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PARABOLIC APPROXIMATIONS FOR GLOBAL ACOUSTIC
PROPAGATION MODELING

David R. Palmer

ABSTRACT -- Motivated by the difficulty in using the splitting matrix
method to obtain parabolic approximations to complicated wave equations,
we have developed an alternative method. It is three dimensional, does not a
priori assume a preferred direction or path of propagation in the horizontal,
determines spreading factors, and results in equations that are energy
conserving. It is an extension of previous work by several authors relating
parabolic equations to the horizontal ray acoustics approximation. Unlike
previous work it applies the horizontal ray acoustics approximation to the
propagator rather than to the Green’s function or the homogenous field. The
propagator is related to the Green’s function by an integral over the famous
“fifth parameter” of Fock and Feynman. Methods for evaluating this integral
are equivalent to narrow-angle approximations and their wide-angle
improvements. When this new method is applied to simple problems it gives
the standard results. In this paper it is described by applying it to a problem
of current interest—the development of a parabolic approximation for
modeling global underwater and atmospheric acoustic propagation. The
oceanic or atmospheric waveguide is on an Earth (or other heavenly body)
that is modeled as an arbitrary convex solid of revolution. The method results
in a parabolic equation that is energy conserving and has a spreading factor
that describes field intensification for antipodal propagation. Significantly, it
does not have the singularities in its range-sliced version possessed by many
parabolic equations developed for global propagation. The work is
generalized to allow for refracted geodesics and the possibility the depth

dependence of the pressure field can be described by adiabatic normal modes.



1. INTRODUCTION

In the years following the introduction of the parabolic equation method to sound
propagation in the ocean (Tappert and Hardin, 1973; Hardin and Tappert, 1973), a
great deal of work was done not only in applying it to propagation problems but
also in developing improvements on the method. Approximations and computational
schemes were developed that more realistically account for the characteristics of the
ocean and its boundaries and reduce the restriction to narrow-angle propagation.
Fortunately several excellent early (Tappert, 1977) and recent (Brekhovskikh and
Godin, 1999; Lee and Pierce, 1995) reviews are available since the literature is too
large to provide citations to all the relevant work.

A common technique for deriving the standard parabolic equation and improve-
ments to it has been the splitting matrix method where a wave equation is factored
into two contributions representing forward and backward propagating waves. This
method was first developed by H. Bremmer (1951) for the one-dimensional problem
and latter generalized to three dimensions by Corones (1975) and Tappert (1977). In
this approach it is assumed a particular direction in the ocean medium is singled out
by the nature of the source excitation and the dominant portion of the acoustic energy
propagates in this direction without significant backscatter. For a discussion of this
point-of-view, see Corones, DeFacio and Krueger (1982). The square-root differential
operator in the forward-propagating one is then approximated in some fashion to
obtain a useful parabolic equation. Many times this approximation is done so as to
reduce the dependence of the solution on the reference sound speed thus relaxing the
narrow-angle approximation.

Most of these early studies applied the parabolic approximation to the Helmholtz
equation

[V2 + k2n?(%)] p(Z) = 0 (1)

in Cartesian coordinates. Here a source radiates at angular frequency w, where kg =

w/co with co some reference sound speed, n(Z) = co/c(Z) is the index of refraction, and

c(Z) is the speed of sound at the point Z = (z,y, z) in the ocean medium. Sometimes

the Laplacian was modified to account for a variable density field, V? — p(a‘:’)ﬁ .

((1 /p(Z)) 6), and sometimes currents were included by introducing an effective sound

speed equal to the actual sound speed shifted by the component of the current in the
direction of propagation.

When one considers more complicated wave equations, however, progress has
been slow in developing useful parabolic approximations using the splitting matrix
method. We illustrate this with three examples. First is the problem of obtaining
parabolic approximations to the elastic wave equation (Corones, DeFacio and Krueger,
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1982; Hudson, 1980; Landers and Claerbout, 1972; Wales and McCoy, 1983; Greene,
1985; Wetton and Brooke, 1990; Collins, 1991; Collins, 1993a). Although considerable
effort has been devoted to this problem, parabolic equations have only been developed
under limiting conditions that include consideration of a two-dimensional rather than
a three-dimensional medium, Lamé parameters that are range independent or have
very small spatial gradients, or very special types of propagation.

Second is the problem of obtaining parabolic equations for propagation in a
moving inhomogeneous fluid. As a result of the work by Brekhovskikh and Godin
(1999) and Godin (1987), it is now known that many of the earlier approximations,
including the use of an effective sound speed, cannot adequately account for the effects
of the motion in many important and practical situations. The appropriate wave
equation, correct to first order in the Mach number, is complicated and considerable
ingenuity has been devoted developing parabolic approximations that are wide-angle,
conserve energy, obey the flow reversal theorem and boundary conditions consistent
with the parabolic approximation (a requirement ignored in most studies) (Godin,
1991; Godin and Mokhov, 1992; Godin, 1998a; 1998b; 1999). Most progress on this
problem was obtained using the multiple-scales approach (see below) rather than with
the splitting matrix method because of the problems associated with the splitting
matrix method discussed here (A. O. Godin, private conversation, 1998).

A final example is the problem of developing parabolic approximations for wave
equations in curvilinear coordinates with the purpose of modeling global acoustic
propagation (Collins, 1993b; McDonald et al., 1994; Collins et al., 1995; 1996). It is
common to reduce the problem to a two-dimensional one by introducing local normal
modes and by ignoring, for the most part, mode coupling. The matrix splitting
method is then applied to the resulting equation in the horizontal coordinates to
obtain a forward-propagating parabolic equation. The range-sliced version of this
equation, needed to obtain a marching algorithm, has singularities (Collins et al.,
1996). These singularities result from the fact that the commutators in the Baker-
Campbell-Hausdorff formula used to develop the range-sliced expression cannot be
dropped for small range intervals. They actually become more singular with order,
regardless of the size of the range interval. The range-sliced marching algorithm, as
well as the closely-related range-sliced path integral representation, are only valid in
Cartesian coordinates. This point has been discussed in detail in the literature. See,
for example, Bshm and Junker, (1987), where many important papers on this subject
are cited including those describing techniques for scaling variables to eliminate the
singularities. These scaling techniques are only now being applied to wave propagation
problems. This problem of singularities would exist even if the three-dimensional wave
equation had been considered rather than the reduced two-dimensional one.

For these complicated wave equations, the splitting matrix method is not very
easy to apply. It is not always obvious how the factorization should be done nor is
it obvious how the resulting differential operators should be approximated to obtain
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wide-angle equations. Normalizations and spreading factors are not easy to obtain.
(The quantity 1/4/r in Eq.(2) below is a spreading factor.) With few exceptions, e.g.,
Tappert, Spiesberger, and Boden (1995), studies that use the splitting matrix method
ignore the determination of the spreading factor.

It seems worthwhile then to consider new approaches to developing parabolic
approximations that might have application to complicated wave equations. In de-
veloping them we are guided by four principles (prejudices actually):

A. One should start with equations that are three dimensional. By starting with
two-dimensional equations one has already made an assumption about the nature of
the propagation. One has assumed there is no scattering of the acoustic field out of
the surface defined by the two coordinates. If this is a valid assumption, it should be a
consequence of the process of making the parabolic approximation and not something
imposed on the problem from the outset and considered as a separate, unjustified
approximation. One should also not approach the three-dimensional problem by
patching together solutions to the two-dimensional one. One should be able to start
with the three-dimensional problem and show that its solution can be written, with
appropriate approximations, in terms of solutions to the two-dimensional problem if
this patching process is valid.

B. One should not assume any preferred horizontal direction or path for the
propagation. In Corones, DeFacio and Krueger, (1982), one reads, “...the parabolic
approximation is used when a particular direction is singled out in the medium by
the nature of the excitation...The direction is distinguished by the excitation, not by
the medium.” While this statement may be valid for laser propagation through the
atmosphere where the radiation is emitted in a narrow beam, it cannot be valid for
low-frequency sound propagation in the ocean because low-frequency sources (exci-
tations) are essentially omnidirectional. If there is a preferred direction or path it
should be defined by the characteristics of the medium and should be determined in
the process of making the parabolic approximation.

