University of Miami Rosenstiel School of Marine and Atmospheric Science

WATER QUALITY AND BIOLOGICAL MONITORING OF NORTHEAST FLORIDA BAY

Ву

Trisha Denise Stone

[Restored and transferred to electronic form by Damon J. Gomez (NOAA/RSMAS) in 2002 as part of the Coastal and Estuarine Data/Document Archeology and Rescue (CEDAR) for South Florida. Sponsored by the South Florida Ecosystem Restoration Prediction and Modeling Program. Original stored at the Library, Rosenstiel School Marine and Atmospheric Science, University of Miami. Minor editorial changes were made.]

AN INTERNSHIP REPORT

Submitted to the Faculty
of the University of Miami
in partial fulfillment of the requirements for
the degree of Master of Arts

Miami, Florida

May, 1995

UNIVERSITY OF MIAMI

A internship report submitted in partial fulfillment of the requirements for the degree of Master of Arts

WATER QUALITY AND BIOLOGICAL MONITORING OF NORTHEAST FLORIDA BAY

Ву

Trisha Denise Stone

Approved:

Dr. Daniel Suman

Chairperson of the Internship

Committee

Dr. Sarah Keene Melyzof

Professor of Marine

Anthropology

Dr. Larfy Brand

Professor of Marine Biology

Abstract

Due to the construction and operation of Canal C-111, in association with other canals and canal structures, the natural hydrology of South Dade County, Florida has been considerably altered. This flood control project dramatically reduced the historical sheetwater and groundwater flow from the wetlands of Taylor Slough into northeast Florida Bay. Everglades National Park (ENP) indicated that C-111 had decreased hydraulic gradients and shortened period of flow through Taylor Slough to downstream estuaries contributing to hypersaline conditions, abrupt salinity changes and a general decline in the natural resources of the wetland and coastal areas of northeast and central areas of the Park. Through the request of ENP, an experimental test program would be initiated by the South Florida Water Management District (SFWMD) to provide a mechanism to field test increased freshwater delivery to the area. As part of the environmental monitoring to be conducted under conditions of the proposed test, the Metro Dade County Department of Environmental Resources Management (DERM), under contract to the SFWMD, began a water quality and biological monitoring project to document any dowstream effects from the changes in water delivery to northeast Florida Bay. This project is the first year in a longterm effort, and DERM's future monitoring techniques will expand on this baseline information. I also include a discussion regarding the approach to future restoration of Florida Bay.

Acknowledgements

I would like to acknowledge the following people for their support and assistance with this internship. From the Metro Dade County Department of Environmental Resources Management, I would like to thank my immediate supervisor. Ramesh Buch, for allowing me to take on the additional job duties of this monitoring project, and Lee Hefty, for his many contributions to this report and for being my brave field partner when faced with the fact we had shark, alligator and crocodile assistants at a few of our monitoring stations! From the Rosenstiel School of Marine and Atmospheric Science I express much gratitude to my graduate commitee: Dr. Larry Brand who agreed to serve as one of my internship advisors and get to know me...again, Dr. Sarah Keene Meltzoff who greatly inspired me throughout my undergraduate and graduate career, and Dr. Daniel Suman who continuously challenged me with new ideas! The person I most wish to thank is Professor Fernando Moreno, for whom my graduate career would not have been possible and who held faith in me and pushed me to succeed!

Preface

The purpose of this report is to fulfill the internship requirement for the Master of Arts degree in Marine Affairs and Policy. While I was employed at the Metropolitan Dade County Department of Environmental Resources Management as a fulltime Biologist I in the Restoration and Enhancement Section, my group was contracted by the South Florida Water Management District to perform water quality and biological monitoring in northeast Florida Bay, Florida. This report summarizes the purpose for this monitoring and discusses the project methods, data, and results of the first year (October 1993 to October 1994) study.

TABLE OF CONTENTS

	Page
Abstract	ii
Acknowledgements	iii
Preface	iv
Table of Contents	v
List of Figures and Appendicies	vi
Introduction Background Project Description	1
Monitoring Methods	10
Data Station Descriptions	13 13
Discussion Future Monitoring Future of Florida Bay	16 16 18
Bibliography	20

LIST OF FIGURES AND APPENDICIES

<u>Figures</u>		Page
Figure 1	Map showing C-111 canal system	2
Figure 2	Map showing South Dade County with canals, structures and major features	3
Figure 3	Map showing Everglades National Park boundaries	4
Figure 4	Map of C-111/ Taylor Slough Water Quality and Biological Monitoring stations	11
Appendices		
Appendix 1	C-111/Taylor Slough Water Quality and Biological Monitoring Contract C-4227	
Appendix 2	C-111/Taylor Slough Water Quality and Biological Monitoring Quality Assurance Project Plan	
Appendix 3	Water Quality and Biological Monitoring Data	

