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A TRANSFORMATION RELATING TEMPORAL
AND SPATIAL SPECTRA OF TURBULENT
KINETIC ENERGY

W. C. Thacker

ABSTRACT. A transformation is developed, based upon the scale dependence of turbulent
diffusion, that relates temporal and spatial spectra of turbulent kinetic energy. The basic
idea is that an eddy diffusivity is appropriate when scales of the flow smaller than a iength
¢ and a time ¢ are unresolved. An expression similar to Heisenberg’s for eddy diffusivity is

used to obtain the connection between ¢ andfn

ecessary to transform temporal spectra into

spatial spectra. This transformation reveals a close connection between Webster's Site D
spectrum of turbulent kinetic energy in the ocean and Okubo's diagrams of oceanic mixing.
Furthermore, all spectra obtained from dimensional arguments satisfy this transformation.

1. Introduction

An important quantity in the theory of turbu-
lence is E (k), the spatial spectrum of kinetic en-
ergy. To measure E (k) is difficult since it requires
sampling the velocity field at many spatial points
simultaneously. It is much easier to record a time
series of the velocity at one point, from which
®(w), the temporal spectrum of kinetic energy,
can be obtained. Therefore a transformation is
needed that will allow E (k) to be calculated if ®(w)
is known. The usual transformation is based upon
Taylor's (1938) hypothesis of frozen turbulence,
which is valid only if there is a strong mean flow.
The purpose of this paper is to present a new
transformation that should be valid inthe absence
of amean flow. To stress the contrast with the idea
of frozen turbulence the term “frost-free turbu-
lence” is used.

The frost-free turbulence transformation is
motivated by the results of dye-diffusion experi-
ments in the ocean as summarized by Okubo's
(1971) diagrams. His first diagram, reproduced
here as Figure 1, illustrates that the spatial and
temporal scales of turbulence can be related.
This is certainly necessary if there is to be a trans-
formation that can relate ®(w) and E (k). His sec-
ond diagram, Figure 2, shows the scale depen-
dence of the eddy diffusivity. An expression for
scale dependent diffusivity, such as Heisen-
berg's (1948) expression for eddy viscosity, is
central to this transformation. The transformation

is insensitive to the exact form of this expression
because ®(w) and E (k) fall off rapidly with in-
creasing w and k.

This transformation is obtained in two ways.
First ®(w) and E (k) are related through the more
general spectral density, S (k,w), which expresses
both spatial and temporal variations. A compari-
son is made with the frozen turbulence case, and
a more general transformation is suggested that
has the limits of frozen turbulence and frost-free
turbulence, depending upon whether advection
or diffusion dominates. Then a heuristic derivation
is given, based upon a mechanism for turbulent
mixing. The idea here is that the mixing is due to
shear dispersion on all scales. The results of a
two-layer model for the shear effect are iterated
over all scales to obtain expressions for the scale
dependence of turbulent diffusivity from which
the frost-free turbulence transformation follows.

Because it is difficult to measure E(k), it is
difficult to test the validity of this transformation
directly. Two indirect tests are discussed here.
The first is a comparison of a temporal spectrum
of kinetic energy of turbulence in the ocean ob-
tained by Webster (1969) with the diffusion data
displayed by Okubo (1971). It should be em-
phasized that no theory is presented for the ob-
served shape of this spectrum. Thatis a dynami-
cal problem, and the transformation discussed
here should be regarded as kinematical. The
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comparison shows that the two types of data are
in excellent agreement. The second test is pro-
vided by a dimensional argument. If it is assumed
that only one dimensional constant is important,
then consistent forms for E(k) and ®(w) can be
obtained. Again, it should be emphasized that it is
unimportant whether such a dimensional argu-
ment can be applied to real data. What is impor-
tant is that the forms for E (k) and ®(w) obtained
from the dimensional argument are indeed re-
lated through the frost-free turbulence transfor-
mation.