When one writes a wave equation in terms of cylindrical coordinates (r,p, z) and
discards derivatives with respect to ¢, one has already assumed a preferred direction.
It is the direction of the straight line along the radial connecting the source to the
receiver. When one writes

eikor

p(r790)z) = 7;‘1#(7390%) (2)

for the pressure field and assumes v varies slowly with 7, one has also defined a pre-
ferred direction. This is an important point because more complicated wave equations
may not have a preferred direction along the radial but in some other direction in the
horizontal plane. If horizontal multipaths are present the preferred direction is not
unique or it is undefined.



C. The approach should provide a way for determining spreading factors. While
for some applications spreading factors are not important, it is difficult to imagine a
systematic, general method for developing parabolic equations that only determines
part of the field.

D. A general parabolic approximation method should consist of two distinct types
of approximations: those related to horizontal variation; a preferred direction of prop-
agation along a horizontal multipath, no backscattering, no out-of-plane propagation,
etc. and those related to vertical variation; narrow-angle and wide-angle approxima-
tions. When one considers the application of the parabolic method to simple problems
these two types of approximations are distinct. For example, only the first type is
needed to develop a parabolic equation for the propagation of a single adiabatic mode
in a range-dependent waveguide while only the second type is needed for propagation
of a field in a range-independent waveguide described by a modal sum. One might
expect that a method applicable to more complicated problems as well as these simple
ones would not mix the two types of approximations.

In developing an alternative to the splitting matrix method based on the above
considerations we are motivated by three observations. First, by working order-by-
order in perturbation theory in the range-dependent part of the index of refraction,
it was found many years ago (Palmer, 1976) that the solution to the Helmhotz equa-
tion could be written in terms of the solution to the standard parabolic equation by
making a horizontal eikonal approximation followed by the stationary-phase approxi-
mation of an integral over the “fifth parameter” of Fock, (1937) and Feynman, (1951).
The stationary-phase approximation was shown to be equivalent to the narrow-angle
approximation. A completely different approach, based on the use of path integrals
rather than perturbation theory, gave the same result (Palmer, 1979). (In this case,
horizontal ray acoustics was assumed rather than the closely related horizontal eikonal
approximation.) Second, an alternative to the splitting matrix method is the method
of multiple scales in which the horizontal variables are scaled differently from the depth
variable (Tappert, 1977; Siegmann, Kreigsmann, and Lee, 1985; Kreigsmann, 1985;
Orchard, Siegmann, and Jacobson, 1992). This method leads to the factorization of
the field into a function that obeys the parabolic equation ( e.g., 1) and a kinematic
factor that is dependent on only the horizontal coordinates ( e.g., exp (ikor) /A/T).
The multiple scales method is closely related to the method used by Brekhovskikh
and Godin (1999, Section 7.2) to develop horizontal ray theory for a weakly range-
dependent, three-dimensional medium. Finally, it is well known that there is a close
relationship between ray acoustics (geometric optics) and parabolic equations (Myers

and McAninch, 1978; McAninch, 1986; Babi¢ and Buldyrev, 1991, Chap. 6).

The method we propose then amounts to a horizontal ray acoustics approxima-
tion followed by the approximation of the integral over the Fock-Feynman parameter.
It satisfies the four principles we discussed above. Its validity is based on the fact
that horizontal scales of variability in the ocean are much greater than vertical ones.
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The only aspect of this method that is different from what others have done is that
we apply the horizontal ray acoustics approximation not to the wave equation but to
the equation satisfied by the propagator. The two are related by an integral over the
Fock-Feynman parameter. This is the key aspect of the method because this propa-
gator obeys (exactly) a four-coordinate parabolic equation. Approximations such as
the horizontal ray acoustics approximation essentially reduce its dimensionality.

To illustrate this method we apply it to the problem of developing a parabolic
approximation for the wave equation in curvilinear coordinates appropriate for mod-
eling global acoustic propagation. We do not assume the Earth is spherical or even
ellipsoidal but only that it is a convex solid of revolution. In this illustative example,
we assume that currents can be ignored.

This report is organized as follows. In the next section we characterize the
ocean wave guide on an Earth modeled as a solid of revolution. In Section 3 the
propagator for the Helmholtz equation (modified to include a deep-dependent density
variation) and the Fock-Feynman parameter are introduced. In Section 4 we factor
the propagator and apply the horizontal ray acoustics approximation. The eikonal
and transport equations are derived and solved. We provide a detailed solution to the
transport equation that determines the spreading factor for this problem. Section 5
treats the vertical equation and the stationary phase approximation. When applied
to the simple Helmhotz equation in Cartesian coordinates it produces the standard
narrow-angle parabolic equation. In many situations one wants to do better. One
extension would be to include the possibility of horizontal refraction and horizontal
mutipaths. Another extension would be the description of the depth dependence of
the pressure field by use of normal modes. Section 6 contains of discussion of these
possibilities. Finally, in Section 7 we summarize the approach used in the paper.

2. THE EARTH AS A SOLID OF REVOLUTION

The Earth is assumed to be a solid of revolution with, when viewed from space, a
convex surface everywhere. The origin of the Cartesian coordinate system is centered
in the Earth with the axis of rotation the z-axis. The position vector from the origin
of this coordinate system to a point on the Earth’s surface is

Ts=xsT+ysy+z2s2 (3)

where Z, 9, and Z are unit vectors along the coordinate axes. Since the axis of rotation
is the z-axis, one can write

Ts = pg(p,) cos A
ys = ps(p,) sin A



where ¢, is the geocentric latitude

@y = arctan %
VZst+Ys

and A is the longitude.

2.1 Unit vectors

Consider the directed line segment from the point on the surface with coordinates
(¢,,A) to the nearby point (¢, + 6p,, A +6X),

0Ts = bxs T + Oys J + 625 2 (4)

where 6zs = z5(p, + 6¢,, A+ 6A) — z5(p,, A), etc. To second order in the quantities
6y, and 6\ we have
bzs = plgcos A8, — pgsin XX

1 2 1 .
+§pg cos A (6p,)" — 5Ps cos A (6M)? — plgsin A 6, 6
bys = pssin Abp, + pgcos A6X

1 1
+§p’§ sin A (6(,09)2 ~5Ps sin A (6X)% + pls cos A6, 6X

1
bzs = 2g b, + Ezg (6(,09)2

where a prime indicates differentiation with respect to ¢,. The terms linear in the
infinitesimals are used to derive expressions for unit vectors and the quadratic terms
are used to derive expressions for radii of curvature.

The unit vector tangent to the surface and in the direction of increasing A is

« O0Zg
=/

O0Zg

X =—sin\Z+cos A ¢ (5)

It is convenient to define a second unit vector in the x-y plane orthogonal to 5\,
Pg =cosA T+sin g (6)
The unit vector tangent to the surface in the direction of increasing ¢, is

O0Zg

Oy,

0

_ PsPstzsZ
%= B, (7)

- 3

/
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with

£=1/(ps)? + (25)? (8)
Finally, the unit vector normal to the surface is
SN v o zs Ps — Ps 2
=X @, == 9)
3
In terms of these unit vectors we have
Ts = ps(p,) ps + 2s(p,) 2 (10)
. Zs . . .
Eg = —— =cosp, ps +singp, 2 (11)

|Zs|
and X

1 2 .
g |(orl +262%) (80,)" ~ psrls (V'] &,

l 1 oY (6 2 O 19
‘*‘25 (25Ps — Ps?s) ( SOg) pszs (6A)°| N (12)

The differential line segment tangent to the surface is
dfs =€ dp, ¢, + pg dX A (13)

and the differential arc length is

ds = |ds| = /€2(dp,)? + p}(dN)? (14)