Introduction

Background

The Flood Control Act of 1962, authorized improvements for South Dade County, Florida, which provided for construction of the C-111 Basin: a 97 square mile area located in southeastern Dade County comprising Canals C-111, C-111E, C-109 and C-110 and their associated structures (Carroll, 1986) (Figure 1). These canals were designed to provide drainage to farming, residential, and industrial areas in southern Dade County, generally to the south and west of Homestead. The area drained by the southern portion of C-111 formerly flowed into eastern Florida Bay. In addition, due to rain events, periodic heavy discharges through culvert S-197 in C-111 and opened flood gates allow high volumes of water to be discharged into Barnes Sound, very much contrary to the historical flow pattern of this area (Rozsa, 1993).

The freshwater inflows to Florida Bay are now largely controlled by the Central and Southern Florida Project (C&SF), whose primary function of flood control, is operated by the South Florida Water Management District (SFWMD). The construction and operation of this complex system of canals (see Figure 2) has brought considerable change in the hydrologic design of Taylor Slough. This slough, encompassing more than 158 square miles of freshwater marsh, extends nearly 20 miles from its upstream end north of agricultural areas to the coastal mangrove fringe along central Florida Bay. Prior to the construction of the C&SF Project in western Dade County, water levels in the Taylor Slough headwaters were 1.5 to 2.0 feet higher than today. These higher water levels kept the northern Taylor Slough marshes flooded for 2 to 3 months each year, and maintained sheet flow and groundwater flow into Florida Bay. The higher water levels also maintained more consistent and

C-111 Canal System

South Dade County with Canals, Structures and Major Features

gradual salinity fluctuations in the nearshore areas of the Bay (Van Lent. Johnson and Fennema, 1992).

The largest portion of Taylor Slough and its headwaters are located within Everglades National Park (ENP), and they represent vital elements of the Park's hydrologic system. These wetlands contain sawgrass, hardwood hammocks and mangrove forests, all of which are valuable habitat for many aquatic and terrestrial plants and animals. In addition, approximately 85 percent of Florida Bay lies within ENP (Figure 3). Upper Florida Bay has long been recognized as an important nursery area for fish and crustaceans where larvae and juveniles benefit from the protective influence of lower salinities (Carroll, 1986). In addition, the Bay is the habitat of protected marine mammals and a number of threatened and endangered marine species. Furthermore, nutrients and detritus carried by freshwater runoff through the expansive area of wetlands assist in the maintenance of seagrass communities and are food sources for juvenile marine organisms.

In the early 1980's, studies by ENP pointed to decrease in freshwater flows as adversely affecting the life cycle of native plants and wildlife. Further studies indicated the C-111 Canal had reduced hydraulic gradients and shortened periods of flow through Taylor Slough to downstream estuaries contributing to hypersaline conditions and abrupt salinity changes in the downstream areas of Florida Bay (South Florida Water Managment District, 1990). To restore the declining natural resources, ENP felt they must replicate natural water flow by bringing larger amounts of clean water into the marshes in rhythm with the cycle of wet and dry seasons. The Park's goals for these areas were to improve the water delivery systems to mitigate many of the declines in Park resources observed in these basins. Their priority in the eastern portion of

Everglades National Park Boundaries FIGURE 3

the Park was the restoration of more natural hydroperiods in Taylor Slough as an important wildlife area, and increase freshwater flows through this slough into the central-eastern portion of Florida Bay (Finley, 1989). ENP concluded that the C-111 system must be altered to: 1) retain freshwater runoff longer resulting in a reduction in salinity fluctuations in receiving waters, 2) restore sheetflow over the prairie south of existing farmland, 3) return freshwater contribution to eastern Florida Bay, 4) reduce overdrainage caused by water level steps at canal control structures, 5) restore productivity, habitat values, water treatment and storage functions of impacted wetlands south of the farmed areas, and 6) settle land-use patterns in accordance with flood control and water conservation capabilities (Carroll, 1986). Land use changes since construction of the system, along with a greater understanding of the hydrological needs of ENP resulted in initiatives to improve the existing C-111 system.

