or
just within the surface frictional boundary layer. Hawkins and Imbembo (1976)
also show this result for the small, intense- Hurricane Inez (1966).

The isotach analysis (iig., 7) illustrates the absence of any well-defined
radius of maximum wind. Rather, there was a broad zone of nearly symmetric
40- to 50-m-5~! wind. The highest wind speeds were in an area slightly left
of the moving storm front (storm woticn on this day was 2.2 m s} toward
301°). The location of any asymmetric wind mesnimum in Atlantic hurricanes is
generally the right front quadrant (Shea and Gray, 1973).

Analysis of the adjusted temperature field is presented in fig. 8. Here,
the area of highest temperatures is of particular interest. The most
anomalously warm areas were not in the center of the eye (nor distributed
evenly across it), but in a ring 5 to 10 km wide, just inside the radius of

11
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November 25, in storm-relative coordinates.

maximum wind., Slight temperature decreases of 0.5° to 1.0°C were evident in
the eye center. This lowering of temperature is an indication that subsidence
at this level was most intense just inside the eyewall, a characteristic found
in other Atlantic storms. For example, Shea and Gray (1973) also show that,
on the average, in 21 hurricanes the highest adjusted temperatures were a few
kilometers inside the radius of maximum wind. Temperature anomalies
(deviations from the apparent near-environmental temperature of 12°C) inside
the eye were about 6°C. Beyond a radius of 100 km, temperature gradients were
weak and small-scale fluctuations were caused, primarily, by the presence of
convection or rain, or both. The response of the temperature probe when in
cloud or rain is not known precisely. If the instrument were wetted upon
penetration of cloud or rain, cooling would result, since the device would act
as a wet bulbs (Showp, in figure 9d, at 50 km west of the center, is a
somewhat characteristic dip in the temperature trace that has also been seen
in Atlantic hurricane flight data. Without cloud water measurements it is
difficult to evaluate this cooling effect. A reasonable estimate of up to 1°
cooling caused by liquid water is indicated from experience with Atlantic

flight data .)
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The profiles for the east-west leg are presented in fig. 9. The storm
was moving slowly on this day (301° at 2.2 m s~!), and, therefore, the"
relative winds (fig. 9¢) would differ little from the actual winds (not
shown). This slowness is reflected in the nearly identical profiles of actual
and relative wind. The tangential wind profiles indicate a flat wind profile

" outside the eye region, with the eye having a diameter of approximately 100

km. The wind profiles alsc show a region of maximum wind between 90 and 140
km to the north of the storm center, which is the location of the relative
outflow maximum. The relative radial component alsc indicates that the eye
region was generally an area of slight inflow or pure tangential wind, while
outside the eye region a small component of cutflow existed. As on the
‘previous day, the east-to-west profiles of tangential and radial wind show
that little influence was exerted by the storm motiom, which was very slowly
westward. The eye radius had decreased from the 130 km of the previous day to
50 km on this day, to 50 km about 31 hours later.

The thermodynamic profiles show that the place of maximum temperature,
minimum relative humidity, and relative maximum of adjusted ©_ was just inside
the radius of maximum winds. The relative dryness of this area within central
parts of the eye region is illustrated by a minimum of mixing ratio and
relative humidity. In contrast, in Hurricane Inez, Hawkins and Imbembo
(1976), noted the maximum of mixing ratio to be in the central part of the
eye. The difference can be explained by the sizes of the respective eyes.
Inez was a small, intense storm (eye diameter <40 km), whereas Typhoon Irma
was much larger (eye diameter about ~100 km). Turbulent mixing and detrain-
ment of moist air near the eyewall clouds in Hurricane Inez could have
moistened the eye region, whereas in Irma the inmer eye was too remote to feel
the effects of lateral mixing. This interpretation is supported by the
observed maximum of moisture that was at and just inside Irma’s maximum
wind. The relative humidity was close to 100% outside the eye, and there was
indication that the 700-mb air was drying with radial distance, as the mixing
ratio profile illustrates.

The south-north leg (fig. 10) exhibited many of the same features as the
east-west leg. The short, straight line segments apparent on these profile
plots, and others to follow, are a manifestation of the compositing tech-
nique. They indicate that the aircraft did not go through the storm center
(calm wind). A secondary maximum of wind occurred between 140 and 200 km
radial distance to the north and radially outward from 100 km to the socuth. A
plateau of 40-m-s"! wind existed from the edge of the eye to-about 100 km on
both sides of the center. Here we choose the radius of maximum wind to be the
point on the profile where the wind first stopped increasing with radial
distance. The reason for calling this point the radius of maximum wind is not
readily apparent, but Willoughby et al. (1981) have noted a similar wind
structure with storms that have double concentric radar eye configurations;
that is, the inner eye has a flat tangential wind character. The temperature
and moisture profiles alsc indicate that there were sharp gradients (at least
on the north side) within the presumed 40-km radius eyewall.