2.2 Radii of Curvature

At a point on the surface (¢,, A), there are two principal radii of curvature; the
meridional, describing curvature in the ¢, —7 plane and the prime vertical, describing
curvature in the A — A plane. We discuss first the meridional. Consider two points in
the meridional plane at (¢,, ) and at (¢, + 6¢,, A). The directed line segment from
the first point to the second can be written as

0Zs = 0z, @y + 6T 1 (15)
The meridional radius of curvature p is given by the expression

1. (62,)°
= =g imss, 05

(16)



provided the limit exists. If p > 0 the surface is convex at the point (cpg, A) with
respect to the origin (like a sphere’s outer surface) and if p < 0 the surface is concave.
By setting 6A = 0 in Eq.(12) we find

1
62, = E8¢, + 55 (Psps + 2575) (660,)”

and
AN/

1 2
b = 5 (2sbls = Plsts (8,)
Substituting into Eq.(16) gives
63
= ——— 17
" T = )
The prime vertical radius of curvature is determined in a similar fashion to be
y=Lot (19
s
The differential line segment, Eq.(13), can now be written

o R vz, -
dZg = 6—% (Pszg — zgps) do, @, + Tsd/\ A (19)

2.3 Geodetic Latitude

The geocentric latitude is the angle between the position vector and the equatorial
plane
@, = arcsin (&g - 2) (20)
The geodetic latitude ¢ is defined to be the angle the normal to the surface makes
with respect to the equatorial plane

¢ = arcsin (7 - 2) (21)

Clearly

Ps 2g
— ; cosp = —= 22
¢ : | (22)
The geocentric and geodetic latitudes are equal only if the Earth is modeled as a
sphere. To see this we note that if ¢, = ¢, then

sinp = —

zs —Ps
— =tanyp, =tanp = —=
Ps I zg



or

d
g (Ps+25) =0

9
giving the defining equation for a sphere

x% 4+ y2 + 22 = constant
In terms of the geodetic latitude

Py = —sing pg+cosp 2

and
N = cosy pg+sing 2
From Eq.(13),
dZs & &
7 (P’ 9
S0
¢ =%, (23)

where the sign is determined by the sign of ¢’ = dyp/dy, since £ > 0. This derivative
can be expressed in terms of the derivatives of pg and zg by differentiating both sides
of the equation tan ¢ = —pl /2 with respect to ¢,. That is

) _ _sinp zgdcosp py  pPszg — PZs
o ¢ - ¢
or
o' =¢ (24)

Since we are assuming the Earth has a convex surface everywhere p > 0. Therefore
¢ >0, p = @,, and there is a one-to-one relationship between the two latitudes
enabling us to replace ¢, with ¢ as the independent variable. This is an advantage
since oceanographic data are referenced to the geodetic rather than the geocentric
latitude.

The basic coordinate transformation equations can be re-written as

Tg = VCOS (Ccos \ (25)
Ys = v cos psin A (26)
zg = xsing (27)
The differential line segment is
dZg=pdp @+ veosp di A (28)
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Observing from this relation that

) |d2s
we obtain
, [d > rd 2 .
p = (3{; (Vcow)> + (3(; (xsm@)) (29)
Since
Zgsing + pycosp =0
we have 4 (xsing) a( )
i X sin @ veos
sin p—=—= + cos p———= =0
Ty Py
These equations yield
cot p dv
=pll— -
p=v T (30)
and the useful relations
-d—(u sp)=—psing ; —d-( sinp) =+ (31)
o Cosp) = —pusmey dcpx p) = Tpcosp
The arc length is
ds = \/ 122 (dp)® + 12 cos?  (dA)? (32)

The unit vector directed from the point with coordinates (p,A) to the one with
coordinates (¢ + dp, A + d)) is

dEs  dyp X -
§=—==p—-p+veosp — A (33)

The unit vector 8 can also be written in terms of the angle o the differential line
segment makes with respect to @, i.e., the angle between dZ¥s and “north”

§=cosa @ +sina (34)
where cos a = p (dp/ds) and sina = veosp (dA/ds).

‘We define

E(p) = Vulp)v(p) (35)

The length R(p) will play an important role in the development of the parabolic
approximation. Since the Earth is almost spherical, it is possible to write

11 |
7o) = 7)) (36)
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where R is the mean radius of the Earth and g is a function of order unity. The small
parameter 7 is a measure of the deviation of the solid from a sphere. If the Earth is
taken to be an ellipsoid, 1 would be the eccentricity squared, n = 1/150 (see, e.g., J.
Dworski and J. A. Mercer, 1990).

2.4 Unit vectors revisited

We list here the unit vectors that have been introduced with their differentials.
‘We have

@ =—sinp pg+cosp 2 (37)
A=—sinA&+cosAg (38)
7 = cosp Pg +sinp 2 (39)
Pg=cosAZT+sinA g
=cosp A —sing O (40)
For the differentials we have
dp = —sing A dA - di (41)
d\ = —pg dX (42)
di = cosp X dX + § dy (43)
and A
dpg = A dA (44)

2.5 The Laplacian operator and the delta function

The position vector to a general point in the ocean, below the surface, is

A

T =1Zg— (N

where Zg is the position vector of the point on the surface directly over the point of
interest, ¢ (> 0) is the depth at that point. Propagation in the atmosphere can be
considered by simply changing the sign of (. The differential line element is

di = diis — d¢ 7 — ¢ dis

= (=) dp o+ (v—C)cosp dA A—d( 7

where we have used Eq.(43). The differential volume element is
d*% = (u— ) (v = ¢) cos p dpdAd¢

12



Also

2 _ 1 ﬂ(____V—C _8_)
v =0 - cospdp \u—¢ % By

1 o2 1 0 0
e o (PO 9%) @)
and
@) (7 — To) = ! sin @ — sin - -
) ( ) (,LL—C)(V—C)(S( 14 900)6(’\ )‘0)6(C CO)

In writing these relations we have used the fact that v and p are functions of ¢ but not
of A and ¢. For many problems it is not V2 which is of concern but rather pV - (p~!V)
where p is the density of the medium. Because of stratification p is usually assumed
to depend only on the depth variable ¢. If this is the case, the last term in Eq.(45) is

replaced with
A2 (1=96-02)
(b= —¢)o¢ p(€) &

In most work on global propagation, a “thin-ocean” approximation is made. That
is, since the depth of the ocean is much less than the radii of curvature, { < v and
¢ < p, it is valid to replace v— ¢ with v and p—( with p everywhere in the expressions
above, even before differentiation with respect to ¢ or . With this approximation,
we have

dZ = pdp §+veosp dA A —d¢ A (46)
and
dBr=J (¢)dpdAdC ' ’ (47)
where
J(p) = precosp (48)
Moreover 5 /19
V. (p7V) = V2 + —(——) 49
where ) 5 5 P
s _ 1 [0 (vecosp 8§ _p 0
V= T0) [390 ( 7 3%) * Vcossor?/\z] (50)
and 1 _
5® (Z - o) = m‘s (= ©0) 6 (A= 2X0) 6 (¢ — <o) (51)

The “thin-ocean” approximation can be relaxed by scaling and redefining the index
of refraction, See e.g., Tappert (1977) or Collins (1993b). If we had done this scaling
the analysis would be unchanged, we would have simplied ended up with expressions
involving the redefined index of refraction.
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3. GREEN’S FUNCTION AND THE PROPAGATOR

The equation for G the Green’s function or impulse response function for the
time-independent problem is :

@9 (o59) + (@) Gl an) = -6 (5 - ) (52)

for a point source located at Zp = (o, Yo, 20). The Green’s function will also satisfy ap-
propriate boundary conditions at the surface and bottom of the ocean. In developing
parabolic approximations, many authors begin with the wave equation appropriate
for a source-free region of space (e.g., Eq.(1)) . We prefer to begin with Eq.(52) so
that a separate analysis is not needed to account for a source. This analysis involves
solving for the field on a surface close to the source and then matching boundary
conditions on that surface. It should be noted in this regard that general, linear
equations for sound propagation were derived in Brekhovskikh and Godin, (1999),
(Egs. 4.1.9-4.1.11) by including from the outset acoustic source terms.