In March 1983, because the C&SF Project had greatly altered the hydrology of Taylor Slough and Florida Bay, ENP requested action that would reduce the spatially restricted flood releases of water from the C-111 Basin into the Park (U.S. Army Corps of Engineers, 1993). In response, the U.S. Army Corps of Engineers (COE), with the agreement of the National Park Service and the SFWMD initiated an experimental program, the C-111 Interim Plan. The intention of the experimental program was to provide a mechanism to field test water delivery methods to assess potential impacts on ENP and other parts of the Everglades ecosystem, as well as on the authorized C&SF Project functions of flood control and water supply (Weaver, 1995). In short, the purpose of the proposed test was to improve the design of a permanent solution to the environmental degradation that has resulted from the C&SF

Project. The test would provide field data that would be useful for evaluating alternatives to be included in the C-111 General Reevaluation Report (GRR) and Environmental Impact Statement (EIS). The test objectives were to evaluate methods to restore a more natural hydroperiod to ecosystems within ENP by continuing water deliveries to northeast Shark River Slough (NESRS), increasing water deliveries to Taylor Slough, and reducing large freshwater discharges through S-197 into Barnes Sound.

Prior to initiation, the procedure for each test would be developed and agreed upon by the Corps, ENP and the SFWMD, and operational procedures would be closely coordinated with homeowners and agricultural interests in the developed portion of the East Everglades. The test would be carefully monitored and could be terminated if it resulted in unacceptable impacts and would continue only until sufficient information was obtained to design a permanent solution to the problem of unnatural water flows to Taylor Slough and southeast ENP. The program is being conducted through an iterative testing procedure. The components of the proposed test are to maintain water deliveries to NESRS and to increase discharges at S-332 from the initial 165 cubic feet per second (cfs) up to 800 cfs. The first test would add an additional 100 cfs by use of a portable pump. With this pump, discharges to Taylor Slough would be increased to a total of 265 cfs. Depending on the results obtained, discharges into Taylor Slough would eventually be increased up to a total of 800 cfs during the test. The SFWMD has authorized continuation of the experimental program of water deliveries to ENP until the modifications to the C&SF Project are completed and implemented (U.S. Army Corps of Engineers, 1993).

Additional components of the test include alternative plans, coordination with the public, existing environmental conditions, probable impact of the proposed action on the environment, compliance with environmental requirements. Fish and Wildlife Service coordination, a monitoring plan and an Environmental Assessment (EA). Monitoring of physical, chemical and biological parameters would be conducted to determine the environmental effects of the proposed test. The EA, prepared under the provisions of the National Environmental Policy Act of 1969 (NEPA) determined that the implementation of the test would not result in significant impacts on the quality of the human environment. The assessment concluded that the actions would not adversely affect: 1) overall existing fish and wildlife habitat in the area, 2) any species or critical habitat listed under the Endangered Species Act, 3) authorized purposes of the C&SF Project, or 4) residential and agricultural lands in the area (U.S. Army Corps of Engineers, 1993).

The Taylor Slough Demonstration Project began in July 1993 when the first portable pump was activated at S-332, increasing water delivery to ENP from 165 cfs to 265 cfs. In September 1993 and again in November 1993, an additional portable pump was activated at S-332, increasing the flow to 365 cfs and then to the present 465 cfs. Future efforts involve increasing the flow to 800 cfs by replacing the portable water pumps with a "permanent temporary facility" pump station (Weaver, 1995).

Project Description

To address the issue of water supply to the east Everglades and Florida Bay, the SFWMD proposed that the agency take part in the development of environmental restoration and enhancement alternatives that are included

under the Everglades Forever Act. This Act, passed in 1995 by the State of Florida, outlines an extensive restoration plan for the entire Everglades, including Florida Bay (Underwood and Loftin, 1995). As a provision of the C-111 Interim Monitoring and Operating Plan, the SFWMD would implement a water quality and biological monitoring project to determine the downstream effects of the change in water delivery on water quality and epibenthic communities in northeast Florida Bay. In October 1993, under contract to the District, the Metro Dade County Department of Environmental Resources Management (DERM) began the Water Quality and Biological Monitoring Project in northeast Florida Bay (Appendix 1). The goals of this longterm monitoring project are to obtain baseline data on the present status of water quality and existing benthic habitats, and to document any changes due to the increased freshwater flow through Taylor Slough. The data associated with this project is summarized and provided to the SFWMD on a quarterly and an annual basis.

Methods

The SFWMD and DERM generated the 1993/94 C-111/Taylor Slough Water Quality and Biological Monitoring Project (SWIM Contract C-4227) based on methods presently used in longterm monitoring by DERM throughout Biscayne Bay. The Department has been conducting water quality and biological monitoring for the District since 1979 and 1985 respectively.

In July 1993, DERM and the SFWMD performed a reconnaissance of northeast Florida Bay to select monitoring locations expected to be directly influenced by surface water runoff from Taylor Slough. In October 1993, the Department established five monitoring stations in the region of Little Madeira Bay east to U.S. Highway 1, and a sixth station in December 1993 (Figure 4). The Department sampled these stations monthly for water quality and biological characteristics.