A maximum of relative radial outflow cccurred coincident with the second-
ary tangential wind maxima. Temperature and moisture minima can be noted
within the central portion of the eye. Relative humidity in the central
portion of the eye region dipped to 60%, because of the Lemperature increase
and moisture decrease. As other studies have 1ndicated, the highest radial
gradients of D-value and O, were in the regicns of maximum wind, which
indicated the locations of the eyewalls. -
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Figure 9.-=-November 25 east-west profiles: (a) relative tangential wind;
{b) actual radial wind; (c) relative radial wind.
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Figure 9.-~Continued: (d) adjusted temperaiure; (e) relative humidity;

(f) mixing ratio.
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Figure 10.~-Continued: (d) adjusted temperature, (e) relative humidity;
(f) mixing ratio.
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In summary, on this day Irma was very large, with two distimct wind
maxima--one at the eye boundary (about 40 to 60 km radius) and one at a radial
distance >100 km. The DMSP photographs (fig. 2) show that Irma had a cloud
mass associated with the circulation extending as much as 250 km radial
distance from the storm center. Maximum winds noted were nearly 55 m sl with
temperature anomalies of 6°C inside the eye. Moisture values (uixing ratio)
exceeded 15 g kg—l in the eyewall region and just inside the eye. There was a
somewhat unexpected dip in the moisture values at near eye center, which might
be attributed to the large eye diameter. '

These observations agree with the newer NOAA WP-3 aircraft data from
mature storms as noted by Jorgensen (1982). In this context, the region of
eyewall maximum wind was in the zone of maximum radar reflectivity, but the
boundary of the radar echo and the clear eye was 3-5 km displaced inward. The
maximum vertical velocity and gradients of BE and D-value occurred at this
boundary.

Figure ll.--Relative wind streamlines
at 700 mb on November 26, in storm-
relative coordinates.

5.1 Horizontal Analysis

The horizontal analysis of the relative wind streamlines is depicted in
fig. li. This analysis indicates a symmetric vortex with a very slight hint
of outdraft. The isotach analysis (fig. 12) reveals that the maximum winds
had increased 10~15 m s™! in the previous 36 hours to 7080 m s7l. The
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distance from the storm center. Maximum winds noted were nearly 55 m s~} with
temperature anomalies of 6°C inside the eye. Moisture values (mixing ratio)
exceeded 15 g kg‘l in the eyewall region and just inside the eye. There was a
somewhat unexpected dip in the moisture values at near eye center, which might
be attributed to the large eye diameter.

These observatioms agree with the newer NOAA WP-3 aircraft data from
mature storms as noted by Jorgemsem (1982). In this context, the region of
eyewall maximum wind was in the zone of maximum radar reflectivity, but the
boundary of the radar echo and the clear eye was 3-5 km displaced inward. The
maximum vertical velocity and gradients of ©_ and D-value occurred at this
boundary.

E

Figure 1l.-~Relative wind streamlines
at 700 wb on November 26, in storm=
relative coordinates.
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Figure 13.~-Horizontal analysis of
ad justed isotherms at 700 mb on Novem-
ber 26, in storm-relative coordinates.

Figure 12.--Horizontal isotach analysis
at 700 mb on November 26, in storm—
relative coordinates.

relatively broad zone of maximum wind on November 25 was a sharp peak at about
60 km radial distance from the storm center. Maximum winds were located to
the left rear part of the storm with respect to the direction of motion (275°
at 5m s !). This result is in contrast to other findings (Shea and Gray,
1973; LaSeur and Hawkins, 1963), which indicate that the strongest winds and
strongest convection are usually found in the right front quadrant of the
storm.

Horizontal analysis of adjusted temperature 1is presented in fig. 13.
There is an 8°C anomaly in the eye from the apparent 12°C near enviromrment,
with the largest gradients in the eyewall region. Highest values of adjusted
temperature were about 20°C and can be seen to have occurred in a ring just
inside the radius of maximum wind. There was a 4°C temperature drop in the
central part of the eye. Presumably, this thermal decline was caused by the
large diameter of the eye, which allows the largest subsidence to occur near
the eyewall. Note that there is a predominance of cooler temperatures to the
gouth, This characteristic might be the result of advection of coolet
temperatures from the north into the storm circulation, although no direct
evidence is available to compute air trajectories over the large influence
region of lrma. As shown in the gsections that follow, this feature is common
to other days of 1rma as well.
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Figure 12.—-Horizontal isotach amalysis Figure l13.~-Horizoatal analysis of
at 700 mb on November 26, in storm— : ad justed isotherms at 700 mb on Novem-
relative coordinates. ber 26, in stomm-relative coordinates.

relatively broad zone of maximum wind on November 25 was a sharp peak at about
60 km radial distance from the storm center. Maximum winds were located to
the left rear part of the storm with respect to the direction of motion {(275°
at 5m s 1). This result is in contrast te othat Findinok (Shaa and Graw.
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5.2 Profiles

The AWKS profiles for the November 26 north-south leg are illustrated in
fig. 14. Storm motion on this day was 275° at 5 m s~!. As a result of this
motion, the relative wind was about 10 m 8”1 lower on the north side than the
south. The actual wind speed (not shown) on each side of the storm was about
70 m s, Eye diameter had increased to about 160 km, with a well-defined
single radius of maximum wind. It was on this day that the storm reached its
maximum intensity. The storm had curved from a northwest track to a near-west
heading in response to the steering currents and was imbedded within a region
of little vertical shear with a strong 200-mb anticyclome aloft (not shown).

The radial wind profiles reveal that on the south side of the storm nega-
tive values or inflow predominated, while to the north, southwest, and west
outflow was evident. These features are not thought to be caused by storm
motion, as the actual and relative radial profiles are nearly identical. This
finding is not at variance with other studies. Shea and Gray (1973) present
plan views of mean radial winds that show outflow at midlevels ahead and to
the right with respect to the storm's motion, with inflow predominating behind
and to the left., The predominant feature of the radial wind is the sharp
spike of outflow within the maximum wind regime on the south, west, and south-
west profiles, indicating convergence of air from the eye into the eyewall,
This is also seen in Atlantic hurricanes (Jorgensen, 1982).