It is not Green’s functions, however, that obey parabolic equations and marching
algorithms, but propagators. The two are related by an integral over 7, the Fock-
Feynman parameter (Fock, 1937; Feynman, 1951)

C(%| %) = — / dr ™2 (1, ) (53)
2ko Jo
The propagator function @ is defined by the equations
[zikoa% +pV (%6) - 2k§V(§:’)J d(r;#)=0;7>0 (54)
and
Limr_o®(m; &) = 6@ (& — &) (55)

where the sound speed variation is

1,
2[n (:c)—l]

Equation (53) is easy to verify using integration by parts. Convergence is assured by
assuming, as always, that the wave number kg has an infinitesimal, positive, imaginary
part. The functions ® and G obey the same boundary conditions at the surface and
bottom of the ocean.

46

In our view, all parabolic approximation methods should start with equations
analogous to Egs.(53)-(55). Approximations to ® should then be made based on the
physics of the problem. For example, for laser propagation in the atmosphere, there is
a preferred direction determined by the source beam whereas for low-frequency sound
propagation in the ocean, horizontal spatial scales of variability are some two-orders
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of magnitude greater than vertical scales and always much larger than the wavelength.
Such physical considerations justify approximations to ®.

In terms of the curvilinear coordinates introducted in the previous section, Eqs.

(54) and (55) become

2iky2- + V5 + i(l i) % V(so,A,o} oA =0  (56)

and

Limr—»O(I)(T; ®, )‘7 C) J( ) ((P (pD) 6 (A )‘0) 6 (C CO) (57)

with V% given by Eq.(50).

4. HORIZONTAL RAY ACOUSTICS
4.1 Separability and the ray acoustics approximation

We write @ as the product of two factors
d=HU (58)

and require that H be independent of the depth coordinate and obey a parabolic
equation in the horizontal coordinates

0

[QZkob-; + V%jl H(T, @, /\) =0 (59)

Lim, o H(r,9,3) = F=8 (o = 20) 5 (A = X) (60)

As we shall see, the field H will determine spreading factors and the path along
which the field ¥ propagates. The field ¥ , on the other hand, will reflect the dynamic
effects associated with a variable sound speed. The factorization in Eq.(58) of the
solution to a wave equation into functions having different coordinate dependences has
been used by many authors in the development of parabolic approximations (Myers
and McAninch, 1978; McAninch, 1986; Babi¢ and Buldyrev, 1991). It is analogous to
the factorization of the solution to the Helmholtz equation (Eq.(2)) that is often the
starting point in the development of the standard parabolic approximation for the two
dimensional propagation problem in range and depth. In the path integral approach
(Palmer, 1978; 1979) where it is as easy to develop ray acoustics approximations in
one or two of the three coordinates as in all three, the factorization is not an Ansditz
but rather a consequence of making the horizontal ray acoustics approximation.
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We assume horizontal spatial scales are large enough compared to the acoustic
wavelength that the ray acoustics approximation is valid when considering horizontal
wave motion. We do not make any assumption about the vertical scales of variability.
Following the general procedure developed by Weinberg (1962) we write Eq.(59) as a
system of first order equations

2ikoJO/OT d/dyp ©9/oA H
d/0¢p —p/ (veosyp) 0 H, | =0 (61)
0/OA 0 — (veosy) /u H,

and assume a common exponential factor

H bl
H, |=| H, |exp(ikoA) (62)
H/\ H)\
so that
2ikoJ (ikoOA/OT + 8/0T)  ikodDA/Dp + B/Bp  ikoDA/ON + H/ON
ikoOA/Op + 80y —p/ (veosyp) 0
1koOA/ON+ H/ON 0 —veosp/u
H
x| H, |=0 (63)
H,

Consider one element in the square array above, say the element in the top row and
middle column, ikgdA/Op + 0/dp. This element will contribute to the differential
equation the expression

In this matrix approach, the rule for developing the lowest-order ray acoustics approx-
imation is to ignore in the matrix elements gradients of H (or A, and H,) in com-
parison to terms involving kp times the corresponding gradients of A. This rule is
justified by using the traditional approach, i.e., writing the matrix equation as a single
equation, expanding the H in a series in 1 /ko, separating real and imaginary parts
and equating like powers of kq. It cannot be justified by considering individual matrix
elements such as the one above because the terms involving A and H are in general
complex. In the present case the advantage of using the matrix approach over the
tranditional approach is that it is very easy to apply the ray acoustics approximation
to individual coordinates separately. This will become clear when we consider the ray
acoustics approximation for W.
Applying this rule to Eq.(63), we obtain, in lowest order, the two equations
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—2k2JOA)OT ikoDA/Dp ikoDA/ O\ H
ikoOA /D —p/ (veosp) 0 H, |=0 (64)
1koDA/ON 0 —veosp/u H,
and
(A H, H] 2ikeJB/BT  B/Bp  B/OA H
a9/ 0 0 H, |=0
9/ 0 0 7y
(65)
Equation (64) gives the eikonal equation
A 1 (B8A\® 1 BA\?
o toE (5;0') t ety (5) =0 (66)
which determines A. The factor H is determined by the transport equation
0 10A0 1 0Ad fo w2 A
<37'+p,2 6(,08(,0-]-1/%05290 1)) 8)\> nH"+VsA=0 (67)
which follows from Eq. (65) after Eq.(64) is used to express H,, and H) in terms of H,
o VCospOA L DA -
H<p— ko a(pH, HA_szVCOS(pa/\H (68)

4.2 Solving the eikonal equation: ray paths

The eikonal equation, Eq.(66), is solved in the usual way by introducing ray
path coordinates, i.e., auxilliary functions ¢,(0), ¢,(0), ¢:(0) and their conjugate
momenta p,(0), py(0), pa(o) of a variable o defined on an interval, op < o < 07,
that satisfy the end-point conditions

4r(00) =0 ; grlon) =7 (69)
9(00) =9 ; gp(o1) =0 (70)
n(oo)=X ; (o) =A (71)

pr(on) = o2 (72)
po(01) = % (73)



ne)=28 (74)

The initial values for the momenta are picked so that £(og) = 0 where

£(0) = pr(0) + 3y s + g7 (a0 (75)

is the Hamiltonian function. Here we introduce the notation

he(0) = 1(gp(0)) 5 ha(0) = v(gy()) cos(gy(0)) (76)

The eikonal equation is equivalent to £(c;) = 0 and will be satisfied provided

dé(o)
do =0

This condition, in turn, is assured if the path variables satisfy Hamilton’s equations

dg,

P 1 (77)
dg, 1
do nz Py (78)
dq,\ _ 1
o - h}p’\ (79)
and
dpr
=< =0 (80)
do,  1[8 (1N, 8 (1),
o2 [c’m (h2> " g, \B) P (&
dpy
From Egs.(69) and (77) we have
g(0)=0—0¢p ; O1—0o=T (83)

In general, the eikonal A is given by the integral

o1

_ dg: dq, dg

A= /dcr [p,, Py + A (84)
g0

According to Eqgs.(77)-(80), this integral can be rewritten as
o1
A=71p. + / vido (85)

]
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where
ds 1 1
V= Zi— = h—2pi + FP?\ (86)
© A
Because £ =0,
—2p, = v? = constant

Therefore

. A=—-7p, (87)
Consider now the path length

s(o) = 7(13 = 7v(cr')d0’ = (6 — do) /-2 pr (88)

Equation (87) becomes
52
A= > (89)

Here S = s(0y) is the total path length along the ray path. This remarkable expression
gives the functional dependence of A on 7 since S is independent of 7.

