

NOAA Technical Report ERL 303-AOML 15

U.S. DEPARTMENT OF COMMERCE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
Environmental Research Laboratories

A Connected Least-Squares Adjustment of Navigation Data

L.M. DORMAN J.W. LAVELLE

BOULDER, COLO.

JULY 1974

ENVIRONMENTAL RESEARCH LABORATORIES

sion of the Environmental Research Laboratories is to study the oceans, inland waters, one lower and upper atmosphere, the space environment, and the earth, in search of the understanding needed to provide more useful services in improving man's prospects for survival as influenced by the physical environment. Laboratories contributing to these studies are:

Atlantic Oceanographic and Meteorological Laboratories (AOML): Geology and geophysics of ocean basins and borders, oceanic processes, sea-air interactions and remote sensing of ocean processes and characteristics (Miami, Florida).

Pacific Marine Environmental Laboratory (PMEL): Environmental processes with emphasis on monitoring and predicting the effects of man's activities on estuarine, coastal, and near-shore marine processes (Seattle, Washington).

Great Lakes Environmental Research Laboratory (GLERL): Physical, chemical, and biological limnology, lake-air interactions, lake hydrology, lake level forecasting, and lake ice studies (Ann Arbor, Michigan).

Atmospheric Physics and Chemistry Laboratory (APCL): Processes of cloud and precipitation physics; chemical composition and nucleating substances in the lower atmosphere; and laboratory and field experiments toward developing feasible methods of weather modification.

Air Resources Laboratories (ARL): Diffusion, transport, and dissipation of atmospheric contaminants; development of methods for prediction and control of atmospheric pollution; geophysical monitoring for climatic change (Silver Spring, Maryland).

Geophysical Fluid Dynamics Laboratory (GFDL): Dynamics and physics of geophysical fluid systems; development of a theoretical basis, through mathematical modeling and computer simulation, for the behavior and properties of the atmosphere and the oceans (Princeton, New Jersey).

National Severe Storms Laboratory (NSSL): Torandoes, squall lines, thunderstorms, and other severe local convective phenomena directed toward improved methods of prediction and detection (Norman, Oklahoma).

Space Environment Laboratory (SEL): Solar-terrestrial physics, service and technique development in the areas of environmental monitoring and forecasting.

Aeronomy Laboratory (AL): Theoretical, laboratory, rocket, and satellite studies of the physical and chemical processes controlling the ionosphere and exosphere of the earth and other planets, and of the dynamics of their interactions with high-altitude meteorology.

Wave Propagation Laboratory (WPL): Development of new methods for remote sensing of the geophysical environment with special emphasis on optical, microwave and acoustic sensing systems.

Marine EcoSystem Analysis Program Office (MPO): Plans and directs interdisciplinary analyses of the physical, chemical, geological, and biological characteristics of selected coastal regions to assess the potential effects of ocean dumping, municipal and industrial waste discharges, oil pollution, or other activity which may have environmental impact.

Weather Modification Program Office (WMPO): Plans and directs ERL weather modification research activities in precipitation enhancement and severe storms mitigation and operates ERL's research aircraft.

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

BOULDER, COLORADO 80302

U.S. DEPARTMENT OF COMMERCE Frederick B. Dent, Secretary

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
Robert M. White, Administrator
ENVIRONMENTAL RESEARCH LABORATORIES
Wilmot N. Hess, Director

NOAA TECHNICAL REPORT ERL 303-AOML 15

A Connected Least-Squares Adjustment of Navigation Data

L.M. DORMAN J.W. LAVELLE

MARINE AND EARTH SCIENCES LIFE KY

MAR 2 8 1975

N.C.A.A.

U. S. Dept. of Commerce

BOULDER, COLO. July 1974

For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington, D. C. 20402

DISCLAIMER

The Environmental Research Laboratories do not approve, recommend, or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to the Environmental Research Laboratories, or to this publication furnished by the Environmental Research Laboratories, in any advertising or sales promotion which would indicate or imply that the Environmental Research Laboratories approve, recommend, or endorse any proprietary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised product to be used or purchased because of this Environmental Research Laboratories publication.

CONTENTS

	Page
ABSTRACT	1
INTRODUCTION	1
SOLUTION	4
REAL DATA EXAMPLE	10
SUMMARY	14
ACKNOWLEDGMENTS	14
REFERENCES	15
APPENDIX	18
Introduction	18
Smooth Plotting Program Description	18
Display Program Description	26
Other Considerations	30
Reference	31
Program Listings	32
DRIVER SMPLT MERC TYME LINLSQ PNAVC DRAWER DRAWL PASTA MERK	33 34 41 42 43 45 46 47 51
Data	53

A CONNECTED LEAST-SQUARES ADJUSTMENT OF NAVIGATION DATA

L. M. Dorman and J. W. Lavelle

ABSTRACT

An algorithm is described that will determine the position of a ship in the least-squares optimal sense, given infrequent and irregularly spaced estimates of the ship's position and information on the ship's attempted course and speed. The requirements imposed on the solution are: (1) that it be continuous; (2) that it be continuous in the first derivative except at points of ordered intentional speed and course change (e.g., eliminating fictitious discontinuities in the Eötvös correction for gravity data); and (3) that it accommodate short-period small adjustments to an overall course. These constraints, coupled with sufficient procedural flexibility to allow user intervention in the ultimate determination of the track's parametrization, make this scheme a useful tool in geophysical navigation work. To emphasize its practical nature and ease of application, we have provided an example of the algorithm's use as well as an appendix which describes the content and use of subroutines written to automate the procedure.

INTRODUCTION

One of the most vexing problems encountered in the preparation of geophysical data taken at sea is the determination, with adequate accuracy, of the ship's position when a measurement is made. Because of the necessity of relying on position data sampled at irregular intervals and with irregular consistency, a reliable and straightforward method is needed to weigh each of the position measurements and to reduce them to a "smooth" track over the ocean surface. It is the

^{*} Now at Scripps Institution of Océanography, La Jolla, Calif. 92037

construction of an estimate of a ship's track, which is in some sense optimal, that this report addresses.

The most accurate navigation control generally available to the scientific community in the open ocean is that from the U.S. Navy satellite navigation system (Guier, 1966) which provides fixes at irregular intervals whose average is 100 min or so. The position so determined is said to have a one-quarter-mile standard deviation. Talwani (1970) reviewed the systems available for interpolation between satellite fixes and discussed adjustment methods. The simplest and most widely used technique is to add a constant correction-velocity vector to the dead-reckoned (DR) track so that the DR position at the time of the second fix coincides with the location of that fix. This allows one to include variations of the ship's course and speed that have shorter periods than several hundreds of minutes. The drawback of this procedure is that the correction velocities will be different for each fix pair so that the first derivative of the track, which in gravity data controls the Eötvös correction, will be discontinuous at the fixes -- a situation which may at times be gravely unrealistic.

Bowin et al. (1972) linearly interpolated the velocity between the center points of fix pairs to eliminate these discontinuities. Hayes, Talwani, and Worzel (personal communication, 1973) fitted polynomials to the cumulative north and east sets for single rhumb lines, obtaining a correction vector which varies smoothly with time in an effort to eliminate the unreal first-order discontinuity problem.

In an entirely different approach toward improved navigation, Johnson (1971) demonstrated how observed bathymetric or gravity fields in the vicinity of track crossings may be used to improve the estimates of the ship's position. Although this self-consistency approach can be valuable, the difficulties associated with automating the procedure and the dependence on the observed field will likely limit its application as a general-purpose tool. The algorithm we present may be of some help with that problem, however, as the parametrization of the corrections used by Johnson is similar to our own. In fact, depending on the need for additional constraints and the tractability of the observed fields, it may be possible to develop a hybrid procedure based on the inclusion of his crossing equations in our observational system.

What we present here is an improved navigation method without the problem of fictitious velocity jumps. We adjust a track so that the long wavelength features of the track are controlled by the satellite (or other) navigation system while the short wavelength features are taken from the DR input. The adjustment process preserves the continuity of the track (a connected track) and allows discontinuities in the velocity (and hence in the Eötvös correction) only at points of actual speed or course change. Finally, the adjustment process is flexible enough to allow user intervention in the decision as to when additional correction parameters are to be used. This later consideration allows the track to follow the navigation input more closely (accept shorter wavelength corrections) when fixes are frequent and reliable, but accepts only longer wavelengths when fixes are infrequent or unreliable.

SOLUTION

In the following treatment, we will work with a DR track which is constructed using ordered or estimated courses and speeds because these are most commonly available, although a DR from log and compass can be as easily used. We are also considering the case of a ship steering a constant course (a rhumb line) over some interval of time and then turning to steer another rhumb line. This is the most common occurrence in geophysical survey work and provides us with the simplicity guaranteed by the conformal Mercator projection, dealing with the tracks in a rectangular Cartesian coordinate system. The only disadvantages are those of a latitude-dependent scale.

The core of our suggested procedure is to make use of an explicit dependence of the ship's position on time, a technique unavailable to the manual smooth plotter. In Cartesian coordinates, the east (X) and north (Y) components of the two-dimensional vector function of time describing the ship's position can be treated separately. Our problem then becomes one of fitting two functions $\hat{X}(t)$ and $\hat{Y}(t)$ to the x- and y-components of the available fixes. To satisfy our objectives concerning the wavelength of the adjustments that we are willing to make, we let $\hat{X}(t)$ be the sum of the x-component of the DR track $X_{DR}(t)$ and let a piecewise smooth correction X(t), whose parameters we determine by using the method of least squares, make the corrected track $\hat{X}(t)$ pass as closely as possible to the fixes. The term "piecewise smooth" means having a continuous derivative except at a few points. The y-component is treated identically, so we will discuss only the x-component.

Before we proceed further, let us define some terms and notation which will become useful.

A <u>DR line</u> is a track segment over which the ordered course and speed remain constant.

A <u>correction line</u> is a track segment over which the winds and currents are expected to be constant or to vary slowly. It may consist of more than one DR line if only small course changes have been made, or it may be only part of a DR line if there is a sufficient number of fixes on the whole line. In short, it is a line on which a single correction velocity and acceleration are operative.

A <u>parameter</u> is a polynomial coefficient representing a position, velocity, or acceleration correction which is active for part or all of a correction line.

- TB(J) is the start time of the Jth parameter.
- $\overline{\text{TE}(J)}$ is the end of the active time of the Jth parameter.
- IT(J) is the type of the Jth parameter. The Type 1 parameter (of which there is only one per data set) is the x-component of the origin of the trackline. The Type 2 parameter is a constant velocity correction acting over the time interval delimited by TB and TE. The Type 3 parameter is a constant acceleration acting over the time interval delimited by TB and TE. This notation is chosen to preserve symmetry in the solution.

When computing a correction at time TT, the <u>effective time</u> for a parameter is zero if $TT \le TB$; it is TT-TB if $TB < TT \le TE$; and it is TE-TB if TT > TE. In the terminology of set theory, it is the intersection of the sets [0, TT] and [TB, TE].

To insure the continuity of the correction vector, we let X(t) be obtained by integrating the x-components of the various correction velocities and accelerations acting since the time origin of the problem. At times of speed changes or major course changes, where the effect of the wind and seas on the ship's motion can be markedly altered, we require only continuity of position. At those times, we allow the correction velocity to change. Along a track segment where we expect the set to vary slowly, we allow flexibility in the correction by letting a new correction acceleration to be added from time to time, thus allowing curves to be added to the trackline while maintaining continuity of velocity. In the case where the fixes along a track segment are insufficient to determine a correction velocity or acceleration, we can accept the DR track by simply not adding any correction velocities or accelerations.

The function X(t) is thus similar to the spline function in that it is piecewise polynomial; but it differs because it will generally be a least-squares approximation instead of an interpolation and because the continuity constraint is not the same at all junction points of the polynomial segments.

We demonstrate how the function X(t) is constructed by using as an example a portion of a real survey. The fixes and the adjusted trackline are shown in figure 1, and the navigation input is shown in figure 2. A detailed explanation of the data input is given in the appendix. The parameters of the correction function X(t), which we must determine by our least-squares fit, are contained in the vector \underline{B} that we determine by solving the matrix equation

$$A \times B = C + E. \tag{1}$$

This matrix equation is composed of one scalar equation for each fix in the data set. \underline{C} is a vector whose i^{th} -component is the x-coordinate of the i^{th} -fix minus the x-coordinate of the DR position at the time of the fix. \underline{E} is a vector of observational error and \underline{A} is the matrix of coefficients which we will develop shortly.

After reading in all the information comprising a set, the beginning, end, and number and types of parameter on each correction line are determined according to the following basic rules:

- (1) The first parameter (and the only Type 1 parameter) will always be a position (the origin of the adjusted trackline).
- (2) The current correction line is terminated and a new one is begun when there is a change in ordered speed or a major ($\geq 10^{\circ}$) course change.
- (3) Each correction line will have two new parameters, a velocity and an acceleration, except in the following circumstances:
 - (a) If the number of fixes on a correction line is smaller than NDFA, a preset constant, the acceleration is omitted $(2 \le NDFA)$.
 - (b) If the number of fixes on a correction line is smaller than NDFV, a preset constant, input course and speed are accepted ($1 \le NDFV < NDFA$).
 - (c) New velocity or acceleration parameters can be added at any time the user desires to allow for more complicated curves in the correction. The new velocity and acceleration parameters act from their start times until the termination of the correction line to which they belong.

Having determined the number, types, and start and stop times for all parameters in \underline{B} , the next step is to generate the matrix \underline{A} . Each row of \underline{A} , when multiplied by \underline{B} , must give the integrated correction distance up to the time of the fix. The integrated correction distance for the Type 1 (position) parameter is simply the parameter itself. For the Type 2 (velocity), it is the parameter multiplied by the effective time; and for the Type 3 (acceleration), it is one-half the parameter times the effective time squared.

In the example (see figs. 1 and 2), the first equation representing the first fix is

$$B(1) + B(2) (TT-TB[2]) + B(3) (TT-TB[3])^{2}/2 =$$

$$X_{Fixl} - X_{DR} (TT)$$
(2)

where TT is the time of the fix. The times TB [2] and TB [3] are equal to the start time of the line. In our example, the first line has seven fixes so that the first seven equations are of this form, differing only in the value of TT and X_{Fix} . X_{Fixi} is the x-component of the DR position at the time of the i^{th} -fix.