The thermodynamic profiles reveal a slight change in the eye character-
istics from the previous day. The relative humidity minimum of 60% is evident
in the central part of the eye. Also shown is an adjusted temperature drop of
about 4°, which is a much more pronounced dip than that of the previous day.
Maximum temperatures occurred just inside both eyewalls, and the anomalies
were 8°C. Maximum moisture values were about 15 g kg~l, the same as the
previous day. ©_ profiles show the largest gradients in the eyewall regiom,
as expected, and a relatively constant value within the eye of 364 K, except
for a dip in the central part of the eye due to the moisture dip. The b-value
profile shows the classically symmetric structure {spikes in the profile are
caused by sharp aircraft rolls) and will be shown to be consistent, in the
gradient wind sense, with the observed tangential winds.

The AWkS profiles for the east-west and northeast-southwest legs on Novem—
ber 26 are presented in figs. 15 and 16. They reveal much the same information
as the north-south profile and are included for continuity. There were mois-
ture and temperature minima in the central part of the eye and a corresponding
dip in v_, a well-defined single radius of maximum wind of about 75 m 5”1 at a
radial dfstance of 60 km, large values of radial outflow at the radius of maxi-
mum wind, particularly on the southwest side, and relatively subsaturated con-
aitions towara the north and east, even within the eyewall and outer rainbands.

, The data on November 26 indicate that Irma was a well-defined, large
storm with maximum winds >75 m s~!. The storm structure on this day agrees
well with the composite of Atlantic storms of mediun-to-high intensity
presented by Shea and Gray (1972). They show that, for intense storms (that
is, where central pressure is <945 mb), the wind profiles have sharper peaks
and fall off more rapidly away from the radius of maximum wind than the
broader profiles of wind for the moderate storms. Irma followed this pattern
as well. On November 24 and 25 the wind profiles were rather broad and had
two maximum regions., The intensification that took place on November 26 (down
to 939 mb) was correlated with the narrowing of the wind profile. Maximum
waraing and drying were located within the eye in & ring adjacent to the
aaximum wind, and were more pronounced than on the previous day.




781126  TYPHOOM IR RELATIVE WIND

RELATIVE WIND SPEED ( w/xec )

SOUTH

400 B0 260 40 J20 M0 200 269 240 220 200 180 160 140 120 LOK @0 64 48 26 #2040 BV BB LBR 129 DD LGB LAD 20D J2F 20 kR A0 38R e 300 iil’
T L

NORTH

L}
90 LE0 160 340 120 200 200 26# 280 233 0B 142 LD .08 424 380 89 GE 48 20 8 b 4F 6B B0 L0F L1 LGB LBA LAH XS 120 LU0 260 30 0M 300 00

AP DISTANCE FROM STORM CENTER idml

w
-
-
r S0 JOU 360 348 320 300 268 DES £40 D0 ZGN 0 J6N 138 120 300 68 00 S I 0 1% 40 48 B0 300 110 140 400 100 D00 IR B0 MS B0 3N W4 1H W9
_II il e e e £ ]
2 -, PALIEE  TYPHOEN JRWA ACT WIND AOEM
. "
"1 b “
% ]
- o
=
n [} ]
w ]
Y
]
g
?. (]
-4 &
-1 -
-3 =
- -
- "~
SOUTH NORTH
- vy

MADIAL DISTANCE FRée STORN CENTER ixa)

T e Ton Toh 00 Tos e Cel TCT B 100 160 140 160 100 60 PO 49 E9 0 E6 18 64 B0 160 (L3 (98 190 190 EW ER4 €00 200 D8R 300 M 1W Mb

400 20U DD M40 IZE 208 Tue Few Bab 220 B0 100 S0 140 128 S M B0 0 B & W B H B uoauuliumaugﬁulmmmmanuq_
L]

FALLRE  TYPMOEN Jewh REL WINS RARDAL

c

RAOIR. COMPOMNENMT OF RELATIVE WIND La/gec ]

NORTH

& TR IR RN R O O T R R T
MROIAL DISTANCE FROW STOMM CENTER |Kal

(TR

Figute l4.~<November 26 notth-south profiles: (4) telative tangential

wind; (b) sctusl radisl wind; (e¢) relative radial wind.




2z 400 390 368 340 320 300 280 26D 240 220 200 180 SSY 140 120 100 4068 49 20 8 BB A GO KF 10 120 156 10 160 208 Z20 249 26F 200 200 326 348 3 ;'_;
- 741126 TYPHOON IRWA ADJ TEMPERATURE .
o 20 d ]
L i)
&
=% 1
g 14 u
=
E 12 12
E 10 u
=
G e []
[
—
g y
§ SOUTH NORTH

+

40T 380 357 340 320 300 20¥ 260 240 250 200 140 16D 110 12¢ 100 €0 68 48 ZF & 28 49 60 AF 100 120 4N 160 180 20% 228 240 e 280 IM 320 218 2

RADIAL DYSTANCE FROM STORM CENTER LKkem)

40 e 308 30 e 200 310 B0 208 100 389 140 110 100 00 00 W 2% 4 PN R R RN N ll.lﬂl!lllllinul!ul!{“

251126  TYPHOIN 0% MRLATIVE HMNIEITY -

e ue

RELATIVE WMMIDITY ( PER CENT )

£ & 33 % 2 2T % EE G

SOUTH . NORTH
T T R e TR T IR T R R T TR T e R N BT W@ W W mmmmnﬁlmﬁcml'ulgl'
DISTANCE FREM STERM CENTER tia)

i J06 30 346 320 206 I3 IS8 B4 218 D00 U M 1M A28 1M 08 64 @ 0 29 4 §3 6F LD 120 LV LDO LU0 209 A3 k49 280 240 M4 N0 30N 360
v ——— +- — ]
701126  TYPnolv Jewh RIVING PATID

uw ' u

18 i

u 1]
- R n
L]
u It
a 11 n
=] W
&

)
! L]
> @ L
S

? 7

é ]

]

SOUTH NORTH
! 80 2180 368 340 320 ad6 BR4 289 Z40 120 REF LD LER LWO L20 LM 1R &0 W 2P B D40 BB €0 L0E 120 (M LEE LU0 REP 2R LAD 260 200 MDD OO0 100 “I

MOIAL DISTANCE FROM STORM CENTER Ikml

Figure l4.~—Continued: (d) adjusted temperature; (e) relative humidity;
(f) mixing ratio.
o¥




RADJSTED D-VALUE { )

ADJ EQUIVALENT POTENTIAL TEMPERATURE {DEC C)

400 380 M 348 320 200 _!‘ll BW 240 ZE0 200 1NN 168 195 130 160 85 4 4 20 0 A6 40 40 85 L9 100 )6 180 400 208 MR RTRIRIR
——— et ot ]

m
; 9

138

a7
-a
(a8
-4l

-47§

SOUTH

TA1126  TYPHOON 3R ROJUSTES B-VALUE

NORTH

$ee

SONSs aup 260 209 230 100 208 26 209 120 2600 100 QR0 10D 50 190 0B 60 40 B @ it 12 60 48 1M 120 G0 L6 L0 208 £10 240 M 20 1M N FLL

S08 39 388 340 IZ0 J0U 200 I6P Zie REC 284 1G9 _,I‘rl_l 0 120 100 40 K0 40 B %

RADIAL DISIANCE FROM STORM CENFER Ikm}

]
16 TYPHOUM TR ASJ U 8T T
1] h F11]
s "e
1y m
M2 1
" FT1]
e e
" k]
" ;i1
" t11)
11 L1
Hs "
(1l (L]
m ne
ne 1
s 20
kel ] m
trld 338
me [T1)
nz "
Eel) 1)
S0UTH NORTH
m TEYTETEYT Y Ill
16 40 68 08 ABE 120 190 L6E 104 BN W0 R BN N TR

Figure 14.——Continued: (g) adjusted D-value; (h) adjusted equivalent

potential temperature.

00 300 309 54 320 3N RUP IM LD0 220 LOE 1A% L4V 403 120 18 08 B DO w1

#ADIAL DISTANCE FROM STORM CENTER [Kuml i




20

7%

LR ¥ 4

e

L1

35

5

i

5

RELATIVE WIND SPEED [ m/gecr ]

%

4

1%

11

kL]

30

25

20

1

10

OF WwIND (m/gec

-10

15

20

RADIA. COMPONEN

25

-30

0

25

20

i5

10

1%

F2]

-2%

RADTIAL COMPONENT OF RELQTIVE WIND L m/gec )

14
17
?
§
L

A9380 CMT

H

wEST EAST

b

00 100 168 140 128 L0 48 60 A5 20 §  2F 10 BF 0 100 128 148 168 160 200 220 219 240 168 109 128 1ie 368

b |

L

DE7EE CNT

WEST ' EAST

g

[+

3

2

H

1

MW — A e b b e b e
200 180 160 J4Q 120 100 00 60 4@ 20 B FL I T I 1 I ]

WEST EAST

D i ey .
[ ]

RADIAL DISTANCE FROM S1ORM CENTER I1km1

L | "

L 1 proen ]
Ty

-2

| ;
'E' . E i
Py, b | A . /m\"nﬁvj f

-5

]
)
’
5
[
]
[]

g — kL]

15

w

-2%

+ + —_ ’ - + b o + s + — ~a8
00 180 160 54D 120 100 80 60 49 20 B 20 40 60 O 190 120 L4P 168 100 248 220 248 268 240 200 320 34D 368

H

H

-10
[0
-2

1-e%

e i T e — vy 1
L#9 120 100 160 100 204 b2 2dp 26R 200 A0 24 3D 36R

Figure 15.-~November 26 east~west profiles: (a) telative tamgential
wind; (b) dctual fadial wind; (¢) relative radial wind,

Ao




RADIAL DISTANCE FROM STORM CENTER (km )

200 180 160 140 120 100 €0 60 48 20 8 20 46 66 83 108 12¢ 140 160 140 200 220 248 268 209 288 320 349 Y]

20 40 60 40 100 10 140 169 180 200 220 240 26D 280 309 320 14e I‘:

o 200 180 160 140 120 100 49 €0 40 20 0 . 28 49 60 43 100 120 190 150 169 200 220 240 260 209 200 320 2 384
- ¥ e it 26
741126 TYPHOON IRMA ADJ TEMPERATURE

24 d 2
o 22 22
§ 20 21
= 1 5 3 1
& - 2
S 1% S 2 i
= - H
[a o -
£ u 14
3
w 12 12
=
g U
o
2 '
g
qs : ¢