4.3 Derivatives along the ray path

Consider a function f = f(gr,qy,qr,¢) of the depth variable { and the path
variables. The derivative of f along the path is '

o _da 0f | dep OF | dox Of
do doOq, dodq, do dg,

of 1 of 1 of
"~ g, + hgp‘pé)qw + h?\p’\c'?q,\
If this expression is evaluated at the end point o = 01, we have
a,  _me)Q  1049f(re Q) 1 9Adf(r,9,1,0)
do'o=o1 or w? Op Op V2 cos? p O\ 1))

(90)

One can change the independent variable in the ray paths from o to the path
length s since v(s8) = ds/do does not change sign. It is, in fact, a constant equal to
S/7. Equation (88) is first solved for ¢ in terms of s,

38
1 T
o(s)=00+ / ;ds’ =00+ 53 (91)
0
and new ray path coordinates are introduced

Tray(8) = ¢r(0(s))
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(;O'ray(s) = q(p(O'(S))
Aray(8) = ar(o(s))
defined on the interval, 0 < s < S, that satisfy the same end-point conditions sat-

isfied by ¢r, g, and ¢». In terms of these new path variables, a function f(s,()) =
F(Tray(8), Pray (8), Aray(8), ¢) has a derivative with respect to path length given by

O _[de 0 ds, o o)
0s do OTray  do 8p,,,  do Oy

where the derivatives with respect to o are evaluated at o(s). At the end point of the
path this expression becomes

S[of]  _ofne\g  10A5/(r,0,A0) 1 0A9f(1,9,),¢) (92)
T 10s],_g or w? Oy Op V2 cos? p OA O

We have reverted to using a partial derivative on the left-hand-side of this equation
to remind ourselves f can be a function of depth as well as of the path variables.
By making this change in the independent variable, we will end up with equations
that, unlike Eqgs.(59) and (129) (below), involve T as a parameter rather than as an
independent variable thus simplifying the evaluation of Eq.(53).

The unit vector along the ray path can be constructed from Eq.(33)

Sy dgy (o) dgr(a) 1 ,ds
5(0) = (1ol) 22 4 ha(o) 500 5) /22 ©
which at the end point of the path becomes
S, 104 1 0A .
;S(UI) - ;% vt v cosp OA A (94)
4.4 Solving the transport equation
If we make the identification in Eq.(90)
flo1) = f(r,0,0) =ln F?
Eq.(67) becomes
af
%la:al + ng =0 (95>

For this expression to be useful, we must write VZA in terms of path variables eval-
uated at the end point ¢ = 0y. To this end we define

Aulo) = 20,0
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and

M) = 72 3n(0)

1 8A (0'1) BA,\(O'l)
J(p) 590 - ]

Because V%A involves derivatives with respect to ¢ and ), the end-point values
of the path coordinates g, and gy, it is clear it cannot be written as a function of the
path (evaluated at the end point). What is needed, in addition, is a perturbed path
whose coordinates differ at the end point from ¢ and A by infinitesimal amounts 8¢
and 6A. The perturbations 6A, and §A, evaluated at the end points, will involve
derivatives of A, and A, with respect to ¢ and A. These derivatives can be used to
construct V4A. In addition, since V4A does not involve a derivative with respect to
T, it can be held fixed.

There is some freedom in the choice of how the path is perturbed. The perturba-
tion can be induced by changes in any set of parameters that, together with ¢, and
Ao, characterize the ray. Here we will use a set that exploits the fact that p, and p,
are constant along the ray path. Motivated by consideration of the exact ray-path
solution for a spere, we define

W=+-2p ; P=%’>— (96)
The derivatives of the paths can be written in terms of W and P as follows:

dgn Ay WP
e _ e ¥ [p2__p2 . 22X _ A
Mo e =T h3

So that
V2A =

(97)

Now A,(01) and Ax(01) depend on ¢ and A (as well as T) so we can write the
matrix equation

0A,(01)/0W BA,(01)/OP
aA)\(O'l)/aW BA,\(al)/aP]

BA‘p 01)/0 BA‘p o1) /O
[ 6A,\é01;;6:§ 6AA((01));5~,\ ]Q (1)  (98)

where

_ | 0a0(c)/OW Bgy(0)/OP
Qo) = [ 9g)(0)/OW  Og\(0)/OP ] (99)

Equation (98) can be inverted provided that the determinant of @,

R

does not vanish at 0 = 7. (Caustics are located where det Q = 0.) By taking the
trace after inverting Eq.(98) we obtain

24— L oo || 0Ap(01)/0p DA,(01)/ON
Vsh =505t {[BA,\(Ul)/Bcp BAy(01) /O ]}
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_dInD(0)
=— oo, (101)
where
D(0) = J(g,(0)) det(Q(0)) (102)
This result was arrived at by using the relation
dD aA BqA aA,\ 8q¢ (W — P) (103>

do ~ OW 0P W P

which follows from the equations of motion. Except for the presence of the function
J(g,), the derivation of Eq.(101) is identical to the usual derivation for the Cartesian
problem using Liousville’s formula (see, e.g., Brekhovskikh and Godin, 1999, Sec.
5.1).
Combining Eq.(101) with Eq.(95) gives
Loy # 20D, =

0—01 g=01

This equation can be solved by solving the more general one

df(o) 4 _
_d-O'_--l-Zi_ElnD(a) =0

and evaluating the result at 0 = 0,

- 1
H=¢C
.D(O'l)

where C is an integration constant. It can be determined by considering the solution
to the parabolic equation at a point (¢, X,7’) where ¢/ and ) are located in a
neighborhood of the source at ¢, and A\ taken small enough so that p and v cos ¢ can
be considered constant within it. The solution to the horizontal parabolic equation
at (¢', XN, 7') that satisfies Eq.(60) is simply

k ikg
H(r';¢,N) = ( > >exp{27, [uo (¢ = po)” + v cos” o (N = /\0)2]}

2miT!

where py = (@) and vy = v(p,). We take the point (¢/, X',7') to be along the ray
path from (g, Ao, 0) to (¢, A, T);

(pl — q¢(01) ; AI —_ qA(a’) ; 7_I —_ O.I — 09

The variable ¢/ — 0y < 7’ is necessarily small enough so that the ray paths can be
approximated by straight lines,

() = 0 = (¢ = 00) G2(00) = (0" = 00) 7 vhcos? o = P
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() = o = (0 = 20) G2 (00) = (0 = 00) s

It is clear from these expressions that D(o’) can be written in the form

1 ,d2D

Do) = 5(¢’ - 5025 (20)

(104)

(The second derivative in this expression is, in fact, equal to 2W?2/A,(0p).) Since

. ko
N oo
H(o) = 2mi (0! — 09

we have

- ko [1d2D
C= H(OJ)\/D(O'I) = 2—7:_)2 5@ ()

The amplitude factor is, therefore,

N 2
H=k° 1 d2D

4.5 Calculating D(0)

21\ 2D(y) do? )

If both sides of Eqs.(97) are differentiated with respect to W and P, we obtain

the relations

04, A, 0q,
aw -~ w e
A,  W?P dq,
ap =4, T%p

8A,\ A,\ aA)\ Bq¢
oW~ W ' g, W
0A, AA -I— 0A, 3%

9P dq, OP

with
0=l 0A, W2 on:
J g, 2A¢ 94,

and

oAy _ 4 0, (T
N

Substituting these expressions into Eq.(103) yields

4(D\_Di_ D
do \4,) ~ A, 4,
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where

Dy =

(W (M =P g A,\a‘”’) (112)

1
w A, OP oP

and W2P? 9
_ oqx 9y
D=5 ( A, ow +A“aw>
The derivatives of Dy and Dy with respect to ¢ can be calculated by using again
Eqgs.(97) and (105)-(108) with the result

(113)

d (D w?
do (A1> A2 (114)
and p
= (AgD2) =W (115)
Eq.(115) can be solved for Dsy:
W2
Dy=(0—- Uo)A— (116)
©

Using Eqs.(114) and (116) one sees that (0 — 0g)D; obeys the same equation obeyed
by D (Eq.(111)). Since D and (o — 0¢)D; satisfy the same initial conditions, we have

D(0) = (6 — 09)D1(0) (117)

Differentiating both sides of Eq.(114) gives

d?Dy  [d
da; - ( - Q2> Dy =0 (118)

The term in parentheses can be written in a particularly convenient form by differ-
entiating O using the relations dA,/do = —W?sin(g,) and 8h2/dq, = —2 J sin(g,),
which follow from Eqs.(97) and (31). One finds

ds) 9 w?
- 11
(da+ﬂ> W>O (119)
Referring to Eq.(35), we can write Eq.(118) as
d’D, W?
o? + 7 —D; =0 (120)

_ If the Earth is modeled as a sphere, both 4 and v would be equal to its radius,
R, and the solution for D; is immediately found without approximation to be

Dilo) = 355 o0) g sin [ (0 = )|
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At the end of the path the argument of the sine function bécomes S/R which is easily
seen to be the angle at the center of the Earth subtended by the arc that ends at
source and receiver positions

-8
cos(-}-?-) = ¢08  cos gy cos(A — Ap) + sin psin @,

Equation (120) cannot be solved exactly for an arbitrary volume of revolution.