DERM biologists performed monthly sampling of the physical water quality parameters which included temperature, dissolved oxygen, pH, conductivity, salinity, redox, and depth, using a calibrated Hydrolab Surveyor III at the bottom, one meter, and the surface. Using a Li-Cor LI-100, the biologists measured underwater photosynthetically active radiation (PAR), taken at the surface and at one foot intervals to the bottom to create a light profile and derive an extinction coefficient. Additionally, the Department collected monthly water samples for color, turbidity, total phosphate phosphorous, nitrate/nitrite nitrogen, ammonia nitrogen, chlorophyll-a/pheophytin, and the trace metals copper, lead, cadmium and zinc. DERM's analytical laboratory performed the water chemistry analysis.

The monthly benthic habitat monitoring involved using SCUBA equipment to make underwater observations along a permanent 50-meter transect

FBLS; (Long Sound)

FBTC; (Trout Cove)

FBLM; (Little Madeira Bay)

marked at each end with rebar, concrete blocks, and sub-surface buoys. To assess for the presence and numbers of seagrasses, calcareous algae and noteable invertebrates the biologists established three randomly distributed permanent grid locations along the transect, each marked with rebar at two corners, to employ the use of a portable 1.0 m² PVC grid subdivided into 25 equal subunits. The biologists assessed five 0.04 m² subunits within the grid. Additionally, the biologists made observations along the length of the 50-meter transect using a Keeson metered tape and the line-intercept method (Orth and Moore, 1983) to determine species composition, relative abundance, seagrass linear cover, and numbers of individuals of noteable benthic organisms. On a quarterly basis the biologists determined the standing crop biomass (Zieman and Wetzel, 1980) at each station by randomly selecting three 1/25 m² subunits adjacent to the transect to count seagrass shoots and blades, and collect biomass above the substrate. DERM transported the biomass samples in sealed freezer bags and placed them in a freezer. Before analyzing the seagrass in the laboratory, the biologists thawed and lightly rinsed the samples and selected a representative of ten blades to remove and separate the epibionts by scraping. The Department biologists dried each of the cleaned blades, epibionts, and the remainder of the sample separately in an oven at 60 degrees centigrade for at least eight hours, then weighed each on an analytical balance to the nearest $0.01 \, g$

All work was performed according to the Quality Assurance Project Plan (QAPP) (Appendix 2)

Data

DERM submitted the monitoring data for the work completed under the contract to the SFWMD, shown in the Appendix 3. The in situ physical water quality measurements are presented in Table 1. The laboratory analysis results for water chemistry are presented in Table 2. The light data with calculated extinction coefficients (K) is shown in Table 3. The seagrass shoot and blade densities are presented for each station in Table 4. The quarterly seagrass biomass results are presented in Table 5. Figures 1-6 graphically represent seagrass shoot density at each station by month. Figures 7-12 graphically show seagrass species composition and percent cover at each station by month. Figures 13-18 graphically represent seagrass biomass by quarter at each station. Figures 19-24 graphically represent seagrass shoot density, water temperature, and bottom salinity by month at each station (Hefty, 1994).

Station Descriptions (from Hefty, 1994)

Highway Creek Station (FBHC) is in extreme northeast Florida Bay in an isolated basin adjacent to U.S. Highway 1. Average water depth is 0.4 meters and bottom sediment is approximately 1.0 meter thick. The composition of the bottom sediment is a very fine mud that easily resuspends when disturbed. The epibenthic community comprises sparse seagrass (Halodule wrightii, Ruppia maritima) and occasional macroalgae (Chara hornemanii), with a small burrowing fish species (unidentified), and members of the genus Marginella. Numerous small gastropod and bivalve shells litter the bottom.

Long Sound Station (FBLS) is in the north-central portion of Long Sound.

Average water depth is 1.0 meter, and bottom sediment is approximately 0.35

meters thick. The epibenthic community comprises moderate to sparse seagrass (Thalassia testudinum including occasional sparse Halodule wrightii), macroalgae (Penicillus capita) and occasional sponges, with a small burrowing fish species (unidentified) and numerous snapping shrimp.

Joe Bay Station (FBJB) is in the northeast corner of Joe Bay. Average water depth is 0.8 meters and bottom sediment is approximately 0.4 meters thick. Sediments are very fine and easily resuspended. The epibenthic community comprises moderate to seasonally dense seagrass (Halodule wrightii and Ruppia maritima), with a small burrowing fish species (unidentified).

Trout Cove Station (FBTC) is in the northeast portion of Trout Cove. Average water depth is 0.7 meters and bottom sediment is approximately 0.6 meters thick. The epibenthic community comprises sparse seagrