

U.S. DEPARTMENT OF COMMERCE Frederick 8. Dent, Secretary

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Robert M. White, Administrator ENVIRONMENTAL RESEARCH LABORATORIES Wilmort N. Hess, Director

NOAA TECHNICAL REPORT ERL 301-AOML 14

Radiation Sensor Comparisons During the GATE International Sea Trials (GIST)

KIRBY J. HANSON

BOULDER, COLO. APRIL 1974

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 C.S.S. 1.3 - ERL 301- AOML 14

DISCLAIMER

The NOAA Environmental Research Laboratories do not approve, recommend, or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to the NOAA Environmental Research Laboratories, or to this publication furnished by the NOAA Environmental Research Laboratories, in any advertising or sales promotion which would indicate or imply that the NOAA Environmental Research Laboratories approve, recommend, or endorse any proprietary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised product to be used or purchased because of this NOAA Environmental Research Laboratories publication.

Preface

This report, on the results of the comparison of radiation sensors at sea during the GATE International Sea Trials (GIST). is based primarily on data which were exchanged at sea by small-boat operation. Similar data were received on the other three participating ships. A small amount of these data (about 1 day) was received from Mexico and the U.S.S.R. following the GIST.

The article, given by reprint here, was published in the <u>Bulletin of</u> the <u>American Meteorological Society</u> to make the information available before the GATE. Because that journal usually does not publish the rather extensive tabular data on which the article was based, we are combining the reprint article with the tables of data as appendices in this publication.

CONTENTS

			Page
Preface			iii
Reprint of	f <u>Bu</u>	lletin of the American Meteorological Society	1
Absti	ract	:	1
1.	Bac	kground	٦
2.	Des	cription and installation of sensors	2
	a.	Pyranometers	2
	Ъ.	Pyrheliometers	2
	c.	I yrgeometers	3
3.	Рут	anometer comparison	3
	a.	Time averages	4
	ъ.	Sensor characteristics	5
4.	Рут	cheliometer comparison	5
5.	Рут	geometer comparison	6
6.	Imp	lications about radiation sensor comparisons	_
		during the GATE main field experiment	6
References	s		8
Appendix 2	A.	Pyranometer data	9
Appendix 1	Β.	Pyrheliometer data	19
Appendix (с.	Pyrgeometer data	29

Preceding page blank

Radiation Sensor Comparisons During the GATE International Sea Trials (GIST)*

Kirby J. Hanson

Sca-Air Interaction Luboratory, Atlantic Oceanographic and Meteorological Laboratories, NOAA, Miami, Fla. 33149

Abstroct

Radiation sensors on two ships of the U.S.S.R., one of Mexico, and one of the U.S. were compared during the GATE International Sea Talais (GIST), 2-10 August 1973, near 20N, 60W.

Pyranometer comparison showed that two instruments disagreed by 23%, but the remaining four pyranometers disagreed by less than 6%. The data also suggest the Yanishevsky and Eppley pyranometers have dissimilar cosine response characteristics which causes them to disagree by 4 mW cm⁻² or less at low sun elevation angles. Pyrheliometers on the four ships were in agreement to within 1.7%. Two pyrgeometers (an Anström type and Eppley type) differed by only 1.3%.

An analysis of the GIST data suggests that, if conditions during the main field experiment are the same as in GIST, the three-day comparison period should be sufficient to reduce random errors in pyranometer measurements to 0.8%. This will allow determination of systematic pyranometer errors to well within the 5% level specified by ISMG.

1. Background

The GARP Atlantic Tropical Experiment (GATE) is directed toward an improved understanding of the physical processes in the tropical atmosphere and ocean which play an important role in determining the main features of atmospheric circulation at all iatitudes. The basis for achieving an improved understanding is the planned acquisition of a four-dimensional data set during the GATE, with highest density measurements in the tropical eastern Atlantic. Ships, aircraft, balloons, and satellites will be utilized as data collection platforms. Because many nations are participating with varied types of measuring instruments, it is vital that intercomparisons between measuring systems be obtained in order to assure internal consistency of the data set.

A pre-GATE intercomparison between four ships of three nations was planned by the International Scientific and Management Group (ISMG) for GATE and conducted 1-10 August 1973, at 20N, 60W. The intercomparison was called the GATE International Sea Trials (GIST), and included the ships A. Korolov, U.S.S.R.; E. Krenkel, U.S.S.R.; Researcher, U.S.A.; and V. Uribe, Mexico.

One of the primary purpose of the GIST was to test the adequacy of intercomparison methods planned for the GATE main field experiment. For example, such questions as how does ship spatial separation affect the comparison of sensors, and how much time is required to achieve an adequate comparison, had to be answered.

Tests of measuring systems included surface meteorology, atmospheric sounding, atmospheric boundary layer,

^{*[}Reprinted from BULLEUN OF THE AMERICAN MULTOROFOGEAL NOTELY, Vol. 55, No. 4, April 1974, pp. 297-304] Printed in U. S. A.

surface occanography, and oceanographic sounding. In addition, radio communications, ship positioning, data exchange at sea, and international coordination were conducted during the GIST to study the leasibility of these operations during the three intercomparisons planned for the GATE main field experiment—which In evaluation of the results of the GIST Radiation Supprogramme it is necessary to consider the nature of differences between radiation measurements. In general, these differences can be attributed to three causes: 1) absolute calibration level and response characteristics of the sensors; 2, sampling errors due to the spatial separation

includes a larger number of ships. The International Coordinator of the GIST was Dr. Yuri Tarbeev (U.S.S.R.), Assistant Director of the ISMG. Dr. Verner Suomi (University of Wisconsin) was U.S. visiting scientist aboard the A. Konolov. The Chief Scientist of the Researcher was Dr. James Sparkinan, NOAA. The Captain of the Researcher was Captain Lowon Posey, NOAA. The Radiation Subprogrammes were conducted on the ships by the following individuals: A. Korolov, Chief Meteorologist, V. V. Mclnikov; E. Krenkel, Chief Meteorologist, T. F. Demechko, and special radiation consultant, E. I. Druzhinin; Researche: the author and M. F. Poindexter; and F. Unibe, I. Galindo and A. Muhlia.

The GIST agreements specified data exchange at sea. For the Radiation Subprogramme, pyranometer and pyrheliometer data were exchanged duily when small boat operation was possible. A small amount of data was exchanged by mail after the GIST. In this way a complete radiation data set was made available to each of the four participating ships and to the ISMG. The study reported here is based on the radiation data set available from the *Revearcher*. At this writing there has been no formal data publication of the Radiation Subprogramme data. The author plans to publish the data set as a Technical Report of ERL/NOAA (Hanson, 1974).

The period of CIST included three phases, as indicated in Table I. Ship separation varied from I-6 km during Phases I and III which were planned for intercomparisons. However, during Phase II ships simulated the GATE data acquisition mode and separation Letween ships was approximately 100 km. Although Phase I began on I August 1973, the beginning of the Radiation Subprogramme was delayed until 2 August 1973, because of the need for discussion, standardization of measurement schedules, and exchange of data forms.