However, if

1 |dR

W |do

we can approximate Dy with its WKB solution

Dy(0) ~ DVEB(g) = %%25(00)\/3(0)3(00 sin (W / ’ ?z%‘)) (122)

<1 (121)

The overall normalization has been determined using Eq.(104).

To explore the validity of the condition (121), we use the parametrization Eq.(36)
to find

dR _ Ry 99(g,) dg,
do 2(1479(g,))** O4p do
Since
% < K = —VZ—
do|~ h, R
we have 1 ldR 1 189(a)
7|5 5 1| (123

The condition (121) will be satisfied if the smallest scale of variability in latitude of
the surface is larger than the deviation of the Earth’s shape from that of a sphere.
If we (arbitrarily) require that the right-hand-side of Eq.(123) to be less than 1/10,
the condition is satisfied provided one can consider the Earth spherical on horizontal
scales of order 10 (Rn/2) = 210 km. Clearly Eq.(121) is valid since over distances of
a few hundred kilometers it is safe to assume the Earth is flat—one does not need to
even assume it is spherical.

Collecting expressions gives

H= omri (Rf;:)/f?(oo))l/ ‘ [(Ul = o0)sin (W a: | -Rd(;;,')) ] -

Changing the independent variable from ¢ to s and introducing the path-averaged
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quantity

1 1 5 dd 1[5 ds’
_Lfad 1t A
Ruwe S /o R(s) 8 /0 1y (8))V(Pray(8))

results in the expression

' 1/4 1/2
ﬁ — kO Rm}e Rave : S/Rave (125)
2miT \ R(S) R(0) sin (S/Rave)
The ray acoustics approximation to Eq.(59) is therefore
_ ko Rave Rave 1/ S/ Raye 1/2 ko 9
B Broy = 5rir (R(S) R(O)) SRy P (%)

5. THE VERTICAL EQUATION AND STATIONARY-PHASE

The horizontal ray acoustics approximation for @ is slightly more involved than
for H because no assumptions are made about the magnitude of the scales of vari-

ability of the depth coordinate. For Egs.(56) and (59) to be satisfied, ¥ must satisfy
the matrix equation

ko (ikoV +8/T) 2ikodA/Bp + 3/3(p %%koDA/ON + 8O Jpa/ag

9/0¢p —p/ (v cos ) 0
/oA 0 — (veosy) /p 0
Jpd/d¢ 0 0 —Jp?
v
Yo | _
X1 g | = 0 (127)
T

and the initial condition

Lim:0%(1;0,A,¢) = 6 (¢ — Co) (128)

Just as before we drop the horizontal gradients of the amplitude factors in comparison
to the corresponding gradients of A, multiplied by ky. While the derivative 8/97 can
be dropped in the matrix in Eq.(63) we are not justified in dropping it in Eq.(127).
The result is

%koJ (ikoV +0/07)  2ikeDA/Byp 2%ikedA/ON  Jpd/C
0

0/0p —p/ (v cos p) 0
/O 0 — (veosyp) /p 0
Jpd/d¢ 0 0 —Jp?
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@,
Uy
VJ

which is equivalent to the single second-order equation

0 10A90 1 0AD 0 (10 9
[21]1:0 (8 +—= 7 390 3<p + magx) +pa—c ( €> 2kOV] =0 (129)

=0

Comparison of Egs.(129) and (92) gives
S laql(’r) (pray(s)’ ATCW (3)2 C ):|
=8

Qlko? 0s

+ o (537) = B8V () Ae(5,) | W71y rn( ), ) =0

78
This equation can be solved by solving the more general one
S 3 3 10
[2Zk0 C ( C—) - 2kgv((pray(s)2 }""ay(s)i C)l \II(T7 (pray(s)7 )"my(s)7 C) = 0

(130)
and evaluating the result at s = S.

If we require that

L’ims—’O‘IJ(T;(pray( ) ra,y( ) ) = 6(C CO) (131)

then the initial condition, Eq.(128), will be satisfied because of the relation (91). In
fact, independent of the ray acoustics approximation, it is not difficult to see that ¥
has support only in a small neighborhood of ¢ about ¢, and T about 0 as s — 0.

Collecting expressions and substituting into Eq.(53) give

G| 7g) o [ Fave Fove VAT S/Rue 1V
0™ 4r R(S) R(0) sin (S/Raye)

<[ E exp 27 + L) u(rip,0,0) 8y

One can evaluate the integral over the Fock-Feynman parameter in Eq.(132) using
the method of stationary phase. The single stationary phase point is at 7 = §. If
U(T; ¢, A, ¢) has a phase which is a slowly varying function of 7 at 7 = §, justifying
the stationary phase approximation, then the wave number spectrum of ¥(S;¢, A, ()
in path length—the horizontal wave number spectrum—will be dominated by values
near the reference wave number ko. That is, the stationary-phase approximation is
equivalent to the narrow-angle approximation (Palmer, 1976).
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The stationary phase approximation yields

1 Ra,'ve Raxve 14 21 1/2 ikoS
G(F] Zo) <R(S)R(0)> [koR,wesin(S/Rave)] ™ P(8,¢)  (133)

where
Y(8,¢) = U(S; Pray(8), Aray(8),¢)

satisifies the two-dimensional parabolic equation

[mn 0 +p§§ (1 i) 22V (s,g)] U(s,¢) =0 (134)
and the initial condition
Limgotp(8,¢) = 6(C = Co) (135)
It being understood that s is measured along the ray path and that
V(8,¢) = V(Pray(8), Aray(8), ¢) (136)

If the Barth is modeled as a sphere with radius R, Eq.(133) reduces to

1/2
212 _1_ 2mi gikoS
G(#| %) ~ 47 [koR sin (S/R)} ¥(5,¢)  (sphere)

It is worth noting that 1(s,{ ) does not depend on the total path length S because
(T Pray(8), Mray(8),¢) depends on S and 7 only through the ratio S/7. Eq.(134) is
clearly energy conserving and can be solved numerically using a standard range-sliced
marching algorithm. Moreover, it does not possess any kinematic singularities of the
type experienced by Collins et al., (1996). Caustics in the horizontal are located at
S & R4y and correspond to the focusing that occurs for near antipodal propagation.

6. REFRACTED GEODESICS AND NORMAL MODES

In this section we consider two extensions of the method we have presented.

6.1 Refracted Geodesics.

The factorization of @, Eq.(58), into a term H that depends on the horizontal
coordinates and a remainder is not unique. One can always define H by the equation

0

2’Lk‘o a7

+ V2 —282U(p, \)| H(t;0,)) =0 (137)
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where 1 .
U(QO, )‘) = —5 [nzefr((pz /\) - 1] (138)
is a function of ¢ and A but not of the depth coordinate ¢. In Eq.(127) and all
subsequent equations V (¢, A, ¢) would be replaced with V(p, A, () where

V(e \¢) =V(e,\,¢) = Ulp, ) (139)

We want to indicate how the analysis presented above is modified by the presence of
the function U.