The eighth fix is on the second correction line, and its equation is

B(1) + BB(2) (TE[2]-TB[2]) + B(3) (TE[3]-TB[3])
$$^{2}/_{2}$$

+ B(4) (TT-TB[4]) + B(5) (TT-TB[5]) $^{2}/_{2}$ = X_{Fix8} - X_{DR} (TT) (3)

where TE[2], TE[3], TB[4], and TB[5] are the times of the first course change. The redundancy in variable names preserves a symmetry which is

useful in setting up the algorithm numerically. The generalization of these equations for the i^{th} -fix and M^{th} -correction line is straight-forward, although we avoid writing down an explicit expression because of the notational complexity involved. In any case, we continue as in the above equations until we have generated all the rows of \underline{A} . We restate that the coefficient of the \underline{B} 's represents elements in the \underline{A} matrix.

One will note that \underline{A} is a "number of parameters" by the "number of fixes" dimensional matrix. This is the observational matrix described by Lanczos (1956). To obtain the square matrix which represents the normal equations, we premultiply by A transpose

$$[\underline{A}^{T} \times \underline{A}] \times \underline{B} = \underline{A}^{T} \times \underline{C} + \underline{A}^{T} \times \underline{E}.$$
 (4)

Because the error moments vanish in a least-square solution,

$$\underline{A}^{T} \times \underline{E} = 0, \tag{5}$$

one is left with the equation

$$[\underline{A}^{T} \times \underline{A}] \times \underline{B} = \underline{A}^{T} \times \underline{C}$$
 (6)

which is a nonsingular square matrix premultiplying the column matrix of unknowns \underline{B} , that is, the standard least-squares form.

We would like to make one remark about the structure of $[\underline{A}^T \times \underline{A}]$. Because a trackline must "forget" a fix that is far removed from it in time, the matrix $[\underline{A}^T \times \underline{A}]$ must be diagonally dominant, that is, have elements which diminish in size away from the diagonal. This is the

matrix analog of a fading memory. This is useful information to keep in mind when one deals with many days of navigational fixes. If such information is broken down into overlapping sets, one will be able to find overlapping trackline solutions with little difficulty.

After the values of the correction parameters have been obtained in this manner, one may go back to equations of the form of Eqs. (2) and (3) to generate X(t), the least-squares optimal track at any time t. What we usually do is to generate a track solution at frequent intervals (say 5 min) and write these down as the end product of the calculation. One will, of course, also find the positions of turning points, residuals of fixes from the track, and standard deviations of the corrector estimates. At the same time, we calculate the first derivative of the track, and an Eötvös correction is generated from the eastwest velocity components. The adjusted track and the Eötvös corrections can then be combined with the observed data in the usual manner and can be plotted as in figure 1.

REAL DATA EXAMPLE

The example plotted in figure 1 treats a number of navigational problems which arose in a survey conducted in 1972 by the NOAA ship <u>Discoverer</u> near the Puerto Rico Trench. Measurements were begun at 0050 hr on Julian Day 100 (100/0050), which is the southernmost eastwest line in the plot. We have set the algorithm constants so that two fixes are required before a velocity correction is computed and four fixes are required before an acceleration term is found.

Because the first line encompasses seven fixes, both velocity and acceleration corrections are calculated as well as the initial position of the ship. This last number is, of course, unique to the first line of any trackline sequence, as the initial position of subsequent lines is constrained to the end position of the previous line. Please note that there is one inflection point on this line at 100/0130 when the ship made a 3° course change. Because we are looking for the long wavelength corrections, we solve for only one set of correction parameters.

At 0830, a turn to the north was made and a second line begun; at that time, only a velocity correction was required as only three fixes were taken. At 1320, the ship turned to the west to find the longitude of the next survey line and then turned north at 1415 to find the proper latitude. Because of the relatively short time to complete these manuevers, fixes are sparse on one of these segments. While this is a vexation in manual smooth plotting, our procedure tolerates this situation.

We point out the following about lines of sparse data. There will be no velocity correction to the east-west line at 1320, so the length and orientation of this line are fixed by the lapsed time of the track and by the DR information. Therefore, a good approximation to the ship's course and speed should be input for this segment. This is not hard to do. We have found that an efficient way to handle this problem is to run the program with log speed entered as the first speed approximation. On lines that have more than the minimum number (NDFV) of fixes for determination of a velocity correction, the output will suggest how

This suggested correction to log speeds provides information for a better approximation of actual speed for weakly determined lines. The iterative second run through the procedure with the updated speeds provides a good estimate to the actual track. At 1615, the ship turned west to begin reflection profiling, but, as a result of hardware problems resulting in a poor record, was forced into retracing its course back to and beyond the start point. While the retracing allowed time to solve the hardware problems, the repositioning resulted in two short tracklines, one of which was poorly determined by satellite information. That line again is fixed in length and direction, but may translate in a way such that the overall sum of squares of residuals is minimum.

At 1915, with survey hardware operational, the ship proceeded for a period of 18 hr. Reading figure 2, one will note that small course corrections were made frequently (denoted by arrows in fig. 1), but it is not until 101/1300 that a course change of sufficient magnitude was made to terminate the ongoing correctors. In this case, without intervention, the entire line from 100/1915 to 101/1300 would have been fitted with a single velocity and a single acceleration parameter. This was judged to be insufficient in view of the apparent nonconstant and appreciable current along the track. For this reason, new acceleration parameters were introduced at 101/0240 and at 101/0700 to increase the flexibility of the fit. These interventions show as NA cards in figure 2. One will note that the number of fixes between the NA's and between the NA's and the end of the line is at least equal to NDFA (in this case, four).

As an aside, one should also note that this line is parallel to the east-west line below it, although they were run 24 hr apart. In addition, the two longest north-south lines exhibit a parallelism, all of which suggests the occurrence of a localized current running to the southwest.

At 1550, this east-west line was complete, and the ship slowed to bring in some of the streamed gear as the ship turned to the north-east to begin a quick run to the next survey line. Because of the large accelerations and decelerations at both ends of this line, we have decoupled this section of track from both the previous and following track solutions. This is evident as a gap in the line in figure 1.

At 101/1910, we began another line. We spare the reader detailed description of the line, which may be easily assembled from figures 1 and 2. Many features of the above description reappear on this track, suggesting that such navigational data are typical of a real survey and can be handled by the procedure.

As we have mentioned before, the memory of previous fixes retained by any line fades as the point of interest in time moves away from those fixes. This means that there is no real limitation to the number of tracks that the procedure will handle. If one has more fixes than can be handled by the available computer, then one may break the data into overlapping sets with the assurance that if the overlap were great enough, one would be able to find solutions that blend together in some region.

SUMMARY ·

We have suggested and demonstrated the usefulness of an algorithm which absorbs position measurements and ordered courses and speeds and calculates a connected smooth plot of the track. This procedure is based on quadradic-connected least-squares approximations for both latitude and longitude fixes explicitly parametrized by time. The resulting calculated track is continuous and assures one of continuous first derivatives (and hence Eötvös corrections), except at points of real speed or course change. Computer subroutines based on this algorithm and a description of their use are presented in the appendix. Because of the incompatibility of precise geophysical measurements and poor navigation, we think this procedure may contribute significantly to geophysical measurements taken at sea.

ACKNOWLEDGMENTS

We thank Stuart M. Smith for critically reading the manuscript. This work was funded in part by the National Science Foundation-IDOE Grant No. AG-253.

REFERENCES

- Bowin, C., T.C. Aldrich, and R.A. Folinsbee (1972): VSA gravity meter system: tests and recent developments, *J. Geophys. Res.* 77:2018-2033.
- Guier, W.H. (1966): Satellite navigation using integral Doppler data—the AN/SRN-9 equipment, J. Geophys. Res. 71:5903-5910.
- Johnson, R.H. (1971): Reduction of discrepancies at crossing points in geophysical surveys, J. Geophys. Res. 76:4892-4896.
- Lanczos, C. (1956): Applied Analysis, Prentice Hall Inc., Englewood Cliffs, N.J., 539 pp.
- Talwani, M. (1970): Developments in navigation and measurement of gravity at sea, *Geoexploration 8*:151-183.

have marked Julian Day midnights. The small arrows indicate points at which small course Solid cir-A plot of satellite fixes (open circles), with time annotation and a trackline based on them using the algorithm. Input information is listed in figure 2. Solid of oles on the track have sectioned the track into 30-min intervals, and crossed circles corrections were made. Figure 1.

DAY	TIME	LATITUDE	LONGITUDE	COURSE	SPEED	TYPE	DAY	TIME	LATITUDE	LONGITUDE	COURSE	SPEED	TYPE
100	0050			094	5	TP	101	2314	17 339	-60 040	176	5	SA
	0100	16 336	-59 091	094	5	SA		0000			180	5	TP
	0130			097	5	TP		0056	17 241	-60 038	180	5	SA
	0144 0246	16 339	-59 052	097	5	SA		0152	17 188	-60 037	180	5	SA NA
	0330	16 338 16 337	-58 598 -58 560	097 097	5 5	SA SA		0240 0240	17 142	-60 037	180 180	5 5	SA
	0606	16 333	-58 423	097	5	SA		0338	17 084	-60 041	180	5	SA
	0706	16 330	-58 371	097	5	SA		0530	16 575	-60 057	180	5	SA
	0752	16 327	-58 332	097	5	SA		0600			177	5	TP
	0830	_	_	002	5	TP		0718	16 471	-60 078	177	5	SA
	0902	16 350	-58 297	002	5	SA		0756	16 432	-60 084	177	5	SA
	1052 1244	16 456 16 562	-58 299 -58 296	002 002	5 5	SA SA		0830 0912	16 393	-60 070	990 090	5 5	TP SA
	1320	10 502	-50 250	270	61	TP		1104	16 393	-59 586	090	5	SA
	1334	16 597	-58 309	270	61	SA		1242	16 386	-59 520	090	5	SA
	1415			004	55	TP		1338	16 381	-59 477	090	5	SA
	1432	17 009	-58 351	004	55	SA	102	1426	16 382	-59 438	090	5	SA
	1514	17 049	-58 353	004	55	SA		1440			083	5	SA
	1615		E0 202	269	55	TP		1524	16 386	-59 394	083	5	SA
	1640 1715	17 113	-58 380	269 090	55 5	SA TP		1616	16 408 16 403	-59 339 -59 307	083 083	5 5	SA SA
	1752	17 111	-58 397	090	5	SA		1654 1730	16 403	-59 307	086	5	TP
	1830	17 113	-58 362	090	5	SA		1730			086	5	NA.
	1915	., .,,	50 502	270	5	TP		1756	16 1756	-59 247	086	5	SA
	1936	17 109	-58 337	270	5	SA		1842	16 427	-59 204	086	5	SA
	2018	17 109	-58 385	270	5	SA		1915			090	5	TP
	2100			268	5	TP		1940	16 428	-59 141	090	5.	SA
	2214	17 119	-58 509	268	5	SA		2030	16 428	-59 094	090	5	SA
	2230 0156	17 105	-59 134	266 266	5	TP SA		2042 2215	16 430	-59 081	090 094	5 5	SA TP
	0240	17 125	-55 134	266	5	NA		2224	16 437	-58 581	094	5	SA
	0246	17 124	-59 178	266	5	SA		0106	16 431	-58 426	094	5	SA
	0336	17 122	-59 238	266	5	SA		0115		•	311	16	TP
	0428	17 118	-59 292	266	5	SA	103	0250	16 585	- 58 599	311	16	SA
	0616	17 096	- 59 397	266	5	SA		0334	17 061	- 59 085	311	16	SA
	0700	0-	!	266	5	NA		0438	17 172	-59 210	311	16	SA
	0700	17 085	-59 451	266	5 5	SA		0522	17 238	-59 303	311 180	16	SA TP
101	0730	17 075	-59 515	273 273	5	TP SA		0545 0628	17 234	-59 348	180	5 5	SA
101		17 067	-59 560	273	5	SA		0818	17 119	-59 355	180	5	SA
101		1, 00,	<i>J</i> J <i>J</i> 00	277	5	TP		0830	.,	,, ,,,	177	5	TP
101		17 071	-60 039	277	5	SA	103	0854	17 069	- 59 357	177	5	SA
101	1251			282	5	TP		1010	16 591	-59 363	177	5	SA
101				292	5	TP		1130		01	092	5	TP
	1320		(0.057	270	5	TP		1256	16 512	-59 284	092 092	5	SA
101		17 108	-60 257 -60 311	270 270	5	SA SA		1328 1436	16 507 16 507	-59 251 -59 186	092	5 5	SA SA
101 101		17 115 17 124	-60 351	270	5	SA		1516	16 506	-59 145	092	5	SA
101		1/ 124	- 00 351	2,0	,	J A		1626	16 507	-59 079	092	5	SA
99999								1645		22 -72	179	6	TP
101				038	16	TP	103	1725			000	65	TP
101	1614	17 174	-60 351	038	16	SA		1752	16 490	- 59 065	000	65	SA
101		17 357	-60 215	038	16	SA		1815			179	5	TP
101		17 489	-60 113	038	16	SA		1848	16 510	-59 060	179	5	SA
101								1940 2040	16 455	-59 060	179	5	SA
9 9 999				090	6	TP		2134	16 394 16 333	-59 067 -59 069	179 179	5 5	SA SA
101 101		17 534	-60 054	090	6	SA		2145	10 333	Jy 009	1/3	Þ	JA
101		דככ זו	00 054	180	5	TP		9999					
101		17 441	-60 034	180	5	SA		9999					
101		•	-	176	5	TP							
	-												

Figure 2. A listing of information input into the automated version of the algorithm that resulted in a generation of optimal track. The plot is shown in figure 1. The two-character designators have the meanings: satellite fix (SA); turning point (TP); and new acceleration parameter (NA). Cards of nine separating solution sets are presented. A detailed discussion is provided in the appendix.

APPENDIX

Introduction

This appendix is designed not only to aid an individual wishing to use the programs written to implement the algorithm, but also to provide further insight into the way in which the solution was set up so that the user can extract the best solution from his data.