2. The Frost-Free Turbulence
Transformation

A turbulent velocity field can be considered
to be a random function of space and time. If the
turbulence is statistically homogeneous, iso-
tropic, and stationary, then the variance in the
velocity field (u*(x,t)) can be represented in
terms of spectral density, S(k,w). The temporal
and spatial spectra are obtained from S(k,w) by
integrating over wavenumbers and frequencies,
respectively:

® () =J dk S(k,w)
0

(1

oCc
Ek) = J do S(k,w)
0
Thus, @ is related to E through S(k,w).
In general, a single frequency does not
correspond to a single wavenumber. Neverthe-
less, it is clear that high frequencies correspond
to high wavenumbers and low frequencies to low
wavenumbers. For example, oceanic motion with
a scale of hundreds of kilometers is expected to
correspond to time variations on the scale of
months, not seconds. Therefore, it should be
reasonable to assume that, for any wavenumber,
S(k,w) is sharply peaked at a single frequency
and, for any frequency, S(k,w) is peaked at a
single wavenumber. This can be expressed in
two ways,
S(k,w) = E(k)8(w—f(k)) } o
Sk,w) = P(w)d(k—g(w))

which are equivalent if the functions f and g are
the inverses of each other. The Dirac delta func-
tions can be considered as approximating more
general distributions with finite widths.
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Figure 1. Variance of dye concentration (size of dye
patch) versus diffusion time (time elapsed since the
dye was introduced as a point source). (After Okubo,
1971.)

Using (1) with (2), transformations connect-
ing E and @ can be obtained:

oy = EE@)
f(g(w) 3)
D(f(k))
Ek) = —L =2
“ g'(f(k))

Thus, the frost-free turbulence transformation will
depend upon the form of the function £, its inverse
g, and their derivatives f’ and g’.

Clues for the form of f can be found in
Okubo’s (1971) dye diffusion diagrams. Figure 1
shows the relationship between the width of a dye
patch and the duration of the dye diffusion exper-
iment. This is the connection between space and
time scales that is to be expressed by f. The fact
that the slope of the line drawn through the data is
greater than one indicates that turbulent diffusion
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Figure 2. A diffusion diagram for apparent diffusivity ver-
sus scale of diffusion. (After Okubo, 1971.)

is scale dependent. Okubo obtains a scale de-
pendent diffusivity K from these data using the
expression

¢% = 2Kt 4)

to relate the width of the dye patch ¢ to the dura-
tion of the experiment t. Figure 2 shows K plotted
against ¢. Equation (4), plus an expression for the
scale dependence of K, gives the relation be-
tween spatial and temporal scales necessary to
define the functions f and g.

It is easy to understand why turbulent diffu-
sion should be scale dependent. The spreading
of the dye patch can be due only to those eddies
that are smaller than the dye patch. Larger eddies
serve only to advect and to distort the dye patch.
At a later time when the dye patch is larger, larger
eddies are available to contribute their energy to
the mixing. Thus, the mixing proceeds faster as
the dye patch gets larger.

Those eddies smaller than the dye patch,
having wavenumbers greater than 27" are para-
meterized by the diffusivity K. As ¢ gets larger,
so does K. Thus, K is a function of k = 2—}—7 The

expression for the scale dependence used here
is

- 12

_ E(k')dk'

K= [c & ] )
k

where C is a dimensionless constant of propor-
tionality of order one. This is an expression quite
similar to that used by Heisenberg (1948) for
eddy viscosity, and is exactly that found by Tchen
(1973, 1975) and Nakano (1972) from their
dynamic theories of turbulence. A heuristic deri-
vation of this expression, based upon the idea
that the mechanism of turbulent mixing is shear
dispersion on all scales, is given below.

The parameter K, evaluated accordingto (5),
accounts for the effects of eddies with wavenum-

bers larger than k = Z—JEwhere ¢ is the width of

the dye patch. The basic assumption made here

is that these eddies correspond to frequencies

greater than o = 2_tE where ¢ is the duration of

the dye experiment corresponding to the width £.
Thus, w is related to k and K by equation (4),

o =7 'Kk?. (6)

Equation (6) expresses the relationship between
o and k that is necessary to transform ®(w) into
E(k). This should be thought of as a statistical
assumption for several reasons. First, since, in
general, there is no one-to-one relationship be-
tween frequencies and wavenumbers, the rela-
tionship expressed by (6) must be statistical in
the sense that it is a “most likely” relationship.
Second, it is statistical since the parameter K is
assumed to represent the average effect of the
small scales. It is clear that (6) should be valid .
only when the small scales can be described by
an eddy diffusivity. Finally, implicit in (6) is the
idea of ergodicity: a spatial average, a temporal
average, and an ensemble average should all be
equivalent. A time series of length ¢ determines
®(w) for @ > ET. Likewise, a spatial profile of
length ¢ determines E(k) for k > 2%7 If the time

series is measured simultaneously with the dye
experiment, it seems most reasonable to relate @
and k according to (6). Clearly, the results for
each experiment should vary somewhat, but it is
reasonable to think of a most likely result that
represents the average of an ensemble of experi-
ments. It is in this way that (6) should be inter-
preted.