WEST EAST
4

naua 140 160 140 120 100 #¢ GO0 40 20 @ 19
741126  TYPHOON IRMA RELATIVE HUMIDITY
120 - 128
e :
~ 1w 2 e
= 5
Y .00 1 i 100
b s ) ‘ \ H "
. { ]
- 'ﬂfl H
L 1] . : (1)
-
(B i H
: : . .
g -r\{ J W\\J \/\A’J z
=
I w 0
T
B 50 ’ 58
=
L8
-
u 40 L]]
iy
e 0 . i
WEST EAST
. 4 et ——t—— po— 0
<0 200 JE0 160 149 420 100 B0 60 40 20 ¢ 20 40 63 80 100 L20 140 LG8 149 288 220 E'lﬂ! 260 243 380 120 W “i
RACIAL DISTANCE FROM STURM CENTER (Kkm} ’
200 160 160 340 120 100 &0 ®9 40 9 0 20 40 60 &0 LD 12 LA LED 140 200 228 240 260 260 300 220 4 i8¢
P A e e B e e T e e B St O B Sl + t——4 |7
41426 . T4PHOON IRMA HINING RAIID
16 f 15
1% 14
it 5 i
g
13 B I 1
“ 12 L ' 13 1
b
n H
~ k) -
ol i ‘ 3 11
- ad w 1t
¥
. W
a
x 4 1
[
z ; 1
] %
s &
WEST ENSl
S S L UL R oSt i el v sl aralivn el et et WA Al 1 z
200 1l ed L¥0 126 o0 M0 60 40 26 8 20 48 60 M9 300 N0 LAR ARp IRE 200 229 VR R0 AED WD 20 W

RABIAL DNISIANCE FROM STORM CENTER tkm)

Figute 15.-=Continued: (d) adjusted temperature; (e) relative humidity;
(f) mixing ratio. Y



2
]

imémius}i%’r‘-

%
m.“u 180 140 120 100 W0 63 49 26 8 28 40 60 A8 LW 126 40 164 1N a08_gpd 200 260 248 190 2N k1L !!:"
741128 TYPHOON IRMA RDJUSTED O-WALUE :
158 g Bill
123 5 125
iom 1
PLY 7%
50 "
28 5 1]
H
] H ’
-2% -8
(1) -5
N -1
- =100 -0
[
- ~12% =125
3 148 -1
-
& 1% -
o am -t
I
2 e -2
& 288 ; -8
275, \-. -23%
1
-188 ‘\ -0
1 \ -8
350 \ -1%F
174 \. =37
Bl ~4he
a2 - - -2
[} ~484
-438 -47%
WESE EAST
] Ty R TR e P e P S TR BT U TR o3 20 230 es TF v0n a2k 2an e
3"200 180 160 140 120 100 80 &0 40 28 ¥ 20 40 60 &0 108 120 140 168 188 200 29 208 200 280 108 320 3R 3I="
741126 TYPHOON TRMA ADJ EQU POT TP '
e h ”ne
370 fam
36 f38¢
366 k1]
¥ a6 (13}
1]
& aee2 %2
I# El1] e
g
a 358 1368
4
'i’ 56 356
kWl
- 354 EL 1]
i
kL1 k11
v 5
Z s e
b
o 1 . H
e 3 . \\ ue
. ' Wi
Z | 14
d
111 FL1)
= ]
< B TH 142
Lk
11 ] an
&
14 k1]
FX1 fa
EEL f KL
WEST EAST |
mtﬂd T80 160 140 120 100 B0 &0 0 20 9§ 20 40 60 €0 198 120 10 160 L8O 200 zod 10 250 200 30 3D 3D a*-s%“

RADIAL DI1STANCE FROM STORM CENTER (km )

Figute 15.~=Continued: (g) adjusted D=value} (h) adjusted eguivalent ~
potentidl tedperature. _




Figute 16.==November 26 northeast-southwest profiles: (a) relative
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6. STORM STRUCTURE ON NOVEMBER 28

6.1 Horizontal Analysis

Typhoon Irma made landfall on the Philippine island of Luzon early on the
November 28. The eye crossed the coastline about 60 km south of Baler and
passed directly over Clark Air Force Base. The lowest central pressure
experienced at Clark was 979 mb in the eye at 0700Z on November 28. Highest
reported wind was a gust of 43 m 8”1 at 0500Z. After leaving Luzon, Irma
moved generally westward at slow speed (4 m 871) and began to reintensify.
The AWRS aircraft began its investigation approximately 6 hours after the
storm had entered the South China Sea on November 28.

The horizontal analysis of relative wind streamlines (fig. 17) indicates,
as before, a nearly symmetric vortex with only the slightest hint of inflow.
This is in contrast to the observations made before landfall that showed a
slight outflow in the streamline pattern. :

The storm had weakened considerably. The isotach analysis (fig. 18),
indicates that the maximum wind speeds were only 25 m s”! and were still to
the south of the storm, but instead of a well-defined radius of maximum winds,
there was a broad zone of winds from 20 to 25 m s}, similiar to that seen on
November 24 and 25.

Figure 17.-~Relative wind streamlines Figure 18.,~-Horizontal isotach analy-
at 700 mb on November 28, in storm- gis at 700 mb on November 28, in
relative coordinates, storm-relative coordinates.
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20 12\? .

Figure 19.--Horizontal analysis of
adjusted isotherms and 700 mb on
November 28, in storm—relative
coordinates.

The horizontal analysis of adjusted temperature is presented in fig.
19. Temperature anomalies are shown to have decreased to 5° to 6°C with
generally cooler temperatures south of the storm center, as seen on previous
days. Highest temperatures are found, not in the eye center, but, as before,
generally to the northeast in an arc 20 km from the center.

6.2 Profiles

Profiles for the AWRS flight leg from the north to the southwest on
November 28 are presented in fig. 2U. The wind protfiles indicate that one
effect of landfall on the storm is to reduce the maximum wind to about 25 m s~}
and to decrease the eye diameter to about 50 km. The radial wind profiles
show no distinct regions of inflow/outflow as evidenced on the previous day,
There is now only a generail region of slight inflow to the north and neutral
(tangential) winds to the south.