We provide two subroutines: SMPLT and DRAWL. The subroutine SMPLT reads in navigation fixes, as in figure 2, and calculates a best-estimate dead-reckoned (DR) track from the ordered courses and speeds. It does this by computing the correction parameter vector <u>B</u> for both the x- and y-components of the ship's position vector and then by generating adjusted positions interspersed with the original fixes on an output file having the same format as the input file. The subroutine DRAWL will read the output file of SMPLT and produce a set of charts showing the adjusted track and the fixes used in the adjustment, as in figure 1.

The subroutines are written in FORTRAN, as defined by the American National Standards Institute (Standard X3.9--1966), to make them as machine-independent as possible. Those included have been run on the Univac 1108 and CDC 6600 computers. Nonstandard versions which run on IBM 1130 and IBM 1800 are available.

Smooth Plotting Program Description

This routine, the core of the solution deck, is called into operation as SMPLT (IDT, LUF, LCP, LCR, LLP, NDFV, NDFA). These calling arguments have the following meaning:

- IDT Time interval, in minutes, at which points on the smoothed trackline are generated. For example, in IDT = 5, positions are generated at 5-min intervals and written onto the navigation output file.
- LUF The logical unit designation of the scratch file upon which the fixes are written. Eight words are written on this file for every fix in a data set.
- LCP The logical unit designation of the navigation output file (card punch).
- LCR The logical unit designation of the input file (card reader).
- LLP The logical unit designation of the print file upon which is written the input data, the summary of corrections, and the residuals (line printer).
- NDFV The number of fixes required on a correction line before solving for a constant correction velocity. If there are fewer than NDFV-fixes on a correction line, the ordered course and speed as read from the input file are accepted for that line, and only the position of the line is allowed to change.
- NDFA The number of fixes required on a correction line before an acceleration parameter is added to the solution for that line.

This routine requires a data deck which, aside from spacers and end cards, is formatted (1X, I3, F2.0, F3.1, 2X, F3.0, 1X, F4.2, 1X, F4.0, 1X, F4.2, 1X, F4.1, 2X, F3.1, 1X, A2, 1X, F6.2) with decimal points implied. This will hereafter be described as the Marine Geology

& Geophysics (MG&G) Standard Navigation Format. The fields of this card, an example of which is seen in figure 2, have the following definitions:

Day (I3): contains the Julian Date (JD)

Time (F2.0, F3.1): contains the Greenwich Mean Time in hours and in minutes to tenths of minutes.

Latitude (F3.0, 1X, F4.2) and

Longitude (F4.0, 1X, F4.2): are fix latitude and longitude in degrees and in minutes to hundredths of minutes. The sign convention used is that North latitude and East longitude are positive.

Course (F4.1): is the ordered or estimated course, in degrees to tenths of a degree, measured east from north.

Speed (F3.1): is the ordered or estimated speed, in knots to tenths of a knot.

Type of fix (A2): is a two-character symbol denoting the type of fix; or, if the card does not represent a fix, other control information as described below.

Eötvös correction (F6.2): is the correction, in milligals to hundredths of a milligal, to be applied to gravity observations made on a moving platform. This member is not read off the input cards, but is generated within the subroutine and written on the output card images.

The data deck formatted in this way consists of two types of cards: fix and control. The fix cards must bear the time of fix, the latitude and longitude, an estimated course and speed, and a designator describing the type of fix. Recognized fix labels are: satellite (SA);

Loran A (LA); Loran C (LC); and Omega (OM). These designators are used in a relative weighting of the fixes. Weighting is vested in a data statement within SMPLT and is now set uniformly to one.

Control cards, that is, cards not bearing fix information, are of several types. The first and last cards of a connected track segment are special cards: the first card bears the time of the start of the line as well as ordered course and speed; and the last card of the same set bears only the time of line termination.

A second type of control card is that marking the turning points. In actuality, this type of card is needed only when a turning point and a fix are noncoincident in time. The subroutine sets new correction parameters upon recognition of new speeds or course changes greater than 10° in the input stream. We denote points of velocity change that are not fixes with a TP (turning point), and the record carries only time, course, and speed. Should the latitude or longitude columns bear information, the record will be treated as a fix.

The third possible control card bears only time, course, speed, and NS or NA. The difference between this and the TP control card is solely in the designator. These control cards force a new correction parameter to become active (either new velocity or new acceleration) in the calculation, although the overall course has not been altered. By using only NA cards, one guarantees velocity continuity. These cards can be used to increase the degree of fit by providing additional flexibility for the trackline.

In summary, the following rules must be observed in setting up the data deck:

- (1) All fix and control cards must contain a day and time.
- (2) Latitude and longitude fields are nonzero only if the card represents a fix.
- (3) New speeds and changes of course greater than 10° signal a new set of correction parameters into operation.
- (4) NA and NS cards can be used to increase the number of parameters otherwise determined internally.
- (5) The last card of a data set contains information in the time column only.
- (6) Speeds and courses on sparse track segments, where sparse means the number of fixes is less than NDFV, are accepted at face value and fix the length and angular orientation of that track segment.

Subroutine SMPLT has both print and type output. The tape output consists of information written in the Standard Navigation MG&G Format, containing every fix read in plus all calculated positions that are designated with a DR. The designators TP, NS, or NA will not appear, although the two-character UP is possible, meaning a break in the track-line. All other information on an UP record is meaningless.

Printed output consists of: an input card list; a summary of correction parameters (i.e., their magnitudes and directions as well as their standard deviations); and lastly, a listing of all fixes and their residuals from the calculated position north and east. This summary is repeated for every solution set.

SUBROUTINE SMPLT

A complete indexed listing of the subroutine is provided herein. A detailed flow chart will guide the interested programer through the bookkeeping maze integral to SMPLT.

Display Program Description

This display program, designed to allow visual integration of the data and solution, is called into operation as DRAWL (ALAT, ALONG, NX, NY, A, IDELT, NIN, NOUT, NSCAT, NPLOT) where:

ALAT ALONG

One-dimensional arrays representing the limiting latitudes and longitudes of a sequence of Mercator plots requisite to the display of a trackline and navigation fixes over a given The content of each array must be arranged in ascending sequence (west of Greenwich negative) and must represent whole or one-half Jegrees only in decimal degrees.

NX NY

Dimension of ALAT and ALONG, respectively. Each integer must

be between two and ten.

Α

Plot scale in inches/degree of longitude.

IDELT

Time increment in minutes at which time ticks will be made (the routine checks the input file for integral multiples of this unit).

NIN

The logical unit designation of the input file. This BCDcoded file will correspond to the output file (LCP) of the

subroutine SMPLT.

NOUT

The logical unit designation of the printed output file.

NSCAT The logical unit description of a scratch file.

NPLOT The logical unit designation of the plot tape file.

This subroutine allows one to plot both fixes as well as the trackline, as in figure 1, on a sequence of Mercator charts which, when manually spliced, serve to describe an area of any size at any scale. Capability to cross the trackline at set time intervals is also provided. The routine requires only a delineation of latitude and longitude map bounds and an input file (generally the output file of SMPLT), containing a time-ordered sequence of points defined by a time, a position, and a two-character descriptor of the point's genesis. The input file is BCD-coded in the MGSG Standard Navigation Format which has been described above.

The two-character descriptor may be one of the following:

a point lying on a trackline (DR); a satellite fix (SA); an Omega fix

(OM); a Loran A fix (LA); a Loran C fix (LC); and a break in the trackline (UP). When the DR is identified in the input file, a check is made

to see if the accompanying time is a multiple of the time-tick increment, allowing the DR line to be crossmarked. All other designators,

aside from the UP, will be plotted with an appropriate symbol. Adjustments to the list of recognized fixes can be accomplished with minor

changes to data statements.

The subroutine will sequentially plot up to 81 Mercator charts of a contiguous area. Control of the plot boundaries is maintained through calling parameters, and a sorting of points and trackline to individual charts is done efficiently within the routine. Graticules,

SUBROUTINE DRAWL

chart labeling, and plot-drift indicators are drawn for each chart. The plot-tape output is initialized and terminated within the subroutine. Control of this aspect can be recovered by the programer by deactivating statements DRW 1300 and DRW 2260.

Output consists of a CalComp command tape which will create a diagram, as in figure 1, as well as a printed output review of the sub-routine argument assignments. A complete indexed listing of the sub-routine is provided herein as well as a detailed flow chart.

Other Considerations

A complete listing of all nonstandard subroutines, called by SMPLT and DRAWL, has been provided. Comment cards in each subroutine describe their function as well as the meanings of the calling arguments. In addition to the listed routines, calls are made to two IBM standard matrix-manipulative routines, MINV and GMPRD (IBM, 1970), as well as to three CalComp standard routines, PLOT, SYMBOL, and NUMBER.

Also included in the listings are two driver programs, called DRI and DRA, which will indicate the way we have employed SMPLT and DRAWL. We have run each separately because of the insufficient core available in our general-use computer. The user may wish to follow this example or create a single overall driver program if a larger machine is available.

Notation used in SMPLT is identical to that used in the description of the algorithm. That fact, along with the accompanying flow

chart, should provide the interested reader with sufficient material to guide him through the program's internal intricacies. The flow chart and previous description of DRAWL should provide the same service.

We believe that we have developed a useful tool for geophysical navigation work. We therefore hope that these descriptions will provide sufficient insight into the machinery of the automated algorithm that the reader will be able to make as much use of the routines as we think they merit.

Reference

IBM (1970): System/360 Scientific Subroutine Package Programmer's Manual, IBM Corp., Technical Publications Dept.

Program Listings

	DATA LCR/5/	DRI	10
	READ (LCR, 708) IDT, LUF, LCP, LCR, LLP, NDFV, NDFA	DRI	20
708	FORMAT (715)	DRI	3(
	CALL SMPLT(IDT, LUF, LCP, LCR, LLP, NDFV, NDFA)	DRI	4(
	END	DR.I	50

```
SUBROUTINE SMPLT(IDT, LUF, LCP, LCR, LLP, NDFV, NDFA)
                                                                             MP
                                                                                   10
       LOGICAL CAL, OFF SET, NCC
                                                                             SMP
                                                                                   20
       DIMENSION A(500,50),AI(60,60),AX(50),AY(50),B(500),C(500),CS(50),
                                                                             SMP
                                                                                   30
     1FLA(50), IT(60), PARX(60), PARY(60), SDPX(60), SDPY(60), SP(50),
                                                                             SMP
                                                                                   40
      2T(50), TB(60), TE(60), W(500), X(500), Y(500), IAL(3)
                                                                             SMP
                                                                                   50
      DATA NUP/2HUP/, IAL(2), IAL(3)/4H
                                           ,4H/HR./
                                                                             SMP
                                                                                   60
      DATA RAD/.01745329252/, IDR.NA.NS/2HDR.2HNA.2HNS/
                                                                             SMP
                                                                                   70
C FAC IS CM/HR/KT AT THE EQUATOR
                                                                             SMP
                                                                                   80
C EPS MUST BE SUCH THAT 9000. IS RESOLVABLE FROM 9000. + EPS
                                                                             SMP
                                                                                    90
C DDR IS RHE TIME, EXPRESSED IN HOURS, BETWEEN THE GENERATED POSITIONS
                                                                             SMP
                                                                                  100
      DATA FAC/0.3386673/, EPS/1.0E-4/, DDR/0.08333333333/
                                                                             SMP
                                                                                   110
      DATA NRA, NCA, NLMX/500, 60,50/
                                                                             SMP
                                                                                  120
CONVERT ANGLES TO DEGREES
                                                                             SMP
                                                                                  130
      ANG(P1, P2) = P1
                         +SIGN(P2,P1)/60.
                                                                             SMP
                                                                                  140
CONVERT TIMES TO HOURS FROM BEGINNING OR YEAR
                                                                             SMP
                                                                                   150
      TIME(P1,P2,P3)=24.*P1+P2+P3/60.
                                                                             SMP
                                                                                  160
COMPUTE EDTVOS CORRECTION AS A FUNCTION OF COURSE, SPEEDIN KNOTS, LATITUDESMP
                                                                                   170
C IN DEGREES
                                                                             SMP
                                                                                   180
      EDTVOS(P1,P2,P3)=7.50277*P2*SIN(P1*RAD)*COS(P3*RAD)+.0004149*P2*P2SMP
                                                                                   190
   71 FORMAT (1X,F3.0,1X,F2.0,F3.1,2X,F3.0,1X,F4.2,1X,F4.0,1X,F4.2,1X,
                                                                             SMP
                                                                                  200
      * F4.1,2X,F3.1,1X,A2)
                                                                             SMP
                                                                                   210
   72 FORMAT(15,2F12.0)
                                                                             SMP
                                                                                  220
   73 FORMAT(1X,F4.0,2(1X,F3.0),2(F5.0,F6.2),2F6.1,1X,A2)
                                                                             SMP
                                                                                  230
   74 FORMAT(10F12.2)
                                                                             SMP
                                                                                  240
   75 FORMAT (10112)
                                                                             SMP
                                                                                  250
   76 FORMAT (/////// 50X,12HNORMAL EXIT.)
                                                                             SMP
                                                                                  260
   77 FORMAT (10E12.3)
                                                                             SMD
                                                                                  270
  701 FORMAT (1H1,48X,24HINPUT COURSES AND SPEEDS,/, 1H0,41X,4HFROM, 9X,SMP
                                                                                  280
                                                                     ),3X, SMP
               7X,6HCOURSE, 4X,5HSPEED,/,1H ,37X,2(13HDAY TIME
                                                                                  290
     12HT0.
     2 7HDEGREES, 3X,5HKNOTS )
                                                                             SMP
                                                                                  300
  702 FORMAT (38X,2(13,F6.2,4X),2(4X,F5.1,5X))
                                                                             SMD
                                                                                  310
  703 FORMAT(////30X,47HCORRECTIONS APPLIED TO INPUT COURSES AND SPEEDS SMP
                                                                                  320
     1 /1H0,36X,4HFR0M,9X,2HT0,41X,4HSTD./32X,2(13HDAY TIME
                                                                             SMD
                                                                                  330
                                                                    ).6X,
     2 5HNURTH, 14X, 4HEAST, 5X, 4HDEV.)
                                                                             SMP
                                                                                  340
  704 FORMAT (33X,2(13,F6.2,4X),2(F5.2,6H KNOTS,A4,3X),2F5.2)
                                                                             SMP
                                                                                  350
  705 FORMAT (////50x,15HCONTROL SUMMARY//1X,64H LINE DAY TIME
                                                                        LATISMP
                                                                                  360
     ITUDE LONGITUDE ADJUSTMENT MADE
                                            TYPE /19X,44HDEGREES N DEGREESSMP
                                                                                  370
           NAUTICAL MILES
                              FIX /43X,13HNORTH
                                                      EAST /)
                                                                             SMP
                                                                                  380
  706 FORMAT (14,17,F6.2,2X,2F10.3,2F8.2,6X,A2)
                                                                             SMP
                                                                                  390
  707 FORMAT (10X,40HTHE DETERMINANT OF THE NORMAL MATRIX IS
                                                                             SMP
                                                                                  400
                                                                    ,E10.3)
  709 FORMAT (//10x,56HSMPLTR WAS CALLED WITH THE FOLLOWING FILE CONFIGUSMP
                                                                                  416
     *RATION /10x,5HINPUT,15x,14/10x, 7HSCRATCH,13x,14/10x, 17HNAVIGATIOSMP
                                                                                  420
     *N OUTPUT, 3X, 14, /10X, 12HPRINT OUTPUT, 8X, 14, //10X, 12,
                                                                                  430
                                                               75H FIXES RESMP
     *QUIRED ON A CORRECTION LINE BEFORE A VELOCITY SOLUTION IS ALLOWED.SMP
                                                                                  440
         10X, 12,81H FIXES REQUIRED ON A CORRECTION LINE BEFORE AN ACCELESMP
                                                                                  450
     *RATION SOLUTION IS ALLOWED. //10X, 45HSMOOTHED OUTPUT POINTS ARE TSMP
                                                                                  460
     *O BE GENERATED AT, 14, 17H MINUTE 'INTERVALS ////)
                                                                             SMP
                                                                                  470
  708 FORMAT (1H1)
                                                                             SMP
                                                                                  480
      WRITE (LLP,709) LCR, LUF, LCP, LLP, NDFV, NDFA, IDT
                                                                             SMP
                                                                                  490
      DDR=FLOAT(IDT)/60.0
                                                                             SMP
                                                                                  500
      CALL MERC (30.,-80.,8.0,0.0,1)
                                                                             SMP
                                                                                  510
                                                                             SMP
    9 CONTINUE
                                                                                  520
      WRITE(LLP,708)
                                                                             SMP
                                                                                  530
                                                                             SMP
                                                                                  540
      CAL=.FALSE.
      OFF SET'= . FALSE .
                                                                             SMP
                                                                                  550
C SET UP NEW SOLUTION
                                                                             SMP
                                                                                  560
      REWIND LUF
                                                                             SMP
                                                                                  570
                                                                             SMP
                                                                                  580
      NEQ=0
      DO 10 I=1,NCA
                                                                             SMP
                                                                                  590
      DO 10 J=1,NRA
                                                                             SMP
                                                                                  600
```

```
10 AIJ, I)=0.0
                                                                               SMP
                                                                                     610
                                                                               SMP
       DO 11 I=1, NLMX
                                                                                     620
       IT(I)=0
                                                                               SMP
                                                                                     630
       TB(1)=0.0
                                                                               SMP
                                                                                     640
       TE(1)=0.0
                                                                               SMP
                                                                                     650
   11 CONTINUE
                                                                               SMP
                                                                                     660
       DO 12 I=1,NRA
                                                                               SMP
                                                                                     67C
                                                                               SMP
       B(I)=0.0
                                                                                     680
       C(1)=0.0
                                                                               SMP
                                                                                     690
       A(I,1) = 1.0
                                                                               SMP
                                                                                     700
   12 CONTINUE
                                                                               SMP
                                                                                     710
       IXB=2
                                                                               SMP
                                                                                     720
       1=1
                                                                               SMP
                                                                                     730
       LN=1
                                                                               SMP
                                                                                     740
      \cdot L = 0
                                                                               SMP
                                                                                     750
       IT(1)=1
                                                                               SMP
                                                                                     76C
       READ(LCR,71)FD,FH,FM,FAD,FAM,FOD,FOM,CSE,SPD,IFX
                                                                               SMP
                                                                                     770
                                                                               SMP
       1E (FD .GT. 400.) GD TD 9999
                                                                                     780
       CSE=CSE*RAD
                                                                               SHP
                                                                                     790
       TT=TIME(FD,FH,FM)
                                                                               SMP
                                                                                     003
       T(1)=TT
                                                                               SMP
                                                                                     810
       TB(1)=TT
                                                                               SMP
                                                                                     820
       TB(2)=TT
                                                                               SMP
                                                                                     830
       TB(3)≈TT
                                                                               SMP
                                                                                     840
       TRETT
                                                                               SMP
                                                                                     850
      CS(1)=CSE
                                                                               SMP
                                                                                     860
       SP(1)=SPD
                                                                               SMP
                                                                                     870
      RCSE=CSE
                                                                               SMP
                                                                                     880
      RSPD=SPD
                                                                               SMP
                                                                                     890
C SET UP NEW LINE
                                                                               SMP
                                                                                     900
   13 NF IX =0
                                                                               SMP
                                                                                     910
C READ A CARD.
                                                                               SMP
                                                                                     920
   14 READ(LCR,71)FD,FH,FM,FAD,FAM,FOD,FOM,CSE,SPD,IFX
                                                                               SMP
                                                                                     930
      WRITE (LLP,73) FD,FH,FM,FAD,FAM,FOD,FOM,CSE,SPD,IFX
                                                                               SMP
                                                                                     940
       IF (FD .LT. 400.) GO TO 141
                                                                               SMP
                                                                                     950
      CAL=.TRUE.
                                                                               SMP
                                                                                     960
      GO TO 50
                                                                               SMP
                                                                                     970
  141 TT=TIME(FD,FH,FM)
                                                                               SMP
                                                                                     980
      CSE=CSE*RAD
                                                                               SMP
                                                                                     990
      FA=ANG(FAD, FAM)
                                                                               SMP 1000
      FO=ANG(FOD, FOM)
                                                                               SMP 1010
      IF (IFX .EQ. NS) GO TO 50
                                                                               SMP 1020
       IF (IFX .EQ. NA) GO TO 50
                                                                               SMP 1030
      IF(FA.EQ.O.O.AND.FO.EQ.O.O) GQ TO 15
                                                                               SMP 1040
      NEQ=NEQ+1
                                                                               SMP 1050
      NFIX=NFIX+1
                                                                               SMP 1060
      WRITE(LUF)TT, FA, FO, CSE, SPD, IFX, NEQ, LN
                                                                               SMP 1070
   15 IF (((SPD-RSPD)**2+(CSE-RCSE)**2) .LT. EPS) GO TO 14
                                                                               SMP 1080
                                                                               SMP 1090
      NCC = . FALSE .
      IF (SPD .NE. RSPD) NCC=.TRUE.
                                                                               SMP 1100
   17 CONTINUE
                                                                               SMP 1110
      LN=LN+1
                                                                               SMP 1120
      T(LN)=TT
                                                                               SMP 1130
      CS(LN)=CSE
                                                                               SMP 1140
      SP(LN)=SPD
                                                                               SMP 1150
      IF (NCC) GO TO 50
                                                                               SMP 1160
                                                                               SMP 1170
      DA=COS(CSE)*COS(RCSE)+SIN(CSE)*SIN(RCSE)
                                                                               SMP 1180
      RCSE=CSE
      RSPD=SPD
                                                                               SMP 1190
                                                                               SMP 1200
      IF ( DA .LT. .985) GO TO 50
```

```
GO TO 14
                                                                               SMP 1210
C SET UP NEW CORRECTION COURSE
                                                                               SMP 1220
    50 WRITE (LLP,72) NFIX,TT
                                                                               SMP 1230
                                                                               SMP 1240
       IF (.NOT. OFFSET) GO TO 52
       IF (IFX.EQ. NA) GO TO 56
                                                                               SMP. 1250
       OFFSET=.FALSE.
                                                                               SMP 1260
       GO TO 81
                                                                               SMP 1270.
    52 CONTINUE
                                                                               SMP 1280
       IF (NFIX .GE. NDFA) GO TO 51
                                                                               SMP 1290
       IF (NFIX .GE. NDFV) GO TO 55
                                                                               SMP 1300
       GO TO 70
                                                                               SMP 1310
C V AND A SOLUTION
                                                                               SMP 1320
   51 IQ=3
                                                                               SMP 1330
       TB(IXB)=1R
                                                                               SMP 1340
       TB ( I XB+ 1 ) = TR
                                                                               SMP 1350
       TR=TT
                                                                               SMP 1360
       IT(IXB)=2
                                                                               SMP 1370
       IT(IXB+1)=3
                                                                               SMP 1380
       IXB = IXB + 2
                                                                               SMP 1390
       GO TO 60
                                                                               SMP 1400
C V ONLY SOLUTION
                                                                               SMP 1410
   55 IQ=2
                                                                               SMP 1420
                                                                               SMP 1430
       TB(IXB)=TR
       TR=TT
                                                                               SMP 1440
                                                                               SMP 1450
       IT(IXB)=2
                                                                               SMP 1460
       1XB = IXB + 1
       GD TD 60
                                                                               SMP 1470
   70 10=1
                                                                               SMP 1480
C NO SOLUTION PARAMETERS ON THIS LINE
                                                                               SMP 1490
       TRETT
                                                                               SMP 1500
       GO TO 60
                                                                               SMP 1510
C A ONLY SOLUTION
                                                                               SMP 1520
   56 IF (OFFSET) GO TO 57
                                                                               SMP 1530
      OFFSET=.TRUE.
                                                                              SMP 1540
   57 IT (1XB)=3
                                                                               SMP 1550
                                                                               SMP 1560
       TB(IXB)=TT
       IXB = IXB + 1
                                                                              SMP 1570
       GO TO 81
                                                                               SMP 1580
   60 IF (IFX .EQ. NA) GO TO 56
                                                                               SMP 1590
   81 IF (IFX .EQ. NA) GO TO 83
                                                                              SMP 1600
       DO 82 J=2,1XB
                                                                               SMP 1610
                                                                              SMP 1620
       IF(TE(J-1) .EQ. 0.0) TE(J-1)=TT
   82 CONTINUE
                                                                              SMP 1630
                                                                              SMP 1640
   83 CONTINUE
       IF (CAL) GO TO 100
                                                                              SMP 1650
       L=L+1
                                                                              SMP 1660
                                                                              SMP 1670
       IF (IFX .EQ. NA) GO TO 13
      RCSE=CSE
                                                                              SMP 1680
       RSPD=SPD
                                                                              SMP 1690
                                                                              SMP 1700
      TR=TT
                                                                              SMP 1710
       GO TO 13
  100 CONTINUE
                                                                              SMP 1720
                                                                              SMP 1730
CALCULATE SOLUTION
      NPAR=IXB-1
                                                                              SMP 1740
                                                                              SMP 1750
      NMX=NEQ
      NLN=LN
                                                                              SMP
                                                                                  176C
C ESTIMATE LAT AT BEGINNING PF EACH DR LINE BY LINEAR INTERPOLATION IN
                                                                              SMP 1770
C FIX LATITUDES
                                                                              SMP 1780
      NEQ=0
                                                                              SMP 1790
                                                                              SMP 1800
      REWIND LUF
```

```
SMP 1810
       T2=0.
       F2=0.
                                                                              SMP 1820
                                                                              SMP 1830
       00 510 I=1.NLN
  505 IF (T(I) .LE. T2 .OR. NEQ .EQ. NMX) GO TO 510
                                                                              SMP 1840
                                                                              SMP 1850
       T1=T2
                                                                              SMP 1860
      F1=F2
      READ (LUF) T2,F2,F0,CSE,SPD,IFX,NEQ,IX
                                                                              SMP 1870
                                                                              SMP 1886
       GO TO 505
                                                                              SMP 1890
  510 FLA(I)=F1+(F2-F1)*(T (I)-T1)/(T2-T1)
COMPUTE POSITIONS FOR BEGINNINGS OF EACH DR LINE
                                                                              SMP 1900
                                                                              SMP 1910
       AX(1)=0.0
       AY(1)=0.0
                                                                              SMP 1920
      DO 150 I=2.NLN
                                                                              SMP 1930
                                                                              SMP 1940
      I1=I-1
                                                                              SMP 1950
      TT = (T(I) - T(II)) * FAC * SP(II) / COS(FLA(II) * RAD)
      AX(I) = AX(I1) + TT *SIN(CS(I1))
                                                                              SMP 1960
                                                                              SMP 1970
       AY(])=AY(]1)+TT*COS(CS(]1))
                                                                              SMP 1980
  150 CONTINUE
      PRINT 74, (CS(I), SP(I), I=1, NLN)
                                                                              SMP 1990
      PRINT 74, (AX(I), AY(I), I=1, NLN)
                                                                              SMP 2000
C
      PRINT 74, (TB(I), TE(I), I=1, NPAR)
                                                                              SMP 2010
C
      PRINT 74, (T(I), I=1, NLN)
                                                                              SMP 2020
      PRINT 74, (FLA(1), I=1, NLN)
                                                                              SMP 2030
                                                                              SMP 2040
      REWIND LUF
      DO 200 J=1,NMX
                                                                              SMP 2050
      READ(LUF)TT,FA,FO,CSE,SPD,IFX,NEO,LN
                                                                              SMP 2060
C WRITE OBSERVATIONAL EQUATIONS FOR FIX
                                                                              SMP 2070
C ASSIGN WEIGHT TO FIX
                                                                              SMP 2080
      W(NEQ)=1.0
                                                                              $MP 2090
                                                                              SMP 2100
      DO 215 1=1.NPAR
                                                                              SMP 2110
      IS=IT(I)
                                                                              SMP 2120
      GO TO (101,102,102), IS
                                                                              SMP 2130
  101 A(NEO, I)=1.0
      GO TO 110
                                                                              SMP 2140
  102 IF (TT .LT. TB(I)) GO TO 110
                                                                              SMP 2150
                                                                              SMP 2160
      TTT=AMIN1(TT,TE(I))-TB(I)
                                                                              SMP 2170
      GO TO (110,103,104),IS
                                                                              SMP 2180
  103 A(NEQ, I)=TTT
                                                                              SMP 2190
      GO TO 110
                                                                              SMP 2200
  104 A(NEQ, I)=TTT##2#0.5
                                                                              SMP 2210
  110 CONTINUE
                                                                              SMP 2220
  215 CONTINUE
                                                                              SMP 2230
C DIFFERENCE FIX AND DR POSITIONS
      CALL MERC(FA, FO, TX, TY, 2)
                                                                              SMP 2240
      TTT = (TT-T(LN))/(T(LN+1)-T(LN))
                                                                              SMP 2250
                                                                              SMP 2260
      PX=AX(LN)+(AX(LN+1)-AX(LN))*TTT
      PY=AY(LN)+(AY(LN+1)-AY(LN))+TTT
                                                                              SMP 2270
                                                                             SMP 2280
      B(NEQ)=TX-PX
      C(NEQ)=TY-PY
                                                                             SMP 2290
  200 CONTINUE
                                                                             SMP 2300
      REWIND LUF
                                                                             SMP 2310
                                                                             SMP 2320
      CAL=.FALSE.
      DO 900 I=1,NMX
                                                                             SMP 2330
 900 PRINT 74,
                 (A(I,J),J=1,NPAR)
                                                                             SMP 2340
                                                                             SMP 2350
      CALL LINLSQ(A, NRA, NEQ, NPAR, B, W, PARX,
                                                X,SDPX,AI,DET)
      CALL LINLSQ(A, NRA, NEQ, NPAR, C, W, PARY,
                                                Y,SDPY,AI,DET)
                                                                             SMP 2360
      PRINT 74, (B(I), C(I), I=1, NMX)
                                                                             SMP 2370
                                                                             SMP 2380
C
      PRINT 74, (PARX(I), PARY(I), I=1, NPAR)
C
      PRINT 74, (X(I), Y(I), I=1, NMX)
                                                                             SMP 2390
      PRINT 74, (SDPX(I), SDPY(I), I=1, NPAR), DET
                                                                             SMP 2400
```

```
CALCULATE DR POSITIONS AND WRITE ALONG WITH FIXES.
                                                                              SMP 24
      TFRST=T(1)
                                                                              SMP 24
                                                                              SMP '24
       TLST=T(NLN)
      LN=0
                                                                              SMP 24
      TP=TFRST+EPS
                                                                              SMP 24
      CAL=.FALSE.
                                                                              SMP 24
      IX=TFRST/DDR
                                                                              SMP 24
 1002 READ (LUF) TT, FA, FO, CSE, SPD, IFX, NEQ, L
                                                                              SMP 24
      CSE=CSE/RAD
                                                                              SMP 24
 1005 IF (TP-TT) 4,015,1010,1010
                                                                              SMP 25
C WRITE FIX
                                                                              SMP 25
 1010 ETV=EOTVOS(CSE, SPD, FA)
                                                                              SMP 25
      CALL PNAVC(TT, FA, FO, CSE, SPD, IFX, ETV, LCP)
                                                                              SMP 25
                                                                              SMP 25
      IF (NEQ-NMX) 1002,1014,1014
 1014 TT=9999.
                                                                              SMP 25
COMPUTE DR POSITION
                                                                              SMP 25
CHECK TO SEE THAT WE ARE ON HE CORRECT DR LINE
                                                                              SMP 25
 1015 IF (TP-T(LN+1)) 1017,1017,1016
                                                                              SMP 25
 1016 LN=LN+1
                                                                              SMP 25
      TP=TP+EPS
                                                                              SMP 26
      DT = T(LN+I) - T(LN)
                                                                              SMP 26
                                                                              SMP 26
      DX=AX(LN+1)-AX(LN)
      DY = AY(LN+1) - AY(LN)
                                                                              SMP 26
C VLO IS LOCAL VELOCITY SCALE IN CM/HR/KT
                                                                              SMP 26
      VLO=FAC/COS(FLA(LN)*RAD)
                                                                              SMP. 26
      VXB=VLO*SP(LN)*SIN(CS(LN))
                                                                              SMP 26
      VYB=VLO*SP(LN)*COS(CS(LN))
                                                                              SMP 26
                                                                              SMP 26
      IF(ABS(TP-DDR/2.-T(LN))-.45*DDR) 1020,1020,1017
& SET UP TO PUNCH POSITION OF LINE CORNER
                                                                              SMP 26
 1020 IX=IX-1
                                                                              SMP 27
      TP=T(LN)
                                                                              SMP 27
C INTERPOLATE ON UNCORRECTED DR LINE
                                                                              SMP 27
 1017 TTT=(TP-T(LN))/DT
                                                                              SMP 27
      PX=AX(LN)+TTT*DX
                                                                              SMP 27
      PY=AY(LN)+TTT*DY
                                                                              SMP 27
                                                                              SMP 27
      VX=VXR
     · VY=VYB
                                                                              SMP 27
C PX, PY ARE UNCORRECTED DR POSITIONS IN MAP COORDINATES
                                                                              SMP 27
C LOOP THRU CORREDTION PARAMETERS AND SUM TO GET CORRECTED POSITION
                                                                              SMP 27
      DO 1110 I=1,NPAR
                                                                              SMP 28
      1S=IT(1)
                                                                              SMP 28
      GO TO (1101,1102,1102),15
                                                                              SMP 28
                                                                              SMP 28
 1101 PX=PX+PARX(I)
      PY=PY+PARY(I)
                                                                              SMP 28
                                                                              SMP 28
      GO TO 1110
 1102 IF (TP .LT. TB(1)) GO TO 1215
                                                                              SMP 28
      TTT=AMIN1(TP,TE(I))-TB(I)
                                                                              SMP 28
      GO TO (1101,1103,1104).15
                                                                              SMP 28
 1103 PX=PX+TTT*PARX(I)
                                                                              SMP 28
      PY=PY+TTT*PARY(1)
                                                                              SMP 29
                                                                              SMP 29
      VX=VX+PARX(I)
      VY=VY+PARY(I)
                                                                              SMP 29
                                                                              SMP 29
      GO TO 1110
 1104 VX=VX+TTT*PARX(I)
                                                                              SMP 29
      VY=VY+TTT*PARY(1)
                                                                              SMP 29
      TTT=TTT**2*0.5
                                                                              SMP 29
      PX=PX+TTT*PARX(I)
                                                                              SMP
                                                                                  29
                                                                              SMP 29
      PY=PY+TTT*PARY(I)
 1110 CONTINUE
                                                                              SMP 29
 1215 CONTINUE
                                                                              SMP 30
```

```
TSPD=VX*VX+VY*VY
                                                                             SMP 3010
       1F(TSPD) 1216,1216,1217
                                                                             SMP 3020
                                                                             SMP 3030
 1216 TSPD=0.0
      TCSE=0.0
                                                                             SMP 3040
       GO TO 1218
                                                                             SMP 3050
 1217 TSPD=SQRT(TSPD)/VLO
                                                                             SMP 3060
                                                                             SMP 3070
      TC SE = A TAN2 (VX, VY) / RAD
                                                                             SMP 3080
      IF (TCSE) 1219,1218,1218
 1219 TC SE = TC SE + 360.
                                                                             SMP 3090
 1218 CONTINUE
                                                                             SMP 3100
                                                                             SMP 3110
SMP 3120
CONVERT FROM MAP COORDINATES TO LATILON AND WRITE DR POS
      CALL MERC (FLT, FLO, PX, PY, 3)
      ETV=EOTVOS(TCSE, TSPD, FLT)
                                                                             SMP 3130
                                                                             SMP 3140
      CALL PHAVE (TP.FLT.FLD.TCSE.TSPD.IDR.ETV.LCP)
      IF (CAL) GO: TO 2000
                                                                             SMP 3150
                                                                             SMP 3160
      IX = IX + 1
      TP=FLOAT(IX)*DDR
                                                                             SHP 3170
      IF(TP-TLST) 1005,1220,1220
                                                                             SMP 3180
 1220 CAL=.TRUE.
                                                                             SMP 3190
      TP=TLST
                                                                             SMP 3200
                                                                             SMP 32)0
      GD TO 1005
 2000 CONTINUE
                                                                             SMP 3220
      CALL PNAVC (TP,FLT,FLO,TCSE,TSPD,NUP,0.0,LCP)
                                                                             SMP 3230
C PRINT INPUT COURSES AND SPEEDS
                                                                             SMP 3240
      WRITE (LLP,701)
                                                                             SHP 3250
                                                                             SMP 3260
      LIM=NLN-1:
      CAEL TYME(T(1), IDAY, FH)
                                                                             SMP 3270
      DO 2100 I=1, LIM
                                                                             SHP 3280
                                                                             SMP 3290
      CALL TYME (T(I+1), JDAY, FJ)
                                                                             SMP 3300
      CSE=CS(I)/RAD
      WRITE (LLP,702) IDAY, FH, JDAY, FJ, CSE, SP(I)
                                                                             SMP 3310
                                                                             SMP 3320
      IDAY= JDAY
      FH=FJ
                                                                             SMP 3330
                                                                             SMP 3340
 2100 CONTINUE
C PRINT CORRECTIONS
                                                                             SMR 3350
      WRITE (LLP,703)
                                                                             SMP 3360
      LN=0
                                                                             SMP 3370
      DO 2200 I=2,NPAR
                                                                             SMP 3380
      CALL TYME (TB(I), IDAY, FH)
                                                                             SMP 3390
      CALL TYME (TE(I), JDAY, FJ)
                                                                             SMP 3400
 2130 IF (TB(I) .LT. T(LN+1)) GO TO 2150
                                                                             SMP 3410
                                                                             SMP 3420
      LN=LN+1
      VLO=FAC/COS(FLA(LN)*RAD)
                                                                             SMP 3430
      GO TO 2130
                                                                             SMP 3440
                                                                             SMP 3450
 2150 T1=PARX(I)/VLO
      T2=PARY(I)/VLO
                                                                             SMP 3460
      T3=SDPX(I)/VLO
                                                                             SMP 3470
      T4=SDPY(I)/VLO
                                                                             SMP 3480
      IX = IT(I)
                                                                             SMP 3490
      WRITE (LLP,704) IDAY, FH, JDAY, FJ, T2, IAL(IX), T1, IAL(IX), T4, T3
                                                                             SMP 3500
 2200 CONTINUE
                                                                             SMP 3510
C PRINT FIXES AND RESIDUALS
                                                                             SMP 3520
      WRITE (LLP,705)
                                                                             SMP 3530
      REWIND LUF
                                                                             SMP 3540
                                                                             SMP 3550
      DO 2300 I=1,NMX
      READ (LUF) TT.FA.FD.CSE.SPD.IFX.NEQ.LN
                                                                             SMP 3560
                                                                             SMP 3570
      CSE=CSE/RAD
      CALL TYME (TT, JDAY, FH)
                                                                             SMP 3580
      VLO=FAC/COS(FLA(LN) *RAD)
                                                                             SMP 3590
      X(NEQ)=X(NEQ)/VLO
                                                                             SMP 3600
```

	Y(NEQ)=Y(NEQ)/VLO	SMP	3610
	WRITE(LLP,706) LN, JDAY, FH, FA, FO, Y(NEQ), X(NEQ), IFX	SMP	3620
2300	CONTINUE	SMP	3630
	WRITE (LLP,707) DET	SMP	3640
	GO TO 9	SMP	3650
9999	CONTINUE	SMP	3660
	CALL PNAVC (23976.,0.,0.,0.,0.,NUP,0.0,LCP)	SMP	3670
	WRITE (LLP,76)	SMP	3680
	RETURN	SMP	3690
	END	SMP	3700

,		
SUBROUTINE MERC (A,B,C,D,1CON)	MER	10
C FLATTENING FOR INTERNATIONAL SPHEROID=1/297	MER	20
DATA P1FOR/0.78539816/,RAD/0.0174532925/,EPS/.0819918905/	MER	30
CALLING SEQUENCE	MER	40
COMPUTE MERCATOR COORDINATES FROM LAT, LON.	MER	5 0
C CALL MERC(A, B, C, D, 1 CON)	MER	60
C DEFINE TRANSFORMATION ICON=1	MER	70
C . A, B=LAT, LON IN DEGREES OF ORIGIN OF MERCATOR COORDINATE SYSTEM.	MER	80
C C=SCALE IN INCHES/DEGREE	MER	90
C D=DUMMY	MER	100
C CONVERT COORDINATES ICON=2	MER	110
C A, B=L'AT, LON OF POINT	MER	120
C C,D=X,Y IN CM. FROM MAP ORIGIN	MER	130
C TRANSFORM MAP COORDINATES TO LAT, LON	MER	140
C ICON=3	MER	150
CALLING PARAMETERS SAME AS FOR ICON=2	MER	160
GO TO (1,10,50),ICON	MER	170
1 SCALE=C*2.540005	MER	180
RSCAL=SCALE/RAD	MER	190
C SCALE IS IN CM/DEGREE	MER	200
10 X= SCALE*B	MER	210
RPHI=A*RAD	MER	
EPSIN=SIN(RPHI)*EPS	MER	230
Y=RSCAL*ALOG(TAN(PIFOR+RPHI*.5)*((1EPSIN)/(1.+EPSIN))**(EPS*.5))		
GO TO (20,30), ICUN	MFR	250
20 XBASE=X	MER	260
YBASE=Y 25 Return	MER	270
= · · · ·	MER	
D=Y-YBASE	MER	
	MER MER	300 310
er veren	MER	320
	MER	330
	MER	340
	MER	350
	MER	360
	MER	370
	MER	380
	MER	390
hii v	1217	290