TA	NLE	1.	GIST	ыl	hedule	-	radiation	-uli	pr	ogramm	œ.
	7		-					-	-	-	

- -- -

Juhan day	Date	GIST phase	(ummente
214	2 August 1973	Г	Phase I begins 0000 GMT
215	3	I	
216	+	1	
217	5	I	
218	6	I	Phase I ends 1800 GMT
219	7) II	Phase II begins 0000 GMT
220	8	II	Phase II ends 2359 GMT
221	9	III	Phase III begins 0000 GMT
<u>222</u>	10	111	-
223	11	III	Phase III ends 1600 GMT

Supprogramme it is necessary to consider the nature of differences between radiation measurements. In general, these differences can be attribute to three causes: 1) absolute calibration level and response characteristics of the sensors; 2, sampling errors due to the spatial separation of the sensors; and 3) recording systems and data process. ing and integration methods. Prior to the experiment it was hoped that random measurement differences due to spatial separation of the instruments and certain data processing errors would be sufficiently small that useful information could be obtained concerning systematic differences due to absolute calibration level and response characteristics of the sensors. This proved to be the case, and the results are discussed in this report. In addition, information is presented on the amount of time required for such an experiment to minimize the random errors due to spatial separ, tion of the sensors and data processing to the extent that systematic errors can be determined. to sufficient accuracy to meet specifications for GATE.

. .

......

1

.

2. Description and installation of sensors

a. Pyranometers

Pyranometers have a 180° field-of-view, and when used in a horizontal position facing upward, they measure the total of the direct sun and diffuse sky components. They integrate solar radiation spectrally with approximate uniform sensitivity from 0.3 to 3 μ m. This includes about 99% of the solar radiation at the earth's surface.

The upward facing pyranometer sensors on all four ships are described in Table 2 and the downward facing pyranometers are indicated in Table 3. Included in the test were six Yanishevsky pyranometers, four Eppley pyranometers, and one Moll Gorczynski type pyranometer. A unique feature of the comparison was the installation on the *Kienkel* of a Yanishevsky M-80 and Eppley model 2 on identical gimbal platforms separated by approximately 1.5 m and identical potentiometric recording. This installation is shown in Fig. I.

The boom mounted pyranometer were installed 12 m forward of the bow on the Korolov and Krenkel and 10 m forward on the Researcher. Pyranometers were gimbal mounted on the Korolov and Krenkel but fixed relative to the ship in (average) horizontal position on the Researcher and Unibe.

b. Pytheliometers

Pyrheliometers measure the component of direct solar radiation incident on a surface normal to the sun's rays. Measurements are possible only under conditions in which clouds are not in the field of view of the instrument.

The pyrheliometers of the four ships are indicated in Table 4. Measurements with these instruments were discontinuous. The planned observation frequency was 30 min; however, this varied because of cloudiness at some observation times. The Yanishevsky pyrheliometers, on TABLE 2. Upward facing pyranometers.

	- · · · ·			· — •:•				
1	Ship nans-	Korobe	Krenkel	Krenkci	Krenkei	Researcher	l'ribe	Crite
2	Sensor							
	a. Position on ship	Bow boom	Bru	Bow beem	Bow	Bow haom	Bridge	Bradge
	h. Eyper and means	Yanish	Yanish	Yanish	Eppley	Enniev	Eppley	Moll-Gor.
	•	$M_{-}SO$	M 80	M-80	2	2	(Jully)	
	 Identification no 	4.3	2	5373	11530	12159	3192	683224
	d. Assumed sensitivity for data							
	processing n.V ca 1 cm2 mutt	9,60	10.7	5.15	7.17	7.00	8.23	8,00
	 Temp, compensation 	No	No	No	Yiz	Yes	No	No
÷	Sampling rate per hour	30	4.5	50	45	Cont.	Cont	Cont
4	Integration method							
	a Electro mechanical							
	b. Visual	X	X	X	X	x	N	x

TABLE 3. Downward facing pyranometers,

		-	· - ·	
1 Ship nane	Kerdet	is renkel	Researcher	Uribe
Senser				
a Position of ship	Bow Been	Bow hoom:	Bow been	Boom
 Type and model 	Yanish.	Sanish.	Epole	Vanish.
. 1	M 80	M 80	8.48	
 Identification no 	· · · · · · · · · · · · · · · · · · ·	200	11990	1711
d. Assumed sensitivity for data				
processing of callent paint	11 16	\$ 56	8,13	7.06
e Tenne contensation	No	No	Yes	No
3 Subjoing rate per hour	30	50	Cont.	Cont.
4 Integration method				
a Electro mechanical				
6. Visual	Х	х	X	х

the Korolos and Krenhel, having a 10-field-of-view, were placed on a stationary platform to obtain measurements. The roll of those ships was sufficiently small that the surremained in the pytheliometer's field of view in spite of ship roll. On the Researcher, an adjustable tripod moant was used to manually direct the pytheliometer (5-field-of-view) at the sun. On the Unibe, pytheliometer (No. 54585) was gimbaled on 8 August. On previous days, stationary or hand held measurements vice attempted. These attempts did not produce satisfactory data, and they are not reported here.

c. Progeometers

Pyrgeometers were used to measure the IR radiation from sky and clouds incident on a horizontal surface. Only two pyrgeometers were present during the GIS1; one on the *Researcher* and one on the *Krenkel*. These instruments were compared only once for a period of four hours and 15 min on the night of 5-6 August 1973 on the Low of the *Krenkel*. The sensors are described in Table 5.

The instrument on the Krenkel was an Augström compensation pyrgeometer as developed by Augström (1905) and described by the *Comite Special de l'Annee Geophysique Internationale* (1958). The instrument on the *Researcher* was an Eppley pyrgeometer which employs a KRS-5 hemisphere with interference filter on its inner surface (Eppley Lab. 1971). The composite transmission of the pyrgeometer hemispheric window is 4-50 μ m.

3. Pyranometer comparison

Measurements with pyranometers were obtained doring the period 2-10 August 1973. The resulting hourly and daily integrated radiation values for both upfacing and downfacing pyranometers were exchanged at sea

Fig. 1. Installation on the bow of the E. Krenkel of an Eppley (Model 2) pyranometer and Yanishevsky (Model M-80) pyranometer on identical gimbal mounts. Mr. E. I. Druzhinin of the Main Geophysical Observatory, Leningrad, U.S.S.R., who was responsible for the installation is shown in the photo.

TABLE 4. Pyrheliometers

1. Ship name	Korolor	Kreaked	Researcher	Cribe	L'ribe
2. Sepsor					i
a. Position on ship	Mid-ship	Mid-ship	Bow	Bridge	Bridge
b. Type and model	Yanish.	Yanish	Eppley	Yanish.	Yanish
	AT-50	AT-50	NIP		
c. Identification No.	0032	247	11946	797	54585
d. Assumed sensitivity for data		r T	1		i
processing (mV cal ⁻¹ cm ⁻² min ⁻¹)	6.35	6.32	5.62	5.90	6.69
e Temp compensation	No	No	Yes	No	No

and serve as the basis for this report. The data will be published by Hanson (1974).

a. Time averages

In order to compare the pyranometers on days when the ships were in close location (Phases I and III), the data for 2, 3, 4, 5, 6, and 9 August have been averaged. August 10th was not used in the average because the Uribe was not present on that date. During this averaging period continuous measurements are available from all pyranometers except Nos. 3192 and 1711 on the Uribe. For this reason these two sensors are not included in the Phase I and III average.

Hourly solar radiation averages were calculated for each sensor for the Phase 1 and III period. The results are given in Table 6. Plotted in Fig. 2 are hourly radiarion values from four of the sensors which include the upper and lower range of measurements. From Fig. 2 it is clear that there exists systematic differences between sensors and these differences are consistent from hour to hour.

The average daily radiation measurement from each upfacing pyranometer and for each day during the period 2-9 August 1973 is plotted as a time series in Fig. 3. Again, it is apparent that the significant differences between the sensors are maintained from day to day. In Fig. 3 it can be seen that the sampling error due to spatial separation of the sensors is sufficiently small (even in Phase II) that the systematic differences between sensor measurements are not obscured.