The thermodynamic profiles do not exhibit the customary characteristics
of hurricane conditions. The adjusted temperature profile shows that there
was still a 5° to 6°C anomaly (from 12°C) which is quite high when one
considers that the maximum wind was only 25 m 8~l. The highest temperature
gradients to the southwest coincided with the eyewall determined from the wind
profile. To the north, however, the temperature maximum was just inside the
- radius of maximum winds, but the temperature profile fell off gradually after
that maximum. Relative humidity shows a relative minimum in the eye center
(as low as 40%), but the radiues of maximum wind was not the radius of highest
humidity. This would indicate an absence of an eyewall region at the radius

* prer DAMIMENT AVAILARLE
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Figure 20.--Continued: (g) adjusted D-value; (h) adjusted equivalent
potential temperature.

of maximum winds, with most of the convection having occurred beyond a radius
of 50 km at this pass. Data beyond a radial distance of 150 km to the north
were deleted from the graphs because of the malfunction of the dewpoint
instrument. The g_ profile reveals nothing, except a gradual increase toward
the storm center, &n unusual characteristic that indicates a diffuse eyewall.

Figure 21 presents the AWRS profiles for the November 28 northwest-center
leg. Radius of maximum wind is 45 km radial distance to the northwest, well
correlated with the highest values of relative radial wind (outflow). Small
values of inflow are evidenced beyond 60 km radial distance. The moisture
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Figure 21.--November 28 northwest-center profiles: (a) relative
tangential wind; (b) actual radial wind; (c) relative radial wind;
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Figure 21.--Continued: (g) adjusted D-value; (h) adjusted equivalent
potential temperature. - ‘

profiles indicate convection. This is supported by the eE profile, which
shows the highest gradient in this region.

An interesting aspect of the temperature profiles (figs. 20d and 21d) is
the rapid increase from 9°-10°C 100 km to the north, to 16°~18°C in the eye,
and the corresponding increase from 40 km to the southwest. On the most
intense day, November 26, Irma's temperature at 200 km in all profiles was
approximately 12°C. The 700-mb temperature on this day decreased to about
9°C, but the eye anomaly was only 1° to 2° cooler, at nearly the same
latitude, indicating intrusion of Irma into a different air mass. The storm's
recurvature to the north two days later also supports the indication of a cooi

trough to the west.

7. STORM STRUCTURE ON NOVEMBER 29

7.1 Horizontal Analysis

The horizontal analysis of the relative wind streamlines for November 29
is shown in fig. 22. As on other days, this analysis shows a nearly symmetric
vortex with only a slight trace of outflow. The isotach analysis (fig. 23)
shows that the maximum wind speed had increased about 10 m s7! during the past
10 hours and had become concentrated into a definable radius of maximum
winds. The storm had turned to a more west-morthwest course and had picked up
in forward speed to > m g}, 1Irma was still 24 hours from recurvature, -
however. The area of maximum winds was to the southwest and not in the right
front quadrant as is typical of other storms.

39




* P RElYEETS LA YT R L 3 P Y

T T T T T T T T T T T T T T mll'r||,|,||||1l||'-
20 ‘320: 7
i
240:
wi
|60:

ol
o}
oL
ok
of
- o
7)) S I N SN Y IO T N U SO RO S AU NN NN NN M|
%o 120 8 4 0 4 8 120 60 Bd

Figure 23.-~Horizontal isotach analy-
gls at 700 mb on November 29, in
storm~relative coordinates,

Figure 22.--Relative wind streamlines
at 700 mb on November 29, in storm~
relative coordinates.

The adjusted temperature analysis is presented in fig. 24. The region of
maximum temperatures is, again, not in the eye center, but 20 to 30 km to the
north, in an arc just inward of the maximum winds. A secondary maximum is
‘located 80 to 100 km to the north-northwest. Irma was still intensifying on
these last two days and had not yet been classified as a typhoon. Larra
asymmetries within developing storms have been noted previously (e.g., *heets,
1967). The aircraft flight track did not go far enough south to confirw the
relatively cold air evident on previous day. '

7.2 Profiles

Profiles for the AWRS flight leg on November 29 from the northeast to the
southwest are presented in fig. 25. As can be seen from the wind profiles,
the eye diameter had increased to almost 100 km. The radial wind profiles
show that there were distinct relative maxima (outflow) within each eyewall.
As on previocus days, slight inflow was present to the southwest outside the
eyewall, with outflow everywhere to the north. Temperature maximum was not in
the eye center, but was displaced 20 to 60 km northeast; in fact, the eye
shows no distinct pattern on the adjusted temperature trace, just a general
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Figure 24.~-Horizontal analysis of adjusted
isotherms at 700 mb on November 29, in storm-

relative coordinates.

decrease through the southwest. Moisture values show the opposite trend,
however, with a relative maximum in the southwest eyewall and no distinct
maximum in the northeast section. The net effect on the O profile is to
create a relative maximum in the eye with largest gradients in the two

eyewalls.