SUBROUTINE TYME (T, JDAY, FH)	TYM	10
CONVERTS TIME I MEASURED IN HOURS FROM THE BEGINNING OF THE YEAR TO	MYT	20
C JULIAN DATE JDAY AND FH WHICH IS HR.MIN	MYT	30
DATA ROUND /0.4999999999/	TYM	40
1TEMP=T≈60.+ROUND	MYT	50
JDAY=ITEMP/1440	TYM	60
ITEMP=1TEMP-1440*JDAY	TYM	70
IH=ITEMP/60	TYM	8.0
ITEMP=ITEMP-1H*60	TYM	90
FH=FLOAT(IH)+FLOAT(ITEMP)/100.	TYM	100
RETURN	MYT	110
END	TYM	120

```
SUBROUTINE LINLSQ(A, NRA, NOB, NPAR, C, W, B, E, F, AI, DET)
                                                                               LIN
                                                                                      10
C SOLVES THE MATRIX EQUATION A*B=C WHERE THE SYSTEM IS EVENDETERMINED ORLIN
                                                                                      20
C OVERDETERMINED---WITH THE OBSERVATIONAL EQUATIONS WEIGHTED BY THE
                                                                              LIN
                                                                                      30
C VECTOR W.
                                                                               LIN
                                                                                      40
C NRA IS THE DECLARED ROW DIMENSION OF A LIN C NOB IS THE NUMBER OF EQUATIONS (THE NUMBER OF ROWS OF A ACTUALLY USED)LIN
                                                                                      50
                                                                                      60
C NPAR IS THE DIMENSION OF B AND C (THE NUMBER OF UNKNOWNS)
                                                                               1 1 13
                                                                                      70
C E WILL CONTAIN THE RESIDUAL VECTOR
                                                                               LIN
                                                                                      80
C F WILL CONTAIN THE ESTIMATED STANDARD DEVIATION OF THE PARAMETERS
                                                                               LIN
                                                                                      90
C AI WILL CONTAIN THE INVERSE OF THE OF THE NORMAL MATRIX
                                                                               LIN
                                                                                     100
 DET WILL CONTAIN THE DETERMINANT OF THE NORMAL MATRIX
                                                                               LIN
                                                                                     110
      DIMENSION A(NRA, NPAR), AI (NPAR, NPAR), B(NOB), C(NOB), W(NOB), E(NOB),
                                                                               LIN
                                                                                     120
      * F(NPAR)
                                                                               LIN
                                                                                     130
C WIEGHT
                                                                               LIN
                                                                                     140
       DATA LOUT/6/
                                                                               LIN
                                                                                    150
      00 11 I=1, NOB
                                                                               LIN
                                                                                     160
      DO 10 J=1, NPAR
                                                                               LIN
                                                                                     170
   10 A(I,J)=A(I,J)=W(H)
                                                                               1.714
                                                                                    180
   11 C(I)=C(I)*H(I)
                                                                               LIN
                                                                                     190
   IF SYSTEM IS EVENDETERMINED, SKIP TRANSPOSE MULTIPLICATION.
                                                                               LIN
                                                                                    200
       IF (NOB .EQ. NPAR) GO TO 670
                                                                               LIN
                                                                                     210
C PREMULTIPLY BY A TRANSPOSE
                                                                               LIN
                                                                                    220
      DO 550 J=1,NPAR
                                                                               LIN
                                                                                    230
      DO 550 I=1, NPAR
                                                                               LIN
                                                                                    240
      SUM=0.0
                                                                               LIN
                                                                                    250
      DO 525 K=1,NOB
                                                                               LIN
                                                                                    260
  525 SUM=SUM+A(K,J) #A(K,1)
                                                                               LIN
                                                                                    270
  550 A1(J, I)=SUM
                                                                               LIN
                                                                                    280
      GO TO 680
                                                                               LIN
                                                                                    290
  670 DO 675 I=1,NPAR
                                                                               LIN
                                                                                    300
      DO 675 J=1,NOB
                                                                               LIN
                                                                                    310
  675 AI(J, I)=A(J, I)
                                                                               LIN
                                                                                    320
  680 CONTINUE
                                                                               LIN
                                                                                    330
C SOLVE SYSTEM
                                                                               LIN
                                                                                    340
      CALL MINV(AI, NPAR, DET, E, F)
                                                                               LIN
                                                                                    350
  F=C*AT
                                                                               LIN
                                                                                    360
      IF (NOB.NE.NPAR) GO TO 562
                                                                               LIN
                                                                                    370
      DO 563 J=1, NPAR
                                                                               LIN
                                                                                    380
  563 F(J)=C(J)
                                                                               LIN
                                                                                    390
      GO TO 561
                                                                               LIN
                                                                                    400
  562 DO 650 J=1.NPAR
                                                                               LIN
                                                                                    410
                                                                               LIN
      SUM=0.0
                                                                                    420
      DO 625 K=1,NOB
                                                                               LIN
                                                                                    430
  625 SUM=SUM+A(K,J)*C(K)
                                                                               LIN
                                                                                    440
  650 F(J)=SUM
                                                                               LIN
                                                                                    450
  B=AT#F
                                                                               LIN
                                                                                    460
  561 CALL GMPRD(AI.F.B.NPAR.NPAR.1)
                                                                               LIN
                                                                                    470
      SUM=0.0
                                                                              LIN
                                                                                    480
      DO 700 I=1.NOB
                                                                              LIN
                                                                                    490
      TEMP=.0
                                                                               LIN
                                                                                    500
COMPUTE RESIDUALS
                                                                              LIN
                                                                                    510
      DO 690 J=1,NPAR
                                                                              LIN
                                                                                    520
  690 TEMP=TEMP+B(J) #A(I,J)
                                                                              LIN
                                                                                    530
      TEMP=C(I)-TEMP
                                                                                    540
                                                                              LIN
      SUM=SUM+TEMP#TEMP
                                                                              LIN
                                                                                    550
      E(I) = TEMP/W(I)
                                                                              LIN
                                                                                    560
C UNSCALE OBSERVATIONS
                                                                              LIN
                                                                                    57C
      C(I)=C(I)/W(I)
                                                                              LIN
                                                                                    580
         700 J=1,NPAR
                                                                              LIN
                                                                                    590
      A(I,J)=A(I,J)/W(I)
                                                                              LIN
                                                                                    600
```

700	CONTINUE	LIN	610
	IF (NOB .EQ. NPAR) RETURN	LIN	620
	SIGMSQ=SUM/FLOAT(NOB-NPAR)	LIN	630
	DO 705 I=1,NPAR	LIN	640
	FAC=A1(I,I)*SIGMSQ	LIN	650
	TEMP=SQRT(ABS(FAC))	LIN	660
705	F(I)=SIGN(TEMP, FAC)	LIN	670
	RETURN	LIN	680
74	FORMAT(5E12.3)	LIN	690
	FND	LIN	700

	SUBROUTINE PNAVC (TIME, FLAT, FLON, CSE, SPD, IT, ETV, LOUT)		PNA	10
C.	: PUNCHES A CARD IM M.S+G NAVIGATION FORMAT		PNA	20
	TIME IS IN HOURS FROM THE BEGINNING OF THE YEAR, FLAT, FLON, CSE IN	1 DEG.	PNA	30
	SPD IN KNOTS.		PNA	40
C	LM DORMAN ADML JUN 1973		PNA	50
	DATA 1B,NM,ROUND/1H ,1H-,0.49999999999/		PNA	60
	1F(FLAT)2,1,1		PNA	70
	1 ISA=IB		PNA	80
	GO TO3		PNA	.90
	2 ISA=NM		PNA	100
	3 CONTINUE		PNA	110
	IF(FLON) 5,4,4		PNA	120
	4 1SO=IB		PNA	130
	GO TO 6		PNA	140
	5 ISO=NM		PNA	150
	6 CONTINUE		PNA	160
	ITEMP=IFIX(TIME*600.+ROUND)		PNA	170
	1DA=ITEMP/14400		PNA	130
	ITEMP=ITEMP-14400≠IDA		PNA	190
	IH=ITEMP/600		PNA	200
	IM=ITEMP-600÷IH		PNA	210
	1TEMP=IFIX(6000.*ABS(FLAT)+ROUND)		PNA	220
	1LA= ITEMP/6000		PNA	230
	IAM=ITEMP-ILA*6000		PNA	240
	ITEMP=IFIX(6000.*ABS(FLON)+ROUND)		PNA	250
	ILO=ITEMP/6000		PNA	260
	IOM=ITEMP-ILO*6000		PNA	270
	ICS=IFIX(10.*CSE+ROUND)		PNA	280
	ISP=AFIX(10.*SPD+ROUND)		PNA	290
	IEC=IFIX(ETV*100.+ROUND)		PNA	300
	WRITE (LOUT, 71) IDA, IH, IM, ISA, ILA, IAM, ISO, ILO, IOM, ICS, ISP, IT	, IEC	PNA	310
	71 FORMAT (1X,313,2X,A1,12,1X,14,1X,A1,13,3(1X,14),1X,A2,,1X,16	,)	PHA	320
	RETURN		PNA	330
	END		PNA	340