The horizontal ray-acoustics approximation for H now involves a ray path that
is a refracted geodesic. The eikonal equation and the expression for the Hamiltonian
function become, respectively,

8A 1 [8A\® 1 dA\?
3 + 2—}//-; (@) + ok o " (a) +U=0 (140)
and 1
8=p7+§v2+U=0 (141)

where v is now no longer a constant. The equations for p, and p) become

dpp _ L]0 (1N 2 0 (1) 5 OU
do ~ 2 |og, \12)P¢ " B, \R2) | " B,

and

d» _ _0U
do ~  Og,

The equations for all the other ray-path variables are unchanged. The eikonal is now
A=1p, + A (142)

where A is the horizontal eikonal function
s

o1
A= / vido = / vds (143)
oo 0

Since Eq.(142) can be written as
A  «

it defines a Legendre transform which can be used to change the independent variables
from (p, A, T) to (¢, A, pr). The variable 7 is then given by

__PA_ /___i__
5~ ) V) 1 0)
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The exponent in Eq.(132) is now
z'ko(:;- + A)

instead of iko(T + S2/7)/2. At the stationary-phase point T = T, we have

0A 1
5; =pPr= _'2' (145)
S0
V0o, = V1=2U = nyepy
and
s

ds
T =
8.p. nrefr
) 0

S
+ A)’r=7’a.p. = ikDA"’=”'s.p. = Z.’Zi:o/n"'ef"'ds
0

‘We then have
r

iko(3

The stationary-phase approximation then gives

6(@|a) [ Hewp [iko(G +4)] ¥(ri . 0,0)

L (PA\ T !
o |H (w> exp ikﬂ/nmf«,-ds \P(Ts.p.;@: ’\:C) (146)
0

T=Ts.p.

In calculating H it is no longer useful to use the set W and P to characterize ray-path
variations. Instead we use oA

Up = pyp(00) = N (147)
0A
()N Ep,\(ao) = —a—)‘o (148)

The relationship between these initial values for the momenta and the derivatives of
the eikonal with respect to the coordinates of the source position follow easily from
the defining equation, Eq.(84). We still have

A 1
H «x
D(o)

but now
dg,(0)/0v, Bg,(c)/dvs
D(0) = J(gy(0)) det [ 8;1,\((0;;3% 63Aé0%8w }
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We next consider the variation in the ray path due to a change in receiver position

0q,(0)/0p  Bgy(a)/ON ] —0 % [ 09,(0)/0v, Bgy(0)/Ovs }
O (o) /b  Dgr(o)/ON O (0)/0v, 0gx(0)/Ovy

where

0= [82A/6cp03<p 82A/3<,006/\} (149)

B2A/ONDp & A)DNoON

(We have used Ov,/0p = —82A/0py0p ,etc.) At 0 = o, the left-hand-side of this
equation becomes equal to the identity matrix and we have

Jlp)
Dl =30
We now turn to consideration of 82A4/871% in Eq.(146). At o = 09, Eq.(141) becomes
1
pr+ 1/2 + + U((Po, Ao)

2h% (o) * 2h2( 0)
Differentiating with respect to T gives

A 4 v, dg, DN dq,\

o2 At do (900) + 5 or 0) =

The change in the eikonal equation due to a change in source location, keeping the
receiver location fixed, is given by

O’A dg, A dg, O,
Bodo de P T aoands P = B

and
A dg, DA dg, On

Ddg do Ot Brepndo D) = By

Combining these last three equations gives

52A T

Sz =€ (00)” - O-e(01) (150)
where

e (o) [ dgy (o) /do J

dg (o) /do
Therefore
. (02A\TY? (1 det O 12
[H (573) }fw,.p. B (J((’O) e(00):0-e (01))T=Ts.p. (151

(For an alternative way of writing this amplitude factor see Gutzwiller (1990, Eq.
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(2.10)).) ,
The evaluation of the derivatives of A with respect to source and receiver coor-
dinates that make up the components of O are done at the stationary-phase point

S
1 2nre r 1 1
AT=T.5. .= —/ i ds = ‘—_/ ds (152)
P 2 nrefr 2 nref'r
0

0

The derivatives can be performed once Hamilton’s equations have been solved for the
refracted geodesic and the variation of n,.s, along the path is determined. Collecting
expressions gives

s

. 1 det O 12 )
612 (35770 0-6(01)>T=73.p. - zk"{ il R
where 9 ' 5 /10
[2zkonref,. + pac ( C) 2]430 (8 C):| ( ) 0 (154)

This parabolic equation differs from Eq.(134) in two respects-the s-dependent scale
factor n,¢f» and the replacement of V with V.

6.2 Modal Analysis

Much of the work done to model global propagation has assumed a description
involving discrete, local, normal modes propagating without coupling (see, e.g., Munk,
Worcester, and Wunsch, 1995). In this section we discuss how this description can be
incorporated into the formalism presented in the previous sections.

The local modes satisfy the equation

8/ 1 8 i’
[p(oa—g ()To«%) (90,/\0] (0 0) = K2 (0, V(o 1,0 (155)

where », is the (dimensionless) normal-mode wave number. These modes are as-
sumed to be orthogonal

a¢
/(C) (0,0 Zm (0, A, C) = bnm

and complete

ZZm(‘P;/\C (‘P:)\go)- ( ) (C'—CO)
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We expand @ in Eq.(56) in terms of these modes

(10,1, = ;(—25 > (150, 2) Zn (0, 2, 0) Zm (10, A, Co)

so that ]
Limr—oCm(T3 90, A) = me (= 0) 6 (A= o)
independent of the index m. We have for the Green’s function
o 1
G("‘U I 370) == Z Z’m((p: )\a C)Zm(@, Aa C())Gm((P, A I Yo, AO) (156)
p(Co) m
where e
G = — / dr e™/2C, (150, ) (157)
2ko Jo
The equation satisfied by the model coefficients is
OCn, -
2z'k0—8—T- + V2Cp — 2k§Wmcm] Zm(i0, A, g0)+z [Bm,cl + 2F - vsc,] =0 (158)
1
where 1
Wm(% A) = _'2_ [%fn(% )‘) - 1]
d¢ ,, o2
By = 7vas (Zl((pa A C)ZI (90: A, CO))
and

- d
Fou = /_IDSZmVS (Zl((p7 A,C)ZZ(CP;A,CO))

Generally speaking, a modal analysis is useful only if mode coupling can be ignored.

If this is the case, then By, = 0 and F;,; = 0 giving

[%ko-(% + V2% — 2k3Wn | C = 0 (159)
We want to develop a method for solving this equation based on the ideas introduced
earlier. There are three obvious possibilities. First one could directly solve Eq.(159)
using the technicques in Section 6.1 since it has the same form as Eq.(137). Each
function G, then would have the form of Eq.(153) with ¥ set equal to unity and
Nyesr replaced with sz,. Each normal mode would be associated with a different
horizontal ray path. This approach corresponds to the ray-mode approach introduced
by Burridge and Weinberg (1977).

The second possibility is to write
Cm(T30, A) = Umn(T50, ) H(T50,A) (160)
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where H obeys

.0
lz’LkOE + Vg} H =0
and 1

LimroH (50, A) = (90)5 (o= ©0) 6 (A= Xo)
The ray acoustics solution for H is given by Eq.(126). The equation satisfied by ¥,,
is

oY, VsH

2sz3— + V20, +2 7 Vs = 2k3W, Uy, = 0 (161)
and
L'imr—)o‘llm(T; ®, ')‘) =1
We know
2 2ikoS dgn 2ikoS
ﬁVSH = 7_0 /J s Lo (51)p +vcos ‘Pd—(al)}‘ = 5(04) (162)
and
S0 0 S .
-7—_-8—3' = 87' 3(0'1) . V_j_ (163)
so that
2sz8 OV + Vi¥,, — 2k3W,, 0, =0 (164)

The horizontal Laplacian operator could be resolved into components tangent
to the path and normal to it and then the second-derivative tangent term would be
discarded while the second-derivative normal term is retained. This would give a two-
dimensional parabolic equation to solve with a first derivative term along the path
and a second derivative term normal to it. This is similar to the approach followed in
several studies in global propagation (Collins, 1993b; McDonald et al., 1994; Collins
et al., 1995; 1996). The difficulty is that we have already made the horizontal ray
acoustics approximation in determing H. To not make the same approximation in the
equation for ¥,, is somewhat inconsistent and results in an approximate equation that
has the same domain of validity as if we had consistently made the approximation.
The smooth variation of the medium in the horizontal dictates the path taken by the
wave. In this approach the path of the wave dictates in what direction the medium
can be treated as being smoothly varying.