Finally, the data have been averaged for Phase I and III and for Phase I, II, and III to determine a single average daily radiation value for each instrument during both of these two time periods. The resulting averages are shown in Fig. 4 as average irradiance values and in Table 7 as the ratio of the individual sensor response to the average of all sensors.

TABLE	5.	Pyrgeometers.
-------	----	---------------

1. Ship name	Krenkel	Researcher
2. Sensor		1
a. Type	Angström	Eppley
b. Identification No.	6	11540
c. Assumed sensitivity		[
for data processing		(
$(\mathbf{mV} \operatorname{cal}^{-1} \operatorname{cm}^{\sharp} \operatorname{min}^{1})$	2.22	4.965

From this information, it is clear that regardless of whether the data from only Phase I and III are used or whether all three Phases are included, the same relative response of each sensor is obtained. The largest departures from the average of all sensors are by pyranometer No. 43 on the Korlow $(\pm 12.5\%_0)$ and pyranometer No. 2 on the Korlow $(\pm 12.5\%_0)$ and the difference between these two sensors is 23%. The other four pyranometers present in the intercomparison are within $2-4\%_0$ of the average of all sensors.

Subsequent to the field comparison, Galindo (Mexico) has advised that the radiation values for pyranometer No. 683224 should be increased by 5% due to a record-

Fig. 2. Average hourly pyranometer values during Phases I and III. The data indicate the widest range of pyranometer responses. Data from other pyranometers not included here (for convenience of illustration) are given in Table 6.

FIG. 3. Average daily pyranometer values, indicating the widest range of pyranometer responses.

Ship Measurement Sensor (V)or Sensor (den)	\К Н., Үап. 43	EK H* Van. 240	AK H* Yan. 9	EK H Yan 2	ЕК Н_ Ерр. 11539	RE5 H Epp 12159	RES H ⁻ Epp. 11990	VU H. MG 683224	VU H. Epp. 3192	EK H_ Yan. 5373
Hour	-	•	· · ·		مەرىمەن -	or No.				
M I	1	2	*	4	5	0		8	9	10
0	2.72	() (10)	0.70	1.87	1.40	0.48	0.10	1.70		0.20
10	14-28	2.83	2.22	10.62	. <u>16.03</u>	11,00	1.68	12.42	; t	12 10
11	35.57	3.80	3 54	29.30	: 31.05	34,15	2.88	31,80	;	31.45
12	55.67	3 85	4,10	49.22	52.43	51,47	2.55	54.60	1 1	52.43
13	80.87	3.62	4.25	67 43	71.90	75,73	2.55	70.23	1	72.70
14	94 78	3.42	4 25	77.92	87,45	90.97	2.65	83,27	1	89.15
15	105.70	+12	4.47	80,50	89.68	97,42	2.62	90,67	Not	91,37
10	104.07	5.86	4,43	\$1.08	<u>- 89.92</u>	98,10	2.68	85,05	included	95,18
17	92.72	3.7.2	4,32	74,83	80.78	88 13	2.38	85,40	;)	87,77
18	\$2,13	3.67	4.24	65,50	71 OK	75,88	2.05	75.12	·	77,47
142	63.90	3,80	4.18	50.13	53,73	52.17	1.48	51.38	1	59,87
20	41,33	3.93	4,48	32.92	33.97	34.18	1.47	33,65	1 .	40.73
21	10.02	2 72	3,33	13.77	12.48	14.15	1.12	14,88	· .	18,27
22	5 03	0.95	1.12	1.52	9.87	1.42	0.10	1.36		2.33
Darly										
TVefage	57 17	3.07	3,27	45.38	48,95	51,80	1.87	49,38		52.20

TABLE 6 Phase Land III, permanenter data (mW cm⁻²), Average for 2, 3, 4, 5, 6, and 9 August 1973.

ing error which was detected after the experiment. This suggested correction has not been applied in the present report but should be considered applicable in any future use of this comparison.

1. Sensor characteristics

In evaluating the data, it was noted that the Yanishevsky M 80 pyranometer appeared to give relatively higher values than the Eppley Model 2 at low sun elevation angles and the opposite for large sun elevation angles. To quantify this, the hourly data of three Yanishevsky pyranometers (Nos. 43, 2, and 5373) and two Eppley ps, anometers (Nos. 11539 and 12159) were averaged for the period 2-9 August 1978. The results in Fig. 5 show the response of each of these two instrument types relative to the average of all instruments, and in Fig. 6 the radiation differences are shown. From these two figures it appears that there are relatively high percentage differences between these two instrument types at low sun elevation angles, although the energy differences at these angles is less than 4 mW cm⁻².

4. Pyrheliometer comparison

Measurements with pytheliometers were obtained on each day during the period 2-10 August 1973. Not all ships obtained measurements each day, but a sufficient

		·	ABLE /.		
		Measurement	Sensor response relative to average of all		
Ship	Sensor No.	Po-itionn-or	Type sensor	Averaging period 2, 3, 4, 5, 6, and 9 August 1973	Averaging period 2-9 August 1973
A. Korolos	43	bow boom	Yanishev.	1.125	1.120
E. Krenkel	537.3	how boom	Yanishev.	1.027	1.021
Researcher	12159	bow boom	Eppley	1.019	1.024
L. Cribe	683224	bridge	M. G.	0.972	0.981
E. Krenkel	11539	. ixow	Eppley	0.963	U.961
E. Krenkel	2) bow	Yanishev.	0.893	0.891

FIG. 5. Relative response of a group of Yanishevsky pyranometers (Nos. 43, 2, and 5373) and a pair of Epplev pyranometers (Nos. 11539 and 12159) during the period 2-9 August 1973, showing the variation in response due to sun elevation angle.

number were obtained during the period to provide a useful comparison. Measurements were obtained once each 30 min when cloud conditions allowed. The pyrheliometer measurements were exchanged at sea and serve as the basis for this report. The basic data will be published by Hanson (1974).

In order to compare sensors, data from pytheliometers on the Korolov, Researcher, and Uribe were compared individually with the pytheliometer on the Krenkel (No. 247) by considering only those cases in which simultaneous measurements were obtained. As indicated in Table 8, there were 76 simultaneous measurements between the Korolov and Krenkel, 63 between the Researcher and Krenkel, and 9 between the Uribe and Krenkel. Also given in Table 8 are the responses of individual pytheliometers, all relative to pytheliometer No. 247 on the Krenkel. The results show that all four pytheliometers are within 2%, and that three of the four are within 1%.

The pytheliometer on the Researcher has traceability to the International Pytheliometric Scale, 1956, as do the pytheliometers on the Korolov and Krenkel; these three instruments differ at most by 1.7%. The pytheliometer on the Uribe (No. 54585) was calibrated at sea against Yanishevsky control pytheliometer No. 209 on board the Krenkel. This accounts for the close agreement (Table 8) between pyheliometers on the Krenkel and Uribe.

TABLE 8. Comparison of pyrheliometers.

Ship	Тург эспэот	Sensor serial No.	Number samples simul- taneous with Krenkel	Sensor response relative to Krenkel ps sheliometer
A. Koroloc	Yanishev.	6632	i 76	0.993
E. Krenkel	Yanishev.	247	! —	1.000
Researcher	Eppley	11946	63	0.983
V. Uribe	Yanishev.	54585	9	1.002

Fig. 6. Difference in radiation measured by the pyranometer groups of Fig. 5.

In comparing pytheliometer measurements between two ships, it was found that the average standard deviation of the two measurements was from 1.5 to 2.0 mW cm⁻². Since the error in sampling is probably random, the 1.5–2.0 mW cm⁻² uncertainty associated with a single comparison will decrease (by $1^{1/4}$ n) as the number of samples is increased. Thus, the uncertainty associated with the comparison of pytheliometers on the Korolov and Krenkel (in which 76 simultaneous measurements are available) is probably about 0.2 mW cm⁻² or near 0.4% of the measurement value.