By substituting (5) into (6), the expression for
f is determined;

% ’ 1/2
flo) =7k [CJ Elil;)dk'} o
k

The corresponding expression for g is found by
inverting f. The simplest way to do this is to take
advantage of the fact that E(k) is simply a trans-
formation of ®(w). This implies that K can also be
expressed as an integral of ®(w) over frequencies
greater than w, and that expression can be used
in (6) to obtain g. To obtain that expression, first
wiite (5) in differential form as dK = ~ ¢ EX4E
and then use (6) and the identity E(k)dk = O(w)dw
to obtain dK = — 2%(2(%)1‘9 This can be inte-

grated to give

K=

C J ” O(w')do’

27 Jo w

Now, (8) and (6) yield

0 1/2
glw) = [hfw [ ‘I’(“’w),d“’ ] )

)

Equations (7) and (9), together with (3), de-
termine the frost-free turbulence transformation. It
is simplest to write this in terms of K,

o, )
= 4kK2—CE(@) . (10)

4kK>® (' Kk?)
27K +C D (' Kk?)

E(k)=

where K is given by (5) and (8), respectively.
Equations (5) and (8) will be discussed further in
section 5. Equations (10) will be compared with
results of experiments in section 3 and with re-
sults of dimensional arguments in section 4.

Equations (2) can be used to obtain the
frozen turbulence transformation also. For that
case, f(k) = Uk and g(w) = /U, where U is the
mean velocity that advects the frozen turbulence.
Using (3), the frozen turbulence transformation is
given by .

o) = E(§F
E(k) = UD(UK)

It is possible to construct a more general
transformation that reduces to frozen turbulence
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when advection dominates diffusion and to frost-
free turbulence when diffusion dominates advec-
tion. One possibility is through the use of the
function '

flk) = Uk + 7' Kk?

and its inverse, where K is given by (5)and (8), as
before. This leads to the transformation

(mUK + 4kK*)®(Uk + 7 'Kk?)
27K + COUk + 7 'Kk?)

If the trend is removed from the time series from
which @ is to be obtained, then the information
concerning the mean velocity U is lost so the
transformation given in (9) should be used.

E(k) =

3. A Comparison With Data

A direct test of the frost-free turbulence trans-
formation given by equations (10) is impossible
since the data necessary to evaluate E (k) are un-
available. Nevertheless, long time series of the
velocity at one point in the ocean have been ob-
tained, so ®(w) is available. Such a spectrum
from Site D (Webster, 1969) is shown in Figure 3.
This can be compared with Okubo’s (1971) dye
diffusion diagrams to check whether the trans-
formation is reasonable.

It is possible to evaluate the diffusivity from
(8) numerically using the data in Figure 3. How-
ever, for simplicity, these data are approximated
by the formula

d(w) ~ w3, (11

This does not imply that there is any dynamic sig-
nificance to the exponent —4/3. This exponent
was chosen simply to represent the gross be-
havior of the spectrum over the entire range of
frequencies. The details of the tidal and inertial
peaks in the spectrum should contribute, at most,
shoulders to the curve of diffusivity versus fre-
quency scale. Substituting (11) into equation (8)
yields

K ~ '3
Using thisin (6), with € = —ZIZT—andt = —zwl gives
a relation between spatial and temporal scales,
€2 ~ '3, (12)

This is exactly the behavior shown in Figure 1. Of
course, the datain Figure 2 are well described by

D ~ %7, (13)
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Figure 3. Kinetic energy density spectrum on a log-log
plot for a set of current measurements collected at
120-m depth. Minus-four-thirds and minus-five-thirds
slopes are indicated. (After Webster, 1969.)

obtained using equations (4) and (12), since
Okubo uses (4) to transform the data from Figure
1 to Figure 2.

In making this comparison, two equations were
used, (6) and (8). These are the two equations
that define frost-free turbulence transformation.
Equation (6) relates frequencies to wavenumbers
through the eddy diffusivity, and equation (8) ex-
presses the scale dependence of the eddy dif-
fusivity. The agreement found when these two
sets of data are compared in this way is evidence
that this transformation is indeed valid.