	DIMENSION ALAT(10), ALONG(10)	DRA	10
	READ(5,102) NIN, MOUT, NSCRAT, NPLOT, IDELT, NLAT, NLONG, A	DRA	20
102	FORMAT(715,F10.5)	DRA	30
	READ(5,101) (ALAT(I), $I=1$, $NLAT$)	DRA	40
	READ(5,101) (ALONG(I),I=1,NLONG)	DRA	50
101	FORMAT(8F10.3)	DRA	60
	REWIND NIN	DRA	70
	REWIND MSCRAT	DRA	80
	CALL DRAWL(ALAT, ALUNG, NLONG, NLAT, A, IDELT, NIN, NOUT, NSCRAT, NPLOT)	DRA	.90
	END	DRA	100

```
SUBROUTINE DRAWL (ALAT, ALONG, NX, NY, A, IDELT, NIN, NOUT, NSCAT, NPLOT)
                                                                               DRW
                                                                                      10
                                                                               DRW
                                                                                      20
C ALAT = ONE DIMENSIONAL ARRAY WITH NY.GE.2.AND.LE.10 IN DECIMAL DEGREES DRW
                                                                                      30
C ASCENDING SEQUENCE (WHOLE OR HALF DEGREES ONLY)
                                                                               DBW
                                                                                      40
C ALONG= ONE DIMENSIONAL ARRAY WITH NX.GE.2.AND.LE.10 IN DECIMAL DEGREESDRW
                                                                                      50
C ACCENDING SEQUENCE (WEST OF GREENWICH NEGATIVE) (WHOLE OR HALF DEREES ODRW
                                                                                      60
C A= SCALE IN INCHES/DEGREE
                                                                               DRW
                                                                                      70
C IDELT= TIME INCREMENT IN MINUTES AT WHICH TIME TICKS WILL BE MADE
                                                                               DRW
                                                                                      80
C (CHECKS NIN FOR INTEGRAL MULTIPLES OF THIS UNIT)
                                                                               DRW
                                                                                      90
C NIN= INPUT TAPE NUMBER IN BCD MGG FORMAT (ONE FILE)
                                                                               DRW
                                                                                     100
C NOUT=PRINTED DUTPUT TAPE NUMBER
                                                                               DRW
                                                                                     110
C NPLOT= PLOTTING TAPE MUMBER
                                                                               DRW
                                                                                     120
C NSCAT= SCRATCH TAPE NUMBER
                                                                               DRW
                                                                                     130
                                                                               DRW
                                                                                     140
      DIMENSION ALAT(10), ALONG(10), XF(10), YF(10), IBUF(1500), RFX(10)
                                                                               DRW
                                                                                     150
     1 ,RFY(10),LMA(10),LNA(10)
                                                                               DRW
                                                                                     160
      DIMENSION IA(4), IS(4)
                                                                               DRW
                                                                                     170
      INTEGER WORD, WORDL, WORD2
                                                                               DRW
                                                                                     180
      DATA PI,PH,EPS/3.1415926,28.0,1.0E-5/
                                                                               DRM
                                                                                     190
      DATA WORD1, WORD2/2HDR, 2HUP/
                                                                               DRW
                                                                                     200
      DATA IA(1), IA(2), IA(3), IA(4), NWORD/2HSA, 2HOM, 2HLC, 2HLA, 4/
                                                                               DRW
                                                                                     210
      DATA 1S(1), IS(2), IS(3), IS(4), ISDFLT/2, 12, 0, 5, 11/
                                                                               DRW
                                                                                     220
      RAD(X) = PI/180.0 \times X
                                                                               DRW
                                                                                     230
C
                                                                               DRW
                                                                                     240
                                                                               DRW
                                                                                     250
      WRITE(NOUT, 106) NIN, MOUT, NSCAT, NPLOT, A, IDELT, (ALAT(I), I=1, NY)
                                                                               DRW
                                                                                     260
  106 FORMAT (74H1SUBROUTINE DRAWL HAS BEEN CALLED WITH THE FOLLOWING ARGDRW 1UMENT ASSIGNMENTS,,/5X,15H1NPUT TAPE ,16,/5X,15H0UTPUT TAPE DRW
                                                                                     270
                                                                                     280
     2 ,16,75X,15HSCRATCH TAPE ,16,75X,14HPLOT TAPE ,17,7/5X,17HTHDRW
                                                                                     290
     3E PLOT SCALE IS, F10.4,28H INCHES/DEGREE OF LONGITUDE, /5x,16HTIME DRW
                                                                                     300
                              MINUTES, 1/5X, 24HLATITUDE BOUNDS ARE
                                                                          , 10FDRW
     4TICK$ EVERY, I11, 10H
                                                                                    310
                                                                               DRW
     510.31
                                                                                     320
      WRITE(NOUT, 107) (ALONG(I), I=1, NX)
                                                                               DRW
                                                                                     330
  107 FORMAT(5X, 24HLONGITUDE BOUNDS ARE
                                               .10F10.3)
                                                                               DRW
                                                                                     340
      DELT=FLOAT(IDELT)/24.0/60.0
                                                                               DRH
                                                                                    350
      IF (DELT.LT.(1.0/24.0/60.0)) DELT=(10.0/24.0/60.0)
                                                                               DRW
                                                                                     360
      DO 1 I=1,NX
                                                                               DRW
                                                                                    370
      RFX(I)=RAD(ALONG(I))
                                                                               DRW
                                                                                     380
      1F (RFX(I).LT.0.0) RFX(I)=2.0*PI+RFX(I)
                                                                               DRW
                                                                                    390
    1 CALL MERK(0.0, RRR, RFX(I), XF(I), A,+1)
                                                                               DRW
                                                                                    400
      DO 2 J=1,NY
                                                                               DRW
                                                                                    410
      RFY(J) = RAD(ALAT(J))
                                                                               DRW
                                                                                    420
    2 CALL MERK(RFY(J), YF(J), 0.0, RRR, A,+1)
                                                                               DRW
                                                                                    430
      IRX=NX-1
                                                                               DRW
                                                                                    440
      IRY=NY-1
                                                                               DRW
                                                                                    450
      DO 80 I=2,NY
                                                                               DRW
                                                                                    460
      DIFF=YF(I)-YF(I-1)
                                                                               DRW
                                                                                    470
      IF (DIFF.LE.PW) GO TO 80
                                                                               DRW
                                                                                    480
      WRITE(NOUT, 103)
                                                                                    490
                                                                               DRW
  103 FORMAT(105H1YOUR CHOSEN LATITUDE MAP BOUNDS WOULD REQUIRE A PLOTTIDRW
                                                                                    500
     16 SHEET LARGER THAN THIRTY INCHES. PROGRAM STOPS.)
                                                                               DRW
                                                                                    510
      STOP
                                                                               DRW
                                                                                    520
   80 CONTINUE
                                                                               DRW
                                                                                    530
                                                                               DRW
                                                                                    540
C.
   18 12XA=0
                                                                               DRW
                                                                                    550
      1ZYA=0
                                                                               DRW
                                                                                    560
   15 READ(NIN,161) ITEM,DAY,T1,T2,YLAT,YLATM,XLONG,XLONGM,ALPHA,V,WORD DRW
                                                                                    570
      IF (DAY.GT.990.0) GD TO 16
                                                                               DRW
                                                                                    580
  161 FORMAT(:11,2F3.0,F3.1,2X,F3.0,1X,F4.2,1X,F4.0,1X,F4.2,1X,F4.1,2X
                                                                              DRW
                                                                                    590
                                                                               DRW
                                                                                    600
     1 F3.1,1X,A2)
```

```
TIME=DAY+T1/24.0+T2/24.0/60.0
                                                                              DRW
                                                                                   610
      YEAT=RAD(YEAT+SIGN(YEATM, YEAT)/60.0)
                                                                              DRW
                                                                                    620
      XLONG#RAD(XLONG+SIGN(XLONGM,XLONG)/60.0)
                                                                              DRW
                                                                                    630
      IF (XLONG.LT.0.0) XLONG=2.0*PI+XLDNG
                                                                              DRW
                                                                                    640
      CALL MERK (YLAT, Y, XLONG, X, A, +1)
                                                                              DŔW
                                                                                   650
      DO 11 J=1, IRX
                                                                              DRW
                                                                                    660
      DO 11 K=1. IRY
                                                                              DRW
                                                                                   67C
       JJ=J
                                                                              DRW
                                                                                   680
                                                                              DRW
      KK=K
                                                                                    690
      IF (((X.LE.XF(J+1)).AND.(X.GT.XF(J))).AND.((Y.LE.YF(K+1)).AND.
                                                                              DRW
                                                                                    700
     1(Y.GT.YF(K)))) GO TO 12
                                                                              DRM
                                                                                    710
   11 CONTINUE
                                                                              DRW
                                                                                    720
      GO TO 18
                                                                              DRW
                                                                                    730
   12 JZX=JJ
                                                                              DRW
                                                                                    740
      12Y=KK
                                                                              DRW
                                                                                    750
      IF (WORD.EO.WORD2) GO TO 18
                                                                              DRW
                                                                                    760
      IF ((IZX.EQ.IZXA).AND.(IZY.EQ.IZYA)) GO TO 6
                                                                              DRW
                                                                                   770
      10 = 4
                                                                              DRW
                                                                                   780
      WRITE (NSCAT) X, Y, YLAT, XLONG, 12X, 12Y, TIME, V, ALPHA, 1C
                                                                              DRW
                                                                                   790
      WRITE(NOUT, 111) X,Y,YLAT, XLONG, IZX, IZY, TIME, V, ALPHA, IC
                                                                              DRW
                                                                                    800
  111 FORMAT(1X, 4E12.5, 216, 3E12.5, 16)
                                                                              DRW
                                                                                   810
    6 IF (WORD.NE.WORD1) GO TO 7
                                                                              DRW
                                                                                    820
      IC=1
                                                                              DRW
                                                                                   830
                                                                              DRW
      ITIME=IFIX(TIME/DELT+.49)
                                                                                    840
      TEST=TIME-FLOAT(ITIME) #DELT
                                                                              DRW
                                                                                   850
      IF (ABS(TEST).LT..0007) 1C=3
                                                                              DRW
                                                                                   860
      CO TO 77
                                                                              DRW
                                                                                   870
    7 1C=1SDFLT+20
                                                                              DRW
                                                                                    280
      DO 71 M=1.NWORD
                                                                              DRW
                                                                                   890
      1F (MORD.EQ.IA(M)) IC=IS(M)+20
                                                                              DRW
                                                                                    900
                                                                              DRW
                                                                                   910
   77 WRITE(NSCAT) X,Y,YLAT, XLONG, IZX, IZY, TIME, V, ALPHA, IC
                                                                              DRW
                                                                                   920
      WRITE (NOUT, 111) X, Y, YLAT, XLONG, IZX, IZY, TIME, V, ALPHA, IC
C
                                                                              DRW
                                                                                   930
      12XA=IZX
                                                                              DRW
                                                                                   940
      17YA=17Y
                                                                              DRW
                                                                                   950
      GO TO 15
                                                                              DRW. 960
                                                                              DRW
                                                                                   970
   16 IC=9
      WRITE(NSCAT) X,Y,YLAT, XLONG, IZX, IZY, TIME, V, ALPHA, IC
                                                                              DRW
                                                                                   980
                                                                              DRW
      REWIND NSCAT
                                                                                   990
      WRITE(NOUT, 133)
                                                                              DRW 1000
  133 FORMAT(//15H FILE COMPLETE.)
                                                                              DRW 1010
C
                                                                              DRW 1020
                                                                              DRW 1030
      READ (NSCAT) X,Y,YLAT, XLONG, IZX, IZY, TIME, V, ALPHA, IC
                                                                              DRW 1040
      IF (IC.NE.9) GO TO 38
                                                                              DRW 1050
                                                                              DRW 1060
      WRITE(NOUT, 181)
  181 FORMAT (30HOALL POINTS OUTSIDE PLOT AREA.)
                                                                              DRW 1070
                                                                              DRW 1080
      RETURN
   38 JZ=1
                                                                              DRW 1090
      LMA(1)=1
                                                                              DRW 1100
      I.NA(1)=1
                                                                              DRW 1110
      IF ((IRX.EQ.1).AND.(IRY.EQ.1)) GO TO 35
                                                                              DRW 1120
                                                                              DRW 1130
      LMA(1)=IZX
      LNA(1)=IZY
                                                                              DRW 1140
   34 READ (NSCAT) X,Y,YLAT, XLONG, IZX, IZY, TIME, V, ALPHA, IC
                                                                              DRW 1150
      IF (IC.EQ.9) GO TO 35
                                                                              DRW 1160
      DO 36 JI=1,JZ
                                                                              DRW 1170
      IF ((IZX.EQ.LMA(JI)).AND.("IZY.EQ.LNA(JI))) GO TO 34
                                                                              DRW 1180
   36 CONTINUE
                                                                              DRW 1190
                                                                              DRW 1200
      JZ = JZ + 1
```

```
LMA(JZ)=IZX
                                                                            DRW 1210
      LNA(JZ)=IZY
                                                                            DRW 1220
      GD TO 34
                                                                            DRW 1230
   35 CONTINUE
                                                                            DRW 1240
C
                                                                            DRW 1250
C
                                                                            DRW 1260
         PLOTTING PACKAGE
C
                                                                            DRW 1270
  150 FORMAT (35HOCREATION OF A PLOT TAPE HAS BEGUN.)
                                                                            DRW 1260
      WRITE (NOUT, 150)
                                                                            DRW 1290
      CALL PLOTS (IBUF, 1500, NPLOT)
                                                                            DRE 1300
                                                                            DRW 1310
      CALE PLOT (0.0,-30.0,-3)
      CALL SYMBOL(1.0,9.9,.28,28HMACHINE ASSISTED SMOOTH PLOT,90.0,28)
                                                                            DRW 1/320
      CALL SYMBOL(1.42,12.1,.21,16HNOAA/AOML/MIAMI ,90.0,16)
                                                                            DRW 1330
      XREF=0.0
                                                                            DRW 1340
      YREFLD=0.0
                                                                            DRW 1350
      WRITE(MOUT, 110) JZ
                                                                            DRW 1300
  110 FORMAT (33HONUMBER OF MAPS BEING PRODUCED IS.16)
                                                                            DRW 1370
                                                                            DRW 1380
      DO 51 I=1,JZ
      REWIND NSCAT
                                                                            DRW 1390
                                                                            DRW 1400
      LM=LMA(I)
      LN=LNA(I)
                                                                            DRW 1410
      YREF=(PW+1.37-(YF(LN+1)-YF(LN)))/2.0-YREFLD
                                                                            DRW 1420
      YREFLD=(PW+1.37-(YF(LN+1)-YF(LN)))/2.0
                                                                            DRW 1430
      XREF = XREF +5.0
                                                                            DRW 1440,
      CALL PLOT(XREF, YREF, -3)
                                                                            DRW 1450
      CALL SYMBOL (-2.5,0.0,.14,4,0.0,-1)
                                                                            DRW 1466
      CALL PLUT(0.0,0.0,3)
                                                                            DRW 1470
      JN=IFIX((RFY(LN+1)-RFY(LN))/(.5*PI/180.0)+1.0E-4)+1
                                                                            DRW 1480
      IN=IF!X((RFX(LM+1)-RFX(LM)))/(.5*PI/180.0)+1.0E-4)+1
                                                                            DRW 1490
      XREF=FLOAT(IN-1) *A*.5+.25
                                                                            DRW 1500
      YREF=YF(LN+1)-YF(LN)
                                                                            DRW 1510
      YPAGE=0.0
                                                                            DRW 1520
      XPAGEM=0.0
                                                                            DRW 1530
      ITRIP=1
                                                                            DRW 1540
                                                                            DRW 1550
   53 DO 52 LP=1, IN
                                                                            DRW 1560
DRW 1570
      XPAGE=FLOAT((LP-1)*(1TR1P))*A/2.0+XPAGEM
   52 CALL SYMBOL(XPAGE, YPAGE, .21,13,0.0,-2)
                                                                            DRW 1580
      XPAGEM=XPAGE
      DO 54 LP=1, JN
                                                                            DRW 1590
      PHI=RFY(LN)+.5*FLOAT(LP-1)*PI/180.0
                                                                            DRW 1600
      CALL MERK(PHI,Y,0.0,RRR,A,+1)
                                                                            DRW 1610
      YPAGE=Y-YF(LN)
                                                                            DRW 1620
   54 CALL SYMBOLIXPAGEM, YPAGE, .21, 13,90.0,-2)
                                                                            DRW 1630
                                                                            DRW 1540
      IF (ITRIP.EQ.(-1)) GO TO 55
      ITRIP=-1
                                                                            DRW 1650
      GO TO 53
                                                                            DRW 1660
   55 CALL PASTA(2,RFX(LM),-.85,-.63,.21,0.0)
                                                                            DRW 1670
      CALL PASTA(2,RFX(LM+1), (XREF-1.1),-.63,.21,0.0)
                                                                            DRW 1680
      CALL PASTA (1, RFY(LN), XREF, -.11, 21,0.0)
                                                                            DRW 1690
                                                                            DRW 1700
      CALL PASTA(1, RFY(LN+1), XREF, (YREF-.11), .21,0.0)
  59 ITRIP=+1
                                                                            DRW 1710
   57 READ (NSCAT) X,Y,YLAT,XLONG,1ZX,IZY,TIME,V,ALPHA,IC
                                                                            DRW 1720
                                                                            DRW 1730
      IF (IC.EQ.9) GD TO 51
                                                                            DRW 1740
DRW 1750
      IF ((IZX.NE.LM).OR.(IZY.NE.LN)) GO TO 57
      X=X-XF(IZX)
      Y=Y-YF(IZY)
                                                                            DRW 1760
      WRITE(NOUT, 188) X,Y,IC
                                                                            DRW 1770
  188 FORMAT(1X, 2E14.5, I10)
                                                                            DRW 1780
      ALPHA=AMDD((450.0-ALPHA),360.0)
                                                                            DRW 1790
                                                                            DRW 1800
      TIME=(TIME+EPS)
```

```
ITIME = IFIX (TIME)
                                                                          DRW 1810
                                                                         DRW 1820
    1QUIT=IC
    IF (IQUIT.GE.20)
                      IQUIT=2
                                                                          DRW 1830
    GO TO (61,62,63,64), IQUIT
                                                                          DRW 1846
 61 CONTINUE
                                                                          DRW 1850
                                                                          DRW 1860
    IF (ITRIP.EO.-1) CALL PLOT(RXPAGE, RYPAGE, 3)
                                                                          DRW 1870
    CALL PLOT(X,Y,2)
    GD TO 59
                                                                          DRW 1880
62 IC=1C-20
                                                                          DRW 1890
    IANN=0
                                                                          DRW 1900
    IF (1TRIP.EQ.1) CALL WHERE(RXPAGE, RYPAGE, .5)
                                                                          DRW 1910
    CALL SYMBOL(X,Y,.07,IC,0.0,-1)
                                                                          DRW 1920
   XHR=((TIME-FLOAT(ITIME)) #24.0+EPS)
                                                                          DRW 1930
    IHR = IF IX (XHR)
                                                                          DRW 1940
                                                                          DRW 1950
    XMIN=((TIME-FLOAT(ITIME)-FLOAT(1HR)/24.0)*60.0*24.0+EPS)
    XHR=FLOAT (IHR) *100.0+XMIN
                                                                          DRV 1960
 66 IF (ALPHA.GT.90.0.AND.ALPHA.LT.270.0) ALPHA=ALPHA+180.0
                                                                          DRW 1970
    ALPHA=AMOD(ALPHA, 360.0)
                                                                          DRW 1980
    IF (ALPHA.GE.270.0) ALPHA=ALPHA-360.0
                                                                          DRU 1990
    ALPHA=ALPHA+SIGN(-90.0,(-ALPHA))
                                                                          DRW 2000
    ALPHB=RAD(ALPHA)
                                                                          DRW 2010
   CALL NUMBER((X+.11*COS(ALPHB)),(Y+.11*SIN(ALPHB)),.07,XHR,ALPHA
                                                                          DRW 2020
                                                                          DRW 2030
   1,-1)
    IF (IANN.EQ.1) GO TO 67
                                                                          DRW 2040
    IF (ITRIP.EO.1) CALL PLOT(RXPAGE,RYPAGE,3)
                                                                          DRW 2050
    ITRIP=-1
                                                                          DRN 2060
    GO TO 57
                                                                          DRW 2070
                                                                          DRW 2080
 63 CONTINUE
    IF (ITRIP.EQ.-1) CALL PLOT(RXPAGE, RYPAGE, 3)
                                                                          DRW 2090
   CALL SYMBOL(X,Y,.07,13, ALPHA,-2)
                                                                          DRW 2100
   XHR =TIME-FLOAT(ITIME)
                                                                          DRW 2110
    IF (ABS(XHR).GT.2.0E-5) GO TO 59
                                                                          DRW 2120
    XHR=TIME
                                                                          DRW 2130
                                                                          DRW 2140
   CALL SYMBOL(X,Y,.07,11,ALPHA,-2)
    IANN=1
                                                                          DRW 21-50
    GO TO 66
                                                                          DRW 2160
67 CALL SYMBOL(999.0,999.0,.07,5H/0000,ALPHA,5)
                                                                          DRW 2170
    CALL PLOT(X,Y,3)
                                                                         DRW 2180
    GO TO 59
                                                                         DRW 2190
64 CALL PLOT(X,Y,3)
                                                                          DRW 2200
    GO TO 59
                                                                         DRW 2210
 51 CALL SYMBOL (-2.5,0.0,.14,3,0.0,-1)
                                                                         DRW 2220
    XREF=XREF+5.0
                                                                         DRW 2230
   CALL SYMBOL(XREF, (YREF/2.0-1.40),.28,10HEND OF JOB,90.0,10)
                                                                         DRW- 2240
   CALL PLOT(0.0, (YREF/2.0-1.40),-3)
                                                                         DRW 2250
   CALL PLOT(XREF,0.0,999)
                                                                         DRW 2260
    WRITE (NOUT, 162)
                                                                         DRW 2270
162 FORMAT(15HOPLOT FINISHED.)
                                                                         DRW 2280
   RETURN
                                                                         DRW 2290
   END
                                                                         DRW 2300
```

```
SUBROUTINE PASTA(11 YPE, XX, X, Y, SIZE, ANGLE)
                                                                               PAS
                                                                                      10
                                                                               PAS
                                                                                      20
C THIS ROUTINE IS USED IN THE ANNOTATION OF A MERCATOR CHART.
                                                                               PAS
                                                                                      30
C ITYPE=CONTROL CODE(ONE FOR LATITUDE AND TWO FOR LONGITUDE)
                                                                               PAS
                                                                                      40
C XX=LATITUDE OR LONGITUDE IN RADIANS C X=HORIZONTAL POSITION OF ARROTATION
                                                                               PAS
                                                                                      50
                                                                               PAS
                                                                                      60
C Y=VERTICAL POSITION OF ANMOTATION
                                                                               PAS
                                                                                      70
C SIZE=PLOT HEIGHT OF ANNOTATION
                                                                               PAS
                                                                                      80
C ANGLE = ANGLE OF ANNOTATION
                                                                               PAS
                                                                                      90
C
                                                                               PAS
                                                                                     100
                                                                               PAS
      DIMENSION XMOTE(4)
                                                                                     110
      DATA XNOTE(1), XNOTE(2), XNOTE(3), XNOTE(4)/1HN, 1HE, 1HS, 1HW/
                                                                               PAS
                                                                                     120
      DATA BLANC/1H /
                                                                               PAS
                                                                                     130
      DATA PI/3.1415926/
                                                                               PAS
                                                                                     140
      Ž=XX
                                                                               PAS
                                                                                     150
      IF (XX.GT.PI) Z=XX-2.0*PI
                                                                               PAS
                                                                                     160
      IF (ITYPE.EQ.1) WORD=XNOTE(1)
                                                                               PAS
                                                                                     170
         ((ITYPE .EQ.1).AND.(Z.LT.O.O)) WORD=XNOTE(3)
                                                                               PAS
                                                                                     180
      IF (ITYPE.EQ.2) WORD=XNOTE(2)
                                                                               PAS
                                                                                     190
      IF ((ITYPE.EQ.2).AND.(Z.LT.0.0)) WORD=XNOTE(4)
                                                                               PAS
                                                                                     200
                                                                               PAS
      Z=ABS(Z)
                                                                                     210
      Z=Z*180.0/3.1415926+1.0E-4
                                                                               PAS
                                                                                     250
                                                                               PAS
      NVAL=IFIX(2)
                                                                                     230
      NMIN=IFIX((Z-FLOAT(NVAL))*60.0+1.0E-4)
                                                                               PAS
                                                                                     240
      XNVAL=FLOAT(NVAL)
                                                                               PAS
                                                                                     250
                                                                               PAS
      XNMIN=FLOAT (NMIN)
                                                                                     260
      CALL NUMBER (X,Y,SIZE, XNVAL, ANGLE,-1)
                                                                               PAS
                                                                                     270
      CALL SYMBOL (999.0,999.0,SIZE,BLANC,ANGLE,1)
                                                                               PAS
                                                                                     280
                                                                               PAS
      CALL NUMBER (999.0,999.0, SIZE, XNMIN, ANGLE,-1)
                                                                                     290
                                                                               PAS
      CALL SYMBOL(999.0,999.0,SIZE,BLANC,ANGLE,1)
                                                                                     300
      CALL SYMBOL(999.0,999.0, SIZE, WORD, ANGLE, 1)
                                                                               PAS
                                                                                     310
      RETURN
                                                                               PAS
                                                                                     320
      END
                                                                                     330
                                                                               PAS
```