5. Pyrgeometer comparison

A comparison of two pyrgeometers was carried out on the *Krenkel* from 0200-0615 GMT, 6 August 1975. The pyrgeometer types and their sensitivities are given in Table 5.

A total of 35 simultaneous pyrgeometer measurements were obtained. The cloudiness varied from 1/10 to 4/10cumulus during the comparison, and the temperature of the radiating surface of the Angström pyrgeometer varied from 26.0-26.9C. The measurements were exchanged at sea and will be published by Hanson (1974).

The average atmospheric downward IR radiation was 39.84 mW cm⁻² measured by the *Krenkel* pyrgeometer and 40.98 mW cm⁻² measured by the *Researcher* pyrgeometer; the averages differ 0.54 mW cm⁻² or 1.3%.

Implications about radiation sensor comparisons during the GATE main field experiment

One of the primary purposes of GIST was to learn about the uncertainties involved in intercomparisons at sea and to determine the length of time required during comparisons in order to standardize the instruments to suitable accuracy. In this sense GIST was undertaken to learn how to conduct comparisons during the main field phases of the GATE.

As indicated in the first section of this report, differences between *pyranometers* in comparisons at sea (in which instruments are separated by a few kilometers) can be attributed to three sources: 1) absolute calibration level and response characteristics of sensors; 2) sampling errors due to spatial separation of sensors; and 3) recording systems and data integration methods.

In the first case, the error in instrument response is mainly systematic but to a small extent could be random. if, for example, instrument characteristics differed and therefore instrument response would depend on cloudiness which is random. In the second case, the error in instrument response is mainly random because of the random nature of cloudiness and the physical separation of instruments by a few kilometers. In the third case, the error in measurement could be systematic from recording errors and also random due to visual integration methods which are usually employed in data processing.

With these error sources in mind, it is of interest to examine the GIST data in order to compute these errors and the time series needed to minimize random errors to a point where systematic differences between instruinents can be resolved.

The GIST pyranometer data given in Section 3 of this report show there were large systematic differences between the measurement level of some pyranometers. The largest systematic difference between two pyranometers was 11.8 mW cm² or 23% of the daily integrated solar radiation. However, for the other four pyranometers, differences between sensors were less than 6% and for some sensor pairs were less than 2%. The ISMG has asked that pyranometers in GATE be standardized to within 5% (Kraus, 1973).

As previously indicated, the random differences between sensors is due to two sources: 1) spatial sampling, and 2) visual integration. We have evaluated the sum of these two sources as a function of the time period over which the data are integrated. The curve shown in Fig. 7 represents sensor departure from the average of all sensors after a systematic difference component has been removed. It is clear that for longer integrating time periods the sensor departure (from the average of all sensors) will decrease due to the random nature of cloudiness and visual integration errors.

FIG. 7. Departure of pyranometer sensor due to random errors in measurement. Time indicates the period over which the data are integrated.

FIG. 8. Departure of pyranometer sensor due to random errors of (1) spatial sampling and (2) data integration. Time indicates the period over which the data are averaged.

By using the data from the *Krenkel* on which three pyranometers were located, we have evaluated the error due to visual integration alone. In this way it was possible to separate the total random error (Fig. 7) into the two components as shown in Fig. 8, and to examine how they varied as a function of integration time.

The information in Fig. 8 is useful in illustrating the relationship between the accuracy required for GATE measurements (5%) and the random errors of spatial sampling and data integration; it also shows how this relationship depends on the period of integration. For example, if the length of the intercomparison were only one hour, it is evident from Fig. 8 that the departure of a single pyranometer from the average of all pyranometers is likely to be near 6% due to the random error sources. This is larger than the accuracy requirement specified by ISMG and, of course, would not provide an adequate basis for standardizing pyranometers. Clearly, it is most desirable to use a long integration period to minimize the random part of the measurement differences.

The present ISMG plan suggests that three-day intercomparisons will be conducted at sea during the main field phases with approximately the same ship spacing as in GIST. The estimates in Fig. 8 suggest that if the pyranometer data are integrated for a three-day period, the uncertainty in individual sensor measurement due to random sources will be about 0.8%. of which about 2/3 is due to visual integration error and 1/3 is due to spatial simpling error. If two sensors are compared, the uncertainty due to random sources would double, amounting to nearly 1.6%. This means that in such comparisons systematic differences between instruments can be removed with a residual uncertainty of 1.6%. This is well within the 5% accuracy required by ISMG for pyranometer measurements in GATE.

Whether these GIST results are realized in the GATE intercomparisons will depend on whether cloud conditions and integration methods in GIST are duplicated. Certainly, emphasis in pre-GATE training should be placed on optimizing integration methods through the use of electrical, mechanical, or computer integration. In the U.S., pre-GATE planning and training is stressing the need for computer integration of the radiation measurements in order to eliminate the visual integration error.

Comparison of pyrheliometers in GATE intercomparisons is not likely to present a problem because the instrument views only a 5-10° field-of-view, and measurements are not obtained when clouds are present between the san and instrument. Thus, the spatial sampling error for pyrheliometer comparison will result only from horizontal inhomogeneities in atmospheric transmittance in areas between the clouds, and this error is likely to be quite small. In addition, there is no need for time integration with pyrheliometer measurements. As discussed in Section 4, it is likely that a single simultaneous measurement by two pythelioneters on separate ships will have an uncertainty of 15-2.0 mW cm⁻² or about 3-4% of the measurement value. However, this uncertainty will decrease as the number of measurements is increased. If, for example, 16 simultaneous measurements are obtained during the 3-day intercomparisons, the uncertainty will be reduced to 1% or less. In the U.S., pre-GATE training is specifying the need for at least this number of measurements during each of the GATE intercomparisons.

References

- Angström, K., 1905: Ueber die Anwendung der elekrischen Kompensation methode zur Bestimmung der nachlichen Ausstrahlung, Nova Acta Soc. Sci. Usal., Ser. 4, 1, No. 2.
- Comite Special de l'Annee Geophysique Internationale (CSAGI) Sub Commission for Radiation Instructions of the Radiation Commission of IAM, 1958; Annals of the International Coophysical Year, Pergamon Press, London, Vol. 5, pp. 439-410.
- Eppley Laboratory, Inc., 1971: Instrumentation for the measurement of components of solar and terrestrial radiation. (Unpublished document of the Eppley Laboratory, Newport, R.I., 31 pp.)
- Hanson, K., 1974: Radiation Sensor Comparisons During the GATE International Scalinials (GIND). Submitted for publication as a Technical Report of ERL/NOAA, Boulder, Colo.
- Kiaus, H., 1973: The Radiation Subprogramme for the GATE, GATE Report No. 4, International Scientific & Management Group for GATE, 62 pp., Appendixes.