Profiles for the southeast-north leg on November 29 are depicted in fig.
26. These profiles also show an eye diameter of 100 km, with large
asymmetries in the moisture profiles. Maximum moisture values were obtained
in the eye center rather than in the convective eyewall. This indicates
broken convection around the eye and a discontinuous eyewall, a fact confirmed
by the observer flight logs. The lack of a well-defined zone of maximum
outward radial flow (figs. 27b and 27c) in the north eyewall also supports the
hypothesis of rather discontinuous eyewall convection. It has been noted
(Jorgensen, 1981) that in Atlantic mature hurricanes, pronounced radial flow
occurs only in the presence of a well-defined convection updraft and high
radar reflectivity. In all other flight days, except the most intense day
(November 26), generally saturated conditions prevailed outside the eye. Per-
haps intrusion of drier air from the north, just before recurvature, is the
explanation for the absence of moisture to the north on this day.
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8. THE BALANCE BETWEEN WIND FIELD AND PRESSURE
GRADIENT FIELD | |

The individual radial flight legs have been examined to determine the
existence of supergradient winds. These winds have been hypothesized to be
important in eyewall formation by Malkus (1958) and have been shown to exist
by Shea and Gray (1973) in their composites. The wind data used by Shea and
Gray were derived by the Doppler navigation instrument, which has been known
to yield erroneocus results when there is appreciable apparent surface motion
below the aircraft from detection, by the Doppler beam, of sea spray caused b
high wind velocities. Winds derived from the inertial navigation system used
in this study do not suffer from this problem. Any comparisons of results
derived from the two systems should be interpreted with the understanding that
the Doppler winds may be underestimates of the real wind.

If no radial accelerations or radial friction were present, the pressure
gradient force would balance the tangential wind field and the equation of
motion would be

v 2z

g0 __9 _
r + ngO gar o, (1)

where Vgg is the tangential wind in meters per second, f is the Coriolis
parameter in meters per second, g is the gravitatiomal acceleration in meters
per second squared, D the adjusted D-value in meters, and r the radius of the
trajectory curvature. The nearly circular streamlines and lack of appreciable
change in storm central pressure during the period of aircraft investigation
imply that the storm was in near-steady state. Radial distance from the storm
center is, therefore, used as the radius of curvature.

When gradient wind is computed, the most difficult problem is the
evaluation of the pressure gradient. The adjusted D-value, which is the
height departure from the standard atmosphere, has, in general, a noise
component of a few meters. In addition there are one or two data point spikes
of 20 to 30 m (e.g., fig. 16g), which were probably caused by the
nonstabilization of the radar altitude instrument, since these spikes were
correlated to the roll of the aircraft during turns. These small-scale
oscillations, as well as the large spikes, must be filtered betore a gradient
can be determined.

Several techniques of least-square polynomial approximation were tried in
an attempt to find the best approximation to the D-value profile. A single,
high-order polynomial was used over the entire half profile radially outward
from the center for several profiles, but, although the profiles did
approximate the largest gradients very well, oscillations developed in the
derivative of the D-value polynomial near the end points. Lower-order
polynomials were tried in an effort to filter the oscillations; however, these
polynomials then underestimated the largest gradient of the D-value profile in
the region of maximum winds. The oscillations are caused by the polynomial
least~squares technique, that is, by the tendency of polynomials to go to
infinity for large values of the independent variable. Thus, the error is
likely to be large near the end points (Hamming, 1973). These oscillations
contaminated the computed gradient wind, sometimes as much as 100 km from the
end points. Another technique of least-squares polynomial approximation was
then tried.



The new method consisted of the fitting of a low-order least—squares
polynomial locally to an odd number of data points (typically 33) and then the
use of the derivative of this curve to estimate the gradient of the D-value at
the midpoint. In this way, the least—squares technique became smoother,
removing high-frequency components assoclated with instrument error and
cumulus-scale oscillations. A routine was also employed to remove data points
that were in obvious gross error. This de~spiking routine checked for points
that had residuals from a low-order polynomial that were at least 3 times the
standard deviation for all the points. Those bad values were thrown out and 2
new polynomial was fit to the data. In this manner, a D-value function was
generated for all data points in the profile (except for the 16 points at
either end). The 16 points on either side of the data point were used as
input to the curve-fitting routine. Since the data that were used were taken
every 10 seconds, the aircraft traveled about l.5 km between data points, so
the smoothing interval is approximately 50 km.

Figure 27 illustrates the result of the computation of the gradient wind
for six selected profiles on four flights during November 24 through 26 and
November 28. The curves labeled V_ represent the computed gradient wind from
the pressure field, and the lines ﬁarked V. are the observed relative
tangential winds. It can be seen that the computed gradient wind agrees
fairly well with the observed relative tangential wind in the region of the
radius of maximum wind. Outside the radius of maximum winds, the agreement
between the two winds is not so good, particularly beyond a radial distance of
200 km. The computed Vr exhibits an oscillating character at these large
radial distances. The relative accuracy of the curve fit to the D-value field
goes down at these large radial distances as determined by the correlation
coefficient (a measure of the goodness of fit). In the high-energy region of
the storm, (eyewall) values of the correlation coefficient generally were
>.99, However, at large radial distances this value dropped to .93 or less,
indicating that oscillations caused by instrument error and scales <50 km had
an increasing effect on the estimation of the gradient, chiefly because. the
gradient and the noise level are the same order of magnitude. In addition,
since, in the computation of the gradient wind, the gradient of the D-value is
multiplied by the radial distance, the effect of small errors of oD/9r on the
computation of V_ is magnified at large radial distances. The good agreement
between the computed gradient wind, V_, and observed relative tangential
wind, V., at the radius of maximum wind is somewhat at variance with other
studies. Shea and Gray (1973) have shown that, in the mean, the relative
tangential wind exceeded the gradient wind from 1053% to 150% at the radius of
maximum wind, depending upon the value for the correction to the Doppler winds
for water motion. Sheets (1973) has found in the case of Hurricane Debbie
(1969) that, in general, the gradient wind overestimates the wind field for
most areas of the high-energy region of the storm. The technique used in this
study most closely resembles Sheets's filter "B,"” which smooths the D-value
field with a low-pass filter and removes the significant contribution to the
total signal for all scales of motion <50 km in wavelength.