	SUBROUTINE MERK(PHI,Y,LAMDA,X,A,ITRIP)	MRK	10
•		MRK	20
Č	ANGULAR VALUES IN RADIANS. A IN INCHES/DEGREE.	MRK	30
•	ITRIP.EQ.1 IF FORWARD TRANSFORM AND ITRIP.EQ1 IS INVERSE.	MRK	40
C	INTERNATIONAL SPHEROID	MRK	5(
;	LAVELLE/ADML/JUNE 1972	MRK	60
C		MRK	70
	REAL LAMDA	MRK	80
	DATA WEE, PI/8.19918905E-2, 3.1415926535/	MRK	9(
	IF (TRIP.EO1) GO TO 1	MRK	100
	X=A*180.0/PI*LANDA	MRK	110
	Y=A*180.0/PI*ALOG(TAN(PI/4.0+PHI/2.0)*((1.0-WEE*SIN(PHI))/(1.0+	MRK	120
	1 WEE*SIN(PHI)))**(WEE/2.0))	MRK	130
	RETURN	MRK	140
	1 XX=2.0*(ATAN(EXP(Y/A/180.0*PI))-PI/4.0)	MRK	150
	PHI=2.0*(ATAN(EXP(Y/A/180.0*PI)/((1.0-WEE*SIN(XX))/(1.0+WEE	MRK	160
	1 *SIN(XX)))**(WEE/2.0))-PI/4.0)	MRK	170
	PHI=2.0*(ATAM(EXP(Y/A/180.0*P1)/((1.0-WEE*SIN(PHI))/(1.0+WEE	MRK	180
	1 *SIN(PHI)))**(WEE/2.0)}-PI/4.0)	MRK	190
	LAMDA=X/A/180.0*PI	MRK	200
	RETURN	MRK	210
	END	MDK	220

0.00 \$ 220 TOS SE Wit es 141 015 408 W. -00 4 5 1 T Sec. 20 1000 SF 9 मुल्ह अन-# SX 0.00 Pe ne-133 00 desto (P#) . 10E #8. 488 BE-\$ 1977 TV 8 \$45 F1 -58 3**8**% 2.4% yne ae-600 211 119 0 (15 30 18 > ASE 51 Data 871 PE-461 TJ 65 70 00-557 11 341,11 640 TI in the re-240 ° ths | 12 es-* 40 57 *** **** -80 pla c 作しません。 7.50m (7.43) 198 (本格) 1.5 1.60 (2.64) 200 (2.65) 1.5 2.10 (4.64) 200 (2.65) 1.5 4

A State of W. 3 mad de-July 15

ាននិទ្ធិ ខាន់

Ruser Ini

ាត់ប្រធានិក្សា ស្រាប់ ស្រែ

rith lur

0 - Mi . 01

أَ فِينَ إِنَّ اللَّهِ اللَّهِ

939

砂点

一直 等標子

1.6 wash1

144 - 134 - 146 -

184 114 A

The same of the same of

10	34	7	5	6	2	4		
100	0050	_				094	5	TP
100	0100	16	336	-59	091	094	5 5	SA
100	0130 0144	16	339	-59	052	097 097	5	TP SA
100	0246	16	338	-58	598	097	5	SA
100	0330	16	337	-58	560	097	5	SA
100	0606	16	333	-58	423	097	5	SA
100	0706	16	330	-58	371	097	5 5	SA
100	0752	16	327	-58	332	097	5	SA
100	0830	1,	250	. E 0	207	002	5 5	TP
100	0902 1052	16 16	350 456	-58 -58	297 299	002 002	5	SA SA
100	1244	16	562	-58	296	002	5	SA
100	1320				• • •	270	63	ΤP
100	1334	16	597	-58	309	270	63	SA
100	1415					004	55	ΤP
100	1432	17	009	-58	351	004	5′5	SA
100	1514	17	049	-58	353	004	55	SA
100 100	1615 1646	37	113	-58	380	269 269	63 63	TP SA
100	1715	, ,	115	-50	300	090	05	TP
100	1752	17	111	-58	397	090	5	SA
100	1830	17	113	-58	362	090	5	SA
100	1915					270	05	TP
100	1936	17	109	-58	337	270	5	SA
100	2018	17	109	-58	385	270	5	SA
100	2100		110	E 0	500	268	05	TP
100 100	2214 2230	17	119	- 58	509	268 266	5 05	SA TP
101	0156	17	125	-59	134	266	5	SA
101	0240					266	5	NA
101	0240	17	124	-59	178	266	5	SA
101	0336	17	122	-59	238	266	5	SA
101	0428	17	118	-59	292	266	5	SA
101	0616	17	096	-59	397	266 266	5 5	SA NA
101 101	0700 0700	17	085	59	451	266	5	SA
101	0730	-,	005	,	1,52	273	05	TP
101	0804	17	075	-59	515	273	5	SA
101	0848	17	067	-59	560	273	5	SA
101	0915					277	05	ΤP
101	1000	17	071	-60	039	277	5	SA
101	1251 1300					282 292	05 05	TP TP
101 101	1320					270	05	ΤP
101	1332	17	108	-60	257	270	5	SA
101	1428	17	115	-60	311	270	5	SA
101	1518	17	124	-60	351	270	5	SA
101	1550							
99999						020	16	το.
101	1550	17	174	-60	351	038 038	16 16	TP SA
101	1614 1740	17	357	-60	215	038	16	SA
101	1846	17	489	-60	113	038	16	SA
101	1910		•	-	*			
99999	9999							
101	1910					090	06	TP
101	1928	17	534	-60	054	090	6	SA TP
101	1940					180	05	11

101	2124	17	441	-60	034	180	5	SA
101	2230		220		010	176	05	TP
101	2314 0000	17	339	-60	040	176 180	5 05	SA TP
102	0056	17	241	-60	038	180	5	SA
102	0152	17	188	-60	037	180	5	SA
102	0240	11	100	-00	051	180	5	NA
102	0240	17	142	-60	037	180	5	SA
102	0338	17	084	-60	041	180	5	SA
102	0530	16	575	-60	057	180	.5	SA
102	0600	10	212	-00	051	177	05	TP
102	0718	16	471	-60	078	177	5	SA
102	0756	16	432	-60	084	177	5	S.A
102	0830	10	-152	00	00-1	090	05	TP
102	0912	16	393	-60	070	090	5	SA
102	1104	16	393	59	586	090	5	SA
102	1242	16	386	-59	520	090	5	SA
102	1338	16	381	-59	477	090	5	SA
102	1426	16	382	-5 9	438	090	5	SA
102	1440	10	362	-29	450	083	05	TP
102	1524	16	386	59	394	083	5	SA
	1616	16 16	408	- 59	339	083	5	SA
102	1654		403	-59	307	083	5	SA
102	1730	16	403	-59	301	086	05	TP
102	1730					086	5	NA
102		14	412	-59	247		5	SA
102	1756	16	412	-59		086		
102	1842	16	427	-59	204	88 O	5 05	SA
102	1915		. 20	E 0	1/1	090		TP
102	1940	16	428	-5 9	141	090	5	SA
102	2030	16	428	-59	094	090	5	SA
102	2042	16	430	-59	081	090	5	SA
102	2215	1,	127	5 0	501	094 094	05	TP
102	2224	16	437	- 58	581		5 5	SA
103	0106	16	431	- 58	426	094 311	16	SA TP
103	0115	1.4	E 0 E	-58	599	311	16	SA
103	0250 0334	16 17	585 061	- 59	085	311	16	SA
103		17	172	-59	210	311	16	SA
103	0438 0522	17	238	-59	303	311	16	SA
103	0545	11	250	-29	505	180	05	TP
103	0628	17	234	-59	348	180	5	SA
103	0818	17	119	-59	355	180	5	SA
103	0830		11,		555	177	05	TP
103	0854	17	069	-59	357	177	5	SA
103	1010	16	591	- 59	363	177	5	SA
103	1130	•0	,,,			092	05	TP
103	1256	16	512	- 59	284	092	5	SA
103	1328	16	507	-59	251	092	5	SA
103	1436	16	507	-59	186	092	5	SA
103	1516	16	506	- 59	145	092	5	SA
103	1626	16	507	- 59	079	092	5	SA
103	1645	10	<i>J</i> 0 .	•	0.,	179	06	TP
103	1725					000	65	ΤP
103	1752	16	490	-59	065	000	65	SA
103	1815	-5	. , ,	- /		179	05	TP
103	1848	16	510	-59	060	179	5	SA
103	1940	16	455	- 59	060	179	5	SA
103	2040	16	394	-59	067	179	5	SA
103	2134	16	333	-59	069	179	5	SA
103	2145							