Appendix A. Pyranometer data

DATA	
Y RANO: JETTER	

August 2, 1973

UU Yana, 1711
IK II4 \$373
VU II († 3192
VU PL MG 6,33224
RI'S IIA 11990
RFS IL4 [7]9.
EK II4 FPP. 11539
EK III Yan. 2
AK HA Yan.
EK II † Yan. 290
AK 114 13 43
Ship Measurement Si nuor type Sensor ident/

	•	
	=	8alssly
	10	50.74 15.444 15.444 15.444 15.444 15.444 15.444 15.444 15.444 15.444 15.4444 15.4444 15.4444 15.44444 15.44444 15.4444444444
	6	guissiff
	8	2.2 13.5 36.0 53.4 70.6 77.0 89.3 89.3 13.1 1.3 1.3 1.3 1.3 1.3
	-	12 12 12 12 12 12 12 12 12 12 12 12 12 1
r no.	9	55.2 34.2 55.2 57.3 57.3 57.3 57.3 57.3 57.3 57.3 57.3
Senso	5	94.9 34.2 53.10 50.76 50.76 50.76 50.76 50.76
	4	9.8 9.8 48.2 69.6 76.8 84.5 88.5 78.9 78.9 15.4 15.4 15.4 15.4 15.4 15.4
	-	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	2	
	-	1.8 39.6 61.9 61.9 82.2 93.2 105.2 105.2 16.7 5.4 5.7 5.4 5.79 57.79
	Nour beginning (GMT)	9 10 11 12 13 14 15 16 17 18 19 20 21 20 21 22 (14 hour)

VU 11+ 1711		=	gaiez M
1K 114- 7 An-		10	11:9 30:8 30:8 30:8 30:8 92:4 45:5 3:6 54:74 54:74 54:74
W Itt		6	gaiseim
VU P4 NS 603224		æ	2.2] 30.7 58.4 68.5 68.5 68.5 88.1 87.7 95.4 21.0 53.9 53.9 53.9 53.9 53.5 22.6 52.51 52.51
11920		1	1.221.222.222.222.222.222.222.222.222.2
RFS 114- 17159	r no. (cm ²)	Q	22.8 33.2 88.7 58.7 58.7 58.7 58.2 57.1 17.7 17.7 58.5 57.5 57.5 57.5 57.5 57.5 57.5 5
EK I14 11539	Senso (FW)	5	10.5 30.7 85.9 85.9 85.9 85.9 15.5 15.5 15.5 15.5 15.5 15.5 15.5 1
FK Viin 2		4	29.3 29.3 69.8 87.2 88.9 87.2 88.9 55.1 16.8 16.8 2.1 2.1 2.1 2.1 2.1
AK Yan 9		6	0,444444444 0,400,00,00,00,00,00,00,00,00,00,00,00,0
ЕК Н↑ 290		2	0.000130334513 0.000130334518 0.00013033518
AK Yan. '.3		1	2.7.2 2.7.2 2.7.5 2.7.1 1.0.1.5 1.9.8 4.8 4.8 4.8 4.8 4.8 4.8 50.95
Neasurement Sensor 13 pe Seasor 14 pue	, Luod	реднита; Ветинта;	9 10 11 12 13 14 15 15 19 20 21 22 22 21 22 (14 hour)

PYIMNORATIER DATA

August 3, 1973

August 4, 1973

PYRANOMETER DATA

Ship	AK	EK	٨K	EK	EK	RES	RLS	νυ	3	EK	٨U
Measurement	+::	11	₩₽	+=	• ::	↑ =	411	≁.	→	÷ ≟	ŧ
Sensor type	Yan.	Yan.	Yan.	Yan.	EPP.	l'pp.	Pp.	9 <u>7</u>	l.pp.	Yan.	Yan.
Sensor ident	43	290	6	2	11539	12159	11990	422689	3192	5373	1711

	=	galesin
	10	22.0 22.0 22.0 22.0 23.0 23.0 20.0 20.0
	6	20.0 10.0 11.9 21.9 24.9 22.2 292.6 292.6 292.7 292.7 29.7 292.7 292.7 292.5 49.57 49.57
Sensor no. (mv/cm ²)	8	2,2 32,1 58,1 58,5 85,4 85,4 2,1 2,1 2,1 2,5 45,69 45,69
	~	1.8 2.3 2.2 2.2 1.0 1.0 1.70
	9	101.7 37.8 45.2 71.6 95.0 94.7 78.1 17.2 17.2 11.1 1.1 1.1 1.1
	5	1.4 8.4 8.4 58.6 75.4 87.9 94.9 101.9 94.9 14.0 14.0 14.0 14.0
	4	1.4 11.2 31.4 5.1.6 67.7 78.2 78.1 78.1 15.4 15.4 15.4 15.4 15.4 1.4 5.82 45.82
	ſ	0
	2	
	-	1,7 15,3 15,3 29,1 48,2 89,2 88,9 88,9 88,9 50,3 50,3 50,3 50,3 50,3 56,52 56,52
	Hour beginning (GMT)	9 10 11 12 13 14 16 16 16 17 19 20 21 21 21 22 21 21 21 21 (14 hour)

VU 11€ 1711	=	gaissiff
FK H4 5373	10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
VU FPF. 3192	6	0.0 16.0 30.9 60.2 60.2 74.0 100.4 13.6 13.6 13.2 1.0
VU R. 4 MC 633224	8	2.2 16.4 32.4 59.2 59.2 98.8 94.3 11.1 13.8 11.8 13.1 13.8 11.1 13.8 11.1 13.8 24.38
RI:S II FPD- 11990	-	1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
RIS RIA EPP. 12159 r no.	66	36.31 38.6 38.6 38.6 38.7 38.7 38.7 38.7 38.7 54.3 38.7 54.3 38.7 54.3 38.7 54.3
FK 11539 11539 Senso	(mu/ ۶	14.0 34.2 34.2 75.4 91.4 94.2 15.4 15.4 52.60 52.60
EK H H 2	4	12.6 12.6 51.7 51.7 51.7 51.7 51.7 55.6 59.8 83.8 83.3 16.8 16.8 16.8 16.8 16.8
AK Yan. 9	£	2.9 2.9 2.9 2.9 2.6 1.0 2.8 2.8 2.8 2.8 2.8 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9
FK 111 Yan. 290	2	8 8 8 0 0 5 7 7 7 0 0 7 7 7 0 0 7 7 7 0 7 7 7 7
AK litt 43	-	3.4 17.1 40.1 67.5 94.6 76.9 76.9 76.9 6.0 6.0 6.0 6.0
Ship Measurement Sconor type Sensor ident#	Hour beginning (CMT)	9 10 11 12 13 14 15 16 17 19 20 21 20 21 22 21 22 (14 hour)

August 5, 1973

PYRANONETER DAFA

13

PYRANOMETER DATA

August 6, 1973

V() Yan. 1711	
lik Van. 5373	
VU 1 PF 3192	
VU P 4 6.312.24	
81:5 81:5 1 1 1 0 0	
s. 	
39 F1	PUSOF NO.
¥12121	л.
rK Iit	
AK PP Yan, 9	
ΓΚ Υ.μ.Υ 290	
AK II4 Yan.	
ur type or Ident#	
Sh1F Meas Sens Sens	

	=	gaiselM	
	10	13.6 13.6 13.6 54.7 54.7 54.7 97.8 87.9 97.4 86.0 67.3 47.7 17.0 56.04 56.04 56.04	
	6	11.0 11.0 12.1 25.1 27.5 27.9 84.3 87.2 70.2 70.2 70.2 70.2 70.2 70.2 70.2 7	
	œ	23. 5 25. 5 25. 5 27. 0 27. 1 23. 7 23. 7 23. 7 23. 7 23. 7 23. 7 23. 7 23. 7 23. 7 23. 7 24. 51	
	7		
(²)	ę	101.2 37.2 5.75 5.25 91.0 91.0 274.1 274.1 274.1 274.1 274.1 274.1 274.1 274.2 274.3 274.1 275 275 275 275 275 275 275 275 275 275	
/ <i>M</i> .1)	S	90 942 942 942 942 942 63 63 63 63 63 63 63 63 63 63 62 761 761 761 761 761 761 761 761 761 761 761 761 761 761 761 761 761 761 761 771 761 772 77	
	4	10.5 32.1 55.1 55.1 70.5 70.5 70.1 70.1 71.7 76.1 21.1 21.1 21.1 21.1 21.1	
	Ē	0 8 5 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
	2	алан төн сүрээл 2 сосуулаг с	
	1	5.5.1 101.8 10.8 10	
-	begannang (GMT)	9 10 11 13 13 13 14 19 19 19 19 19 19 19 19 19 19 19 19 19	