4. A Comparison With A
Dimensional Argument

A dimensional argument also provides a
transformation connecting ®(w) and E(k). This
argument is based upon the assumption that the
spectra depend upon only one dimensional

constant. For example, if this constant is €, the rate
of energy dissipation, then the dimensional
argument gives the familiar results for the inertial
subrange: E(k) ~ k7% and ®(w) ~ w2 No
attempt is made here to argue that a single
dimensional constant is appropriate for the entire
spectrum shown in Figure 3. Perhaps it is
possible to divide the spectrum into subranges in
which a single constant is important, but that is
not assumed. The point is that if such a subrange
does exist, then the dimensional argument for the
subrange is in agreement with the frost-free
turbulence transformation.

Suppose that the one important dimensional
constant @ has dimensions XT?. Then E and ®
must have the following forms in order to be di-
mensionally correct:

_ 2 _{2a
Ek)~Q "k (T ) y
2 (14)
P(w)~Q°w”

For the case where @ is taken to be €, the expon-
ents a and b are 2 and -3, respectively.

These forms can be seen to be consistent
with frost-free turbulence. Suppose that ®(w) ~

w™® where p = — (za—b+1), and calculate E (k)
using the frost-free transformation (10). The result
is

3p—l)

E(k)~k(‘"” (15)

which is exactly what is given in (14) when
p=- (Za—b+1) .

Dimensional arguments can also be made
for the diffusivity and for the width of the dye patch:

_a 8
K"‘Q bf b~€p+l

A (16)
e MQTt Ta tp+l

These results are also in agreement with frost-
free turbulence, as can be seen from equations
(5) and (6) with E(k) given by (15).



5. Shear Dispersion

It is possible to derive the frost-free turbu-
lence transformation using the idea that the
mechanism for turbulent mixing is shear disper-
sion on all scales. Such a derivation should clarify
the idea of scale dependent diffusion that is
intrinsic to the transformation described here.
It should also clarify the manner in which the
advection of small eddies by large eddies is in-
corporated into the transformation.

Shear dispersion was discussed by Taylor
(1953, 1954) in the context of longitudinal disper-
sion in pipes. He found that an enhanced dif-
fusivity was needed to account for the dispersion
of contaminant introduced into the flow. This
enhanced diffusivity is appropriate in conjunction
with the cross-sectional average of the contami-
nant concentration. The enhancement is due to
the combined action of shear and cross-shear
mixing, features that are unresolved when we are
dealing with cross-sectional averages, and
whose effects are accounted for by the enhanced
diffusivity.

This shear dispersion relates to turbulent
diffusion in two ways. First, the eddy diffusivity
can likewise be considered as parameterizing
the details of the flow that are averaged out. The
value of the diffusivity appropriate to a given scale
is determined by those details of the flow that are
smaller than this scale. Second, the mechanism
of turbulent mixing is shear dispersion on all
scales. At any scale there are eddies that provide
shear, and there are smaller eddies that provide
mixing across this shear. As the scale is in-
creased, the eddy diffusivity must be enhanced
to account for the additional shear and cross-
shear mixing that is averaged out.

From the point of view of someone numerical-
ly modeling the flow, this is clear. Eddy diffusivity
is used to parameterize mixing due to sub-grid
scale motion. For a coarser numerical grid, a
larger value of diffusivity is needed to account
for the mixing that would be explicitly resolved
on a finer grid.

A simple two-layer model of shear dispersion can show how the diffusivity is enhanced as the details
of the shear are averaged over. This model is given by the equations,

oC, aC, _ _ 1
at T Max T
3C, aC, _ _ 1
and 3 + u, o T

2
(€ - )+ K 2G

(C; - C) +K

5
> a7

*C,
ax?

governing the contaminant concentrations C, and C, in the layers of fluid with velocities u, and u.. The
contaminant mixes from the more concentrated to the less concentrated layer with a mixing time T.
Longitudinal diffusion within each layer is described by a diffusivity K. If both T and K are due to eddies
that are unresolved in this two-layer description, then they should be related by

2 = 2KT, (18)

where ¢ is the thickness of the layers.
The reason for considering this model is to illustrate the relationship of the mean concentration,

c=1 (C, + C,), as determined by (17), and the solution of the advection-diffusion equation,

2
(36 - GC_ — K* 326
at +u ox K ax* (19)
which should be appropriate when the details of the two layers are averaged out. Hereu =1 (u, + uy)
. . . : L 2
is the average velocity and K* is the enhanced diffusivity.
Equations (17) can be combined to show that C must satisfy
3 .- 8 g 0\ 2(0 70 g N (A |C=
{(W“‘ax Kax2)+T(at+uax KaxZ) (Bu) ze}c 0, (20)



where Au =% (u; — uy). This is not exactly equation (19); however, if the first term were negligible, then

it would be the same as (19) with

K* :K+%(Au)2T. Qn

Careful analysis (Thacker, 1975) can show that ignoring this first term is equivalent to resolving only those
changes in C that are slower than the mixing time T and those spatial details thai are larger than a mixing
length x = (2K*T)"*. Note that T and x are related according to equation (4), the equation that relates
length and time scales for the frost-free turbulence transformation.