Gray has remarked that the existence of supergradient winds at the radius
of maximum winds is necessary to balance the inward acceleration in the inflow
layer and to act as a ventilating effect for the air in the eve. As a whole,
supergradient winds were not found at the radius of maximum winds for this
data set, yet the radial winds frequently exhibited outflow from the eye into
the eyewall region, thus ventilating the eve.
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Figure 27.--Gradient wind computations for six selected profiles on four
flights: November 24 (a) east—center and (b) south—center profiles.
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Gradient balance is indicated, regardless of storm state or speed, in the
region of maximum wind. Beyond about 200 km radial distance, the relative
accuracy of the computed gradient wind suffers to the extent that direct
comparison with observed relative tangential wind is not possible.

9. SUMMARY AND CONCLUSIONS

Aircraft data from five reconnaissance flights into Typhoon Irma
(November 24, 25, 26, 28, and 29, 1974) have been composited and analyzed
relative to the moving storm center. Horizontal analyses of wtreamlines,
isotachs, and adjusted temperature, and profile plots of the wind and
thermodynamic quantities from the radial penetrations are presented for each
flight. The five flights represent five stages of storm development, from a
weak-to-moderate storm to a large, intense typhoon, and back to a weak storm
after passage over Manila. Comparison of Irma's storm structure with mean
hurricane structure as determined from Shea and Gray (1Y73) composites reveals
striking similarities, in spite of the different instrumentation used in the
respective studies., Comparisons with other case studies of indiviiual
hurricanes (Inez, 1966; Cleo, 1958) also reveal the similarity in structure of
Pacific Typhoon Irma with Atlantic hurricanes, in spite of Irma's extensive
horizontal dimensions and the large diameter of the storm's eye.

Data for four days were complete enough to construct horizontal analyses
of streamlines, isotachs, and adjusted temperature. The analyses reveal
similar structure in spite of large intensity changes. The 700-mb streamlines
were nearly circular on the four days, indicating that the levels of
inflow/outflow were always confined to the levels below/above 700 mb. The
radial flow pattern on the most intense day was characterized by consistant
inflow at 700 mb south and west of the center with outflow to the north and
east. There are indications of this pattern on other days as well, although
it is not as well worked. The most intense stage of development was
characterized by a single predominant peak of maximum wind. The other, less j
intense stages of Irma were characterized by no steep decreases in tangential }
wind outside the eye; there are indications of multiple maxima of tangential |
wiud on one of the days (November 25), a finding that Willoughby et al. (1981)
noted in symmetric Atlantic hurricanes.

Temperature analyses indicate a consistent finding that the highest
temperatures do not occur in the eye center, but in a ring adjacent to the
radius of maximum wind. Cooler temperatures and slight inflow (leg—averaged)
relative to the moving center are noted to the south and southwest of the
storm center on all days with warm anomalies of temperature and slight outflow
at 700 mb to the north.

Largest gradients of D-value and eﬁ are noted inward of the region of
maximum wind with generally subsaturated conditions outside the eye on the
most intense day, November 26, On November 24, 25, and 28, generally
saturated conditions prevailed outside the eye, indicative of the effective
actions of the convection in moistening the air outside the eye.

Gradient wind computations indicate that the D-value data (pressure and
radar altitude) are accurate enough to make these computations directly
possible. Irma's wind field above the 5U-km scale appears to be in nearly
gradient balance in the region of maximum wind. Beyond about 200 km radial
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distance, however, the gradient in the D-value becomes small enough to be the
same order as the oscillations produced by the instrument error and cumulus
scale, and the relative accuracy of the computed gradient wind goes down.
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Appendix: Adjusting a D-Value to a Reference Pressure Surface

From the equation of state,
R*

P ==poT,
m

wherf P }s pressure in millibars, R* the universal gas constant; 8.31x107 erg
mol™ K™,

@ the mean molecular weight of dry air, 28.966 g mol™l, p the air

density in grams per cubic centimeter, and T the temperature in kelvins, and
from the hydrostatic equation

dp = pgdz »

where g is the acceleration of gravity in square centimeters, we obtain

P, Z,
-R* T : ‘
— v %2 - d2 » (AOI)
L ug .
N P z
1 1

where T; is the mean virtual temperature between the heights Z, and Z, of the |
two pressure surfaces P1 and P2.

By integration

s -]

AL = 22 - Z1 = 29,2898 Tv 1n-F— [meters]. (A.2)
2

If Z; = adjusted height (RH), Z2 = height of alrcraft (RA), P = pressure
height of reference level (Pref)’ and P,=P, then

RA,P
!
0ld |D=~value
¥ PA (NACA)
!
TZ
Y RH,Fpop

New D-value

PAref (NACA)

P
AZ = RA-RH = 29,2898 'fv In ( ;ef) .
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The new reference height is then
RH = RA - AZ ,
and the new (adjusted) D-value is

Dygy =RE-PA . .

T; can be approximated by
Tv = [2Tv + (PA - PAref) §l/2 ,

where 6 is the mean tropical lapse rate, which is 5.577°C km™}, and T, is the
virtual temperature given by

1 + 1,609
T = (1-273.16) — 30— »

where w is the mixing ratio.
This method of approximation for D-value adjustment was conpared with an

exact iterative method. It was found that, as long as the distance over which

the adjustment is being made is <100 mb, the approximation differs from the
exact by <! m.
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