-
F
ē
Ľ,
E
02
2
PΥ

Ship	X	EK	¥K	EK	EK	RES	RES	ŝ	M	EK	۸U
Measurement	→ =	114	ψH	* =	*)1	→ =	НŶ	1 1	†	Ì	ŧ
Sensor type	Yan,	Yan.	Yan.	Yan.	Fpp.	Epp.	1.pp.	NG:	Pp.	Y.an.	Υch
Sensor ident#	43	290	6	2	11539	12159	11990	633224	3192	5373	1111

	=	3afæthi
	10	22.66 22.66 23.4 23.4 23.4 23.6 25.6 25.7 25.7 25.6
	6	21.5 21.5 21.5 21.1 23.7 24.1 36.4 11.1 14.5 14.5 14.5 14.5 11.1 1.1
	æ	1,0 16.7 23.5 23.5 88.2 90.6 81.8 81.8 81.8 81.8 81.6 53.16 53.16
r no. cm ²)	1	0 119877878789970 0 19877878789970 1987778787
	Q	23.3 59.4 53.6 93.8 93.8 93.6 16.9 11.6 51.67 51.67 51.67
Sensor (m//ci	ŝ	6.3 32.1 53.0 97.7 97.7 97.7 97.7 51.34 51.34 51.34
	4	9.8 9.8 49.6 881.7 887.2 887.2 887.2 887.2 14.7 14.7 14.7 14.7 14.7 14.7
	3	. 0 . 6 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7
	2	2. 132233334 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
	-	3.3 14.0 39.4 53.9 73.5 73.5 73.8 73.8 73.8 4.8 4.8 73.8 73.8 73.8 73.8 73.8 73.8 73.8 73
I	Hour beginning (CMT)	9 10 11 12 13 14 16 19 20 21 22 21 22 21 22 (14 hour) (14 hour)

DATA
Y RANO/DETER

August 8, 1973

				Yan.	11/1
				Yan.	5373
	- m				3192
				2	633224
	RIS				11990
	RES	11			12159
	FK	11			11539
	EK	+=	No.		
	¥	411			
	EK	11	Yan.		7/1/
	AK	→ =	Yan.		÷
•	Ship	Measurement	Sensor type	Sonant Gant //	

1711		=										30	7 5	sŢ	k			
5373		10	0	12.4	31.0		84.1	92.0	7.97	90.1	56.0	34.1	36,3	15.7	2.2	46.91	 	
3192		6	0.	0°6	29.7	1.55	83.6	82.8	98.3	78.5	5.77	53.9	34.1	12.4	1.7	48.84	 	
633224		8		11.7	30.2	59.7	84.2	78.5	95.5	72.8	71.7	51.1	33.0	14.6	1.4	47.14		
11990		1	0.	1.2	2.8	2.6	2.6	3.2	3,3	2.8	2.2	3.0	2.1	6.	.1	2.11		
12159	no. "2)	ę	.2	10.7	32.4	72.5	82.9	97.7	97.1	90.7	76.8	58.2	34.4	11.6	1.2	51.54	 	
1 65 011	Sensor (mu/c	5	c.	8.4	26.5	60.09	83,1	93.5	78.9	84.5	53.0	32.8	28.6	9.8	0	43.48	 	
		-7		9.8	25.8	57.2	76.1	82.4	70.5	80.3	48.2	32.1	28.6	11.2		40.79	 	
		£	υ.		8.7	3.5	4.6	4.0	4.3	5.0	4.5	4.5	4.3	1.2	<u>.</u>	3.21	 	
		2	0.	2.3	1.0	3.3	2.9	3.1	3.8	3.1	2.9	2.3	2.9	2.0	s.	2.51	 	
		1	1.8	7.5	58.2	57.9	84.2	74.5	81.2	106.0	81.7	63.3	41.7	14.9	2.8	52.64	 	
	,	Hour beginning (GMT)	6	10	17	E I	14	15	16	17	18	19	20	21	22	Daily average (14 hour)	 	

VU н↑ 1711	=		2.59
1 K 1 H + 7 an - 5 3 7 3	10	10.0 10.0 255.4 255.4 21.7 883.7 71.7 883.7 74.5 883.1 54.5 54.5 54.5 51.3 31.3 21.3 31.3	45.80
M: 1:4 1:7 3192	6	9.5 9.5 24.7 45.2 45.2 45.2 68.1 79.7 71.6 71.6 71.6 71.6 71.6 71.6 71.6 71	46.19
14 14 14 14	œ	24.5 50.5 50.5 50.5 50.5 74.5 74.5 76.5 76.5 76.5 76.5 76.5 76.5 76.5 76	44.77
1175 117.	۲	0.25.22.29 1.508 1	1.75
RES 11 V 12159	r no. cm ²) 6	8.3 8.3 26.1 26.1 26.5 26.1 27.5 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25	48.32
11539	Senso (m//	24.7 24.7 24.4 24.6 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9	41.74
IK II4 Zan.	4	8.4 8.4 39.8 39.8 52.1 71.2 71.2 71.2 71.2 71.2 71.2 71.2 7	38.79
AK 11.1 9 9			2.09
EK Υnn. 290	5		2.56
AK H↓ 43	-	3.3 3.3 54.8 54.8 54.8 77.4 100.7 100.7 100.7 100.7 15.6 15.6 15.6 15.6	52.31
Ship Measurement Sensor type Sensor ident#	Hour beginning (GMT)	53266622525 5556865255 5556665555 55566 5556 555	Daily a'erage (14 hour)

August 9, 1973

PYRANOMETER DATA

	VIVO
	NUMETER
1000	222

August 10, 1973

Ship	YK	EK	AK	EK	EK	RE.S	RIS	٨U	3	EK	٧V
de a gurement	→ 11	1:1	111	411	+ X	11	114	1 i	↑	* =	★ Ξ
ensor type	Yan.	Yan.	Yan.	Yan.	Epp.	Epp.	Epp.	5.4	Fpp.	Yan.	Yan.
Sensor ident#	43	290	6	2	11539	12159	11990	633224	3192	5373	1171

	11	8airesim
	10	1.1.2 32.22 54.4 61.4 85.6 8.4 25.6 8.4 25.6 8.4 25.6 8.4 25.6 8.4 25.6 8.4 25.7 8 25.8 8 25.8 8 25.7 8 25.7 8 25.7 8 25.7 8 25.7 26 25.7 26 25.7 27 27 27 27 27 27 27 27 27 27 27 27 27
	6	Saterth
	ß	gaisely
	1	1.5 1.5 1.7 1.5 1.7 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6
r no. 2m ²)	9	44 9.8 75.0 75.0 93.2 95.8 93.2 13.7 1.4 1.4 1.4 1.4
Senso: (m//c	\$	21.4 21.4 29.6 20.5 26.5 26.5 26.5 26.3 26.3 26.3 26.3 26.3 26.3 26.3 26.3
	4	1,4 9,8 46,1 68,4 64,9 64,9 73,9 71,0 73,9 71,0 73,4 73,9 73,4 73,9 74,4 73,9 74,4 74,9 74,9 74,9 74,9 74,9 74,9 74
	ſ	0.10.444.00.44.40.0 0.10.44.44.0 0.00.00.444.40 0.00.10.444.40 0.00.10.10.10.0000000000
	5	2.0 3.5 3.5 5.0 3.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5
	-1	3.5 36.1 36.1 36.1 81.2 81.2 81.2 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6
	Hour beginning (GMT)	9 10 11 13 13 14 15 16 17 19 20 21 22 22 22 22 21 22 21 22 21 22 23 21 17 17 17 17 17 17 17 17 17 17 17 17 17