On the other hand, for small changes in time,
the first term in equation (19) is important and the
second term is negligible. The reason for this is
thatin a short enough time, a negligible amount of
mixing between the layers occurs. In this limit,
advection within each layer is important and an
enhanced diffusivity parameter does not apply.
However, each time a bit of contaminant crosses
tothe other layer, its direction reverses. This gives
a long-term net effect of a random walk and
diffusion-like behavior. Thus, shear dispersion is
like either advection or diffusion, depending upon
the scale of the observation. If ail of the details of
the flow are resolved, shear dispersion is
differential advection. But if these details are
ignored, which corresponds to filtering out high
frequencies and high wavenumbers, then shear
dispersion can be represented by an enhanced
diffusivity.

Equation (21) can be generalized to the case
of turbulent mixing. The shear of the two-layer
flow can be thought of as representing an eddy of
arbitrary scale in a turbulent flow and the mixing
as due to smaller eddies. If the resolution is
decreased, then the eddy that represented the
shear contributes to the mixing across the shear
of a still larger eddy. Thus, the difference dK = K*
— K can be thought of as the increase in eddy
diffusivity associated with a decrease in resolu-
tion. The factor (Au)? represents the energy in the
scale of the shear, so it should be proportional to
E(k)dk or ®(w)dw. The mixing time T = 2T s re-
lated to the diffusivity through equation (4), ¢2 =
2KT, if ¢ = 2777 is the scale of the shear. Thus,

(21) can be generalized to the differential equa-
tions
E(k)dk C P(w)dw

= — = — . 22
K ¢ 2Kk? 27 w - (22)

These equations can be integrated to give
equations (5) and (8).

Equations (22) together with (6) are sufficient
to determine the frost-free turbulence transforma-
tion. To see this, differentiate equation (6) and
substitute from (21) to get an equation relating dew
and dk,

- E(k)
= 1 —_
do=nt[2kk —C ] . @)
Now use (23) to eliminate dw and dk from (22).
The result is exactly the transformation given by
equations (21).

The principal point to be seen from this
heuristic derivation is that the eddy diffusivity
parameterization should only be valid for an
appropriately averaged description of the flow.
Such arn average should filter out high frequen-
cies and high wavenumbers, where the cut-off
values are related by equation (6). The result of
this averaging should be expressions like equa-
tions (5) and (8) for the diffusivity. Itis the extent of
the averaging that determines what should be
resolved as advection and what should be
parameterized as diffusion.

It is interesting to note the similarity of the
ideas behind this heuristic derivation of equation
(5) and those of Tchen and of Nakano who obtain
the same expression for eddy viscosity. Tchen
(1973, 1975) uses a hierarchy of ensembles to
allow for a varying degree of resolution, which is
expressed here as a differential equation. His
memory chain corresponds to a hierarchy of time
scales that are associated with the hierarchy of
length scales. Nakano (1972) bases his theory
upon the idea that smaller eddies serve to damp
the larger eddies while larger eddies serve to
distort and advect smaller eddies. The damping

7



is simply mixing of momentum, so his ideas are
the same as those used here.

Recently, McComb (1974) obtained a similar
expression for eddy viscosity by modifying
Edwards’ (1964) theory of turbulence. Their idea
is that small scale advection is like random
stirring, which is basically the same as the idea
presented here. In the two-layer model, the
random forces are provided by the shear and the
cross-shear mixing. This can be seen clearly from
Monin and Yaglom's (1971) derivation of equation
(20) as a Fokker-Planck equation for a Markov
process.

6. Summary

The frost-free turbulence transformation pre-
sented here in equations (10) is based upon two
assumptions. The first is that there is a corres-
pondence between spatial and temporal scales
of the turbulence. This is justified by the results of

“the dye diffusion experiments as summarized by
Okubo’s (1971) diagrams and by the argument
that a mixing length and a relaxation time can be
assigned to the averaging process that results in
the eddy diffusivity. The second is that an ex-
pression such as (5) can be used to describe the
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