The third possibility is to consistently apply the horizontal ray approximation
and replace Eq.(164) with

S oY,
2% ko_ 0s

— 2K Wyy T = O (165)
- giving
U,, = exp l—zko— / dsz)] (166)



Combining terms

o= (Rst) ] [ F (5 (F i)

where (32} is the mean-square-average of 34, over the horizontal ray path

1 S
(32) = 5 dsscZ, (167)
0

For k¢S >> 1 the integral over T is approximately equal to

()" ()" wloovea]

so that

— 1 Rove Rave (J'f,,zn) 1/4 211 1/2 2
Gm - :1-7_'(' (R(S) R(O) 52 ) [k’oSRm,e sin (S/Rave)] exp [ZkOS\/ <% ] 168

7. SUMMARY

In this report we have proposed a new method for obtaining parabolic approxi-
mations. It consists of the following steps:

1. The Green’s function for the problem of interest is written as a Laplace or
Mellon transform over the corresponding propagator. The transform variable is the
Fock-Feynman parameter.

2. The propagator is factored into a term that is assumed to be a rapidly varying
function of the horizontal coordinates and obeys a parabolic equation in those coor-
dinates, and an envelope function that is assumed to be a slowly varying function of
the horizontal coordinates.

3. The dependence on the horizontal coordinates is determined using the ray
acoustics approximation.

4. The equation for the envelop function is cast into the form of a parabolic
equation with the horizontal direction of propagation along the ray path determined

in step 3.

5. The integral over the Fock-Feynman parameter is approximated using the
method of stationary phase.
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If one applies this method to the Helmhotz equation in Cartesian coordinates,
one obtains the standard narrow-angle parabolic equation in two coordinate variables.
One can easily derive improved approximations because the proposed method sepa-
rates the parabolic approximation into two separate approximations: one involving
the characteristics of the acoustic field in the horizontal and the other its character-
istics in the vertical. The horizontal ray-acoustics approximation can be relaxed in
any number of ways. One possibility is to use the Rytov approximation instead of
the ray-acoustics one (Palmer, 1976). This results in replacing the index of refraction
by an effective one that is constructed by integration over the Fresnel ray. tube sur-
rounding the ray path. Another possibility is to allow for horizontal refraction and
horizontal multipaths. In the previous section we indicate how this might be done.

The narrow-angle approximation is easy to relax because there are many ways
of improving on the stationary-phase approximation. One possibility is to evalute
the integral numerically in the same way that the integral over frequency is eval-
uated in the Fourier representation of the solution to the parabolic equation for a
broadband source. One obtains the solution to Eq.(92) for a range of values of T
using a marching algorithm. The integral in Eq.(92) is then evaluated using a fast
Fourier transform. Other than those relating to the numerical evaluation, the only
approximations made in the development of the global problem considered here are
the horizontal ray acoustics approximation and, of less importance, the WKB approx-
imation for the amplitude.
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APPENDIX
A(ri,A)
A=A—-T10A/0r
A, = Psohz\/ by
Ay = prhy/hy
B
(%)

Co
c
Cn(T; 0, A)

D = J(gy) det(Q)
D2 = (0' - 0'0)W2/A¢

D1 = D/(O‘ - 0'0)
D}/VKB
dZs
ds = Id.’fgl
_ | dgp/do
T | dga/do
ﬁml
G(Z| %)

Gm(®, M| @9, Mo)

9(p)
H(T;0,A)

H, = (vcosp/p) OH/dp

H, = (p/vcosyp)OH/OA

(B B, Ay) = (H H, Hy)e 4
hy = 1M(gp)

ha = v(g,) cos(gy)

LIST OF SYMBOLS

Eikonal function

Horizontal eikonal function
Normalized conjugate momenta
Normalized conjugate momenta
Scalar mode coupling function
Speed of so{md at the point &
Reference sound speed
Integration constant

Coefficient in the modal
expansion of ®

WKB approximation to D;
Differential line segment tangent
to the surface

Differential arc length
Two-dimensional column vector

Vector mode-coupling function
Green’s function

Coefficient in the modal expansion
of the Green’s function

Deviation of the Earth’s shape
from that of a sphere

Solution to the horizontal
parabolic equation

Slowly varying amplitude functions

Introduced to simplify the notation

Introduced to simplify the notation
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nrefr
A=AX Py
@]

p(Z)

P =p\/W
Drs pzp: D
qr, Q<p: ax
Q
R(p) = vulp)v(p)
Rave

R

U =
[

s(o1)

< =
2

- (In’zefr - 1) /2

V==(mn?2-1)/2

V(sz C) = V((pmy(s)7 )‘my(s)y C)
V=V-U

v =ds/do

= (x,y,2)
= (ryp, 2)

<

Y, 2

\_&2)

Jacobian
Reference wave number -
Index of refraction

Depth-independent reference index
of refraction

Unit vector normal to the surface

2 X 2 matrix consisting of second
derivatives of the eikonal

Complex demodulated pressure field
Quantity constant along the ray path
Conjugate momenta to the ray paths
Ray path coordinates

2 X 2 matrix introduced to help
solve the transport equation

R(q,) averaged over the ray path
Mean radius of the Earth
Horizontal path length

Total horizontal path length

Unit vector in the direction of dZg

Variation in the reference index
of refraction

Variation in the index of refraction

Introduced to simplify the notation

Rate of change of path length

Position vector in Cartesian and
cylindricalcoordinatesof a general
point in the medium

Unit vectors in a Cartesian
system with origin at the center
of the Earth, z-axis toward the

north pole, and x-axis at zero longitude
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Zs = (zg, Ys, 25) Position vector from the origin
of a Cartesian system centered in
Earth to a point on its surface.

s Unit vector in the direction of
increasing &'s

Zo = (20, Yo, 20) Position vector of the a
point source

W=.-2p: Useful variable constant along

the ray path
‘ Wm((noa }‘) = —% [%,?n((p,/\) - 1]

Zn (0, A, €) Local normal-mode eigenfuction
o Angle between dZs and north
V ~ Gradient operator
V2 Laplacian operator
Vg | Horizontal Laplacian operator
6@ (& — i) 3-D Dirac delta function
Ps = /s + Y3
p=p(C) Density of the medium
0,(00<0<L0y) Marks evalution along

the ray path
T Fock-Feynman parameter
Tsp. Stationary-phase point
Tray(8); Pray(8), Aray(8) Ray path coordinates as a

function of path length
D(T50,A,¢) = H(T; 0, A)¥(T590, A, () Propagator function
@ Geodetic latitude
Pg Geocentric latitude
Depth variable

Deviation of the Earth’s shape
from a sphere, 7 & 1/150

2 (0, A) Local, dimensionless, normal-
mode wave number
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A
A By 8o, @
73
Ho = p(o)
v
vo = (o)

€ = \/(dps/dp, ) + (dzs/de,)?
U, = (vcosp/p) 0¥ /dyp

Uy = (p/veosp) 0¥ /oM

X

U(730,A,¢)

V¢ = (1/p) 00 /0¢
Y

":b(sz C) = \11(87 (pray(s): ’\my(s)’ C)
Un(730,2) |
Q= J-10A,/dq,

U.s. GPO 19.99-773-022/40149

43

Mean-square-average of 3¢,
over the horizontal ray path

Longitude

Unit vectors on the Earth’s
surface in the directions of
increasing A, pg, ¢,,and ¢,

respectively
Meridional radius of curvature

Values of i at the source location
Prime vertical radius of curvature

Value of v at the source location

Function defined by zg = xsingp

Envelope function satisfying
the curvilinear parabolic equation

Envelope function satisfying the
2-D parabolic equation

Introduced to simplify the notation

Modal envelope function

Angular frequency of the source