18

Appendix B. Pyrheliometer data

				TNT	FNGITY	(WW/CH SU)	
HOUR	υΛΥ	HLNW	YEAR	ΛK	۲ ۲	RFS	٧U
1130	ر م	¢.	73	51.9	0.	c.	•
1200	م ن	۲	54	50.0	60°03	57.7	•
1230	¢	۲	52	63.1	54.1	62.2	•
1300	∿	a:	7.	60.7	67.0	66.D	-
1330	<u>م</u>	c _	73	69.2	70,5	67.N	•
1400	N	ς	73	70.4	70.5	0.	•
1430	べ	α	5	70.4	70.5	68.6	•
1500	C i	£	73	72.2	73.3	с .	•
1530	٨	æ	73	70.6	71.2	64.7	•
1600	¢,	α	73	70.6	°.	с .	•
1630	٩	د	7	70.6	71.2	c,	
1700	م	æ	5	1,69	•	68.3	
1730	`م	¢	73	0.	•	د •	•
1000	م	¢	73	63.4	65.6	61.0	•
1830	₹.	۲	73	60.5	59 3	57.5	•
1900	N	٤	54	55.6	55 .1	52.7	•
1930	٩	٤	5	c.	53.8	50.1	•
2000	٩	æ	73	46.8	47.5	1, 44	C.
2030	c	ď	5	37.A	36.3	0.	•
2100	<u>e</u>	•	۲ ۲	29.2	27.9	د •	•
2130	ر	α	73	15.6	•	с .	-

August 3, 1973

PYRHELIOMETER DATA

				LEI	FNSITY	(WW/CM SU)	
มกมห	IJΛΥ	HTUN	YFAR	ΛK	Ч	RES	٧U
1100	ب	ح	53	с .	67.9	с •	0.
1130	Ð	e	7 1	59.4	0.	<u> </u>	•
1200	R,	<u>c</u>	73	70.0	64 . 8	64.4	•
1230	R)	c;	7.4	73.8	76.8	с .	•
1300	r:	æ	73	761.9	6.97	75.3	••
1330	ю	G	7.3	80.3	15.4	с .	•
1400	ň	٣	7.3	81.4	A5,2	82.5	-
1430	Ð	۹	7.5	84 . A	A3.8	A3.0	C.
1500	*)	5	7.3	86.R	5° 178	85 . R	0•
1530	F O	Ŀ	73	86.1	A6.6	A5.3	•
1600	•7	R	126	84.6	A5.9	84.1	•
1630	ю	Ð	7.3	с .	я7.2	с .	с .
1700	24	æ	5	93.6	A7.2	85.1	•
1730	ю	æ	56	R3.5	h tu	R4 .1	c.
1800	n	œ	53	83.6	c.	82.4	•
1830	FC	æ	73	0.	•	c.	•
1900	٣,	α	73	د •	A3 , 9	A1.6	•
1930	r)	ح	5.7	76.2	77.5	75.0	•
2000	۴	æ	52	73.5	73.3	.	0•
20.30	F)	¢.	2	67.0	62.1	63.9	•
2100	r)	ď,	57	61.3	60.0A	57.3	•
2130	r :	۲	7.3	47.1	4A ,2	с .	с .
2200	r)	α	7.3	24.8	9.7c	26.6	•

				INI	IFNSITY	(NW/CH SO)	
lulik	μΛΥ	HINN	۲FAR	٨K	Я	RFS	٨U
0001	-	C	ь с В С	71, z	0 T	71	c
	•	- ,	- 1				
1230		۳.	2	-	•	<u>د</u>	°
1300	=	د	7.3	c.	°.	с .	с .
1330	4	£	5.7	85.5	NU5.2	84.6	•
1400	7	c.	73	87.6	R7.2	R. 0	0
1430	7	ح	2.7	. •	A7.2	P6.2	0.
1500	3	ď	7.4	с. •	36 ,6	C •	
1530	1	۲	7.7	с .	ч ч ,6	Ū.	· ·
1600	t	Ľ	52	88.4	•	c.	•
1630	17	æ	۲. ۲	AB.2	9° V V	P6.1	•
1700	1	c.	7.3	86.1	9°2'	86.8	•
1730	t	ď	5.7	85 . A	ч6 ,6	85.7	0.
1800	4	۲	5	85 . 5	A5 , A	5.45	0
1A30	ţ	<u>د.</u>	52	A.16	42.4	9.6	•
1900	+	ď	۲٦	31.6	P1.7	79.5	C.
1930	ţ	ď	7.7	C.	0.		•
2000	4	æ	1 ,7	د •	••	70.4	-
2030	2	α	73	с .	•	60.5	•
2100	*	α	73	58.1	61.4	•	0.
2130	=	ھ	23	47.0	46.8	0.	0.

22

• --

				TUT	FNS1TY	(MWZCH SQ)	
RICIOIS	٢v٦	HINK	YFAR	٨K	ĿΚ	RES	٨IJ
1200	Ľ	œ	57	c •	0.	74.9	ς.
1230	ۍ	Ð	5.4	د	83.1	°.	•
1300	с С	~	7.3	92.9	83.8	c.	•
1330	ۍ	æ	52	86.8	86.6	A5.7	•
1400	ſ	~	5.7	87.4	R7.9	86.6	0,
1430	ц	۲	1.1	87.6	•	86.7	¢.
1500	ۍ	æ	53	88.0	•	۰.	•
1530	ŝ	¢	5.7	88.7	•	87.7	•
1600	Ŀ	£	52	A8.9	•	c.	•
1630	ŋ	2	* *	с .	A7.9	AB.40	0.
1700	с С	æ	52	84.7	9°3'8	Ah.9	•
1730	ß	æ	73	87.4	A6.6	85 . 0	0.
1A00	ŝ	ح	54	с.	A5.6	°.	•
1030	പ	۲	73	د.	•	د •	0,
1900	ſ	æ	73	82.9	A3.1	81.1	с .
1930	ഗ	æ	52	77.1	78.2	6.77	0.
2000	5 C	œ	73	73.5	70.07	73.3	•
2030	ഗ	æ	23	68 . 5	69.1	61.9	0.
21 00	ц С	æ	۲. ۲.	61.6	62.1	60.4	•

				T NT	rengi ty	(WW/CM SO)	
NUN	ΥΛΥ	HITUM	YEAR	ЛК	FΚ	RES	٨U
100	¢	ď	۲,	с .	•	57.6	•
1130	¢	۲	1	۰.	•	0.	•
L200	Ś	æ	73	с .	73.3	74.1	
1230	£	ď	52	77.1	79.1	75.5	
1300	Ś	۲	73	74.0	A0.1	с.	•
1330	Ś	er;	73	4 2 • 2	A5.1	5.42	•
1400	¢	æ	7.3	B4.9	6°90	84.7	•
1430	Ś	۲	73	86.1	1.7.	A5.4	•
1500	¢	~	73	87,0	R.7	R6.R	•
1530	Ś	۲	53	87.9	•	A6.a	•
1600	¢	C,	2	RB.7	40 , 1	A6.9	•
1630	Ś	ų	7.3	A.B. 3	•	R7.1	•
1700	S	£	7.1	A8.0	0.RA	R7.4	•
1730	¢	ح	73	87.5	A5.4	A5.3	
1 8 0 0	¢	۲	73	86.1	0.50	R4 • 7	•
1830	¢	ď	7.3	A3.7	76.5	с .	•
1900	¢	æ	2	A0.9	••	с •	•
1930	ç	e.	23	78.0	74.2	د.	•
2000	ى	¢	۲. ۲	۰.	74.6	0.	•
2030	S	c.	73	د.	79.8	0.	•
2100	S	ď	7.3	60.5	59.1	د •	•
2132	ę	۲	5	49.64	•	0.	•
2203	Ś	۲	73	с .	9 •92	с .	

PYRHELIOMETER DATA

IAV HINTLY INTER IAV HINTLY INTER IAV HINTLY INTER				1111	FNSITY	(NW/CM 50)	
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	₩ Υ Ω	INTU	Yr. Ar	ΛĶ	Ч	RES	20
	2	۲	۲٩	۱. د۲	•	c •	•
	7	æ	73	75.8	•	c.	•
> >	2	c	52	80°0	ů.	°	
 P P<td>2</td><td>~</td><td>7 4</td><td>83,A</td><td>A4 .5</td><td>0.</td><td>•</td>	2	~	7 4	8 3 ,A	A4 .5	0.	•
> > > > > > > > > > > > > > > > > > >	2	ď	73	c •	•	84.2	A6.6
> >	~	æ	5	с .	A7.6	86.6	87.6
7 7	2	¢	5.7	с •	•	c.	· -
7 7	~	۲	* *	c.	9(),2	c.	•
	2	æ	52	с .	A9.1	0.	90.2
7 7 <td>~</td> <td>c</td> <td>5.7</td> <td>с.</td> <td>0°0</td> <td>BH, P</td> <td>88.6</td>	~	c	5.7	с .	0°0	BH, P	88.6
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2	æ	5.7	с .	8°0'	A. 2	88.6
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2	8	5	с .	ተ የ የ	87.2	•
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2	¢	7.3	c •	95.6	Bh. O	
7 8 73 7 8 73 7 8 73 7 8 73 7 8 73 7 7 8 77 7 8 73 7 7 7 7 8 7 7 7 7 8 7 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7	2	¢	7.1	0.	A2.5	A3.5	A5,5
7 8 73 0 40.7 7 8 73 73.8 7 8 73 73.8 7 8 73 53.7 8 73 52.2 53.7 8 73 52.2 53.7 7 8 73 52.2 53.7	~	¢	52	с .	9.1A	A] • 4	•
7 8 73 73.8 77.2 7 8 73 73.8 77.2 7 8 73 62.2 63.7 7 8 73 46.3 70 73 62.2 63.7	2	æ	53	с .	Λ0.7	7R. N	82.4
7 8 73 62.2 63.7 7 8 73 46.3 63.7 7 8 73 46.3	~	α	52	73.8	5.77	с.	76.6
7 8 73 62.2 63.7 7 8 73 46.3 0	2	£	7 2	с .	69	U.	0
7 8 73 46.3 .0	~	c .	22	62.2	63.7		•
	٢	æ	73	46.3	0	с .	
7 9 73 .0 36.6	٢	æ	r.	0.	36.6	0.	0.

				TNT	FNSITY	(NW/C" SO)	
RUOH	IJΛΥ	HI NK	ሃና ላR	AK	Ч. Ч	RES	٨U
1130	æ	ď	11	c •	56.9	с .	•
1200	۲	ς	7.3	51. ^A	58.0	•	•
1230	α	¢	73	58.2	62.0	c.	•
1300	¢	æ	7.5	•	•	64.1	•
1330	~	æ	5	c •	66.2	c.	•
1400	c :	æ	7	с .	70.0	د.	71.4
1430	۳	æ	73	с .	•	c.	70.4
1500	æ	~		с .	77.0	c,	•
1530	æ	۲	2	0.	77.0	c,	•
1600	æ	c .	5	75.8	77.9	ç	•
1630	~	¢	5	ç	•	د •	•
1700	æ	£	5	•	79.8	c,	77.9
1730	æ	æ	52		79.6	c,	•
1 A U O	¢	æ	23		74.1	د.	•
1830	¢	ď	73	¢,	•	د.	•
1900	Ð	¢	73	с .	74.8	c.	•
1930	¢	~			0.	с .	•
2000	¢	£	73		45.9	c.	•
2030	¢	8	73	c.	34.6	c.	•
2100	¢	æ	73	с .	21.6	c.	•

26

•

(7	2	0.		•	•	•	0.			•
	RES	0,			۔	с.	0.	ļ		••
TFNSITY	Ч	c	•	•	•	52.5	45.2		N.H.N.	31.1
12	٨K	6 \ U		60.5	59°0	0		-	•	с .
	۲FAR	ŗ	2	73	7	2		2	5	5
	нтии	·	¢	¢.	α	; 4	c c	ε	α	۲
	ΓΛΥ		C	c	σ		5 (5	σ	¢
	NOUR		1400	15.30	1600		10.04	1930	2030	2130

•

-

				T I I T	FNSITY	(NW/CM SU)	
11011	ĹΛΥ	hd.rw:	የሮ ላR	Y V	¥	RFS	ΝŪ
1100	10	Ţ	۴L	0.	9° 06	c.	0.
11.50	10	¢	73	с .	•	د •	0.
1200	10	ď	5.7	48.0	1.8.7	.	•
1230	10	ď	5	51.0	52.1	د •	•
1300	10	د	73	56.A	Е0 °0	ē.	с .
1330	10	۲	"	61.Р	63 . 9	c.	°
1400	-	۲	7.3	65.1	•	د •	•
1430	10	c	н. Г.	69.2	•	61 . 0	•
1500	10	ď	5.4	68.5	•	0.	•
1900	1.0	œ	5.4	63.1	•	с .	•
1930	10	æ	5	59.6	•	с .	•
2030	10	æ	73	25.4	•	с .	•

Appendix C. Pyrgeometer data

والمراجع والمسوم ومريد

.

:

PYRGEOMETER DATA August 6, 1973

Ship	KRENK	RESEARCHER			
Sensor no.	6	611540			
	L 🕹	T	L¥		
	(mw/cm ²)	(°C)	(mw/cm ²)		
0200	39. 8	26.6	40.3		
0205	39.6	26.7	40.1		
0210	39.8	26.7	40.1		
0215	39.9	26.5	40.4		
0220	40.6	26.4	41.2		
0225	39.9	26.4	40.5		
0230	39.9	26.4	40_2		
0235	40.1	26.4	40.6		
0240	39.9	26.4	40.4		
0245	39-8	26.2	40.4		
0250	39.9	26.3	40.2		
0255	39.9	26.2	40.5		
0300	39.9	26.3	40.6		
0305	40.2	26.5	40.8		
9310	40.0	26.8	40.3		
0315	40.3	26.9	41.1		
0320	40.4	26.5	41.1		
0325	40.3	26.6	40.7		
0330	40.8	26.5	41.5		
0500	39-2	26.2	40.0		
0505	39.4	26.4	40.0		
0510	39.0	26.1	39.9		
0515	38.9	26.2	39.8		
0520	39.3	26.4	40.0		
0525	39.6	26.3	39.9		
0530	39-6	26.0	40.3		
0535	39.7	26.0	40.5		
0540	40.0	26.2	40.4		
0545	39.9	26.2	40.4		
0550	39-8	26.2	40.1		
0555	39.8	26.2	40.1		
0600	39.4	26.0	40.1		
0605	1 39 9	26 3	40 3		
0610	39 7	26.1	40 1		
0615	μ <i>μ</i> μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ	26.2	40 5		
		£V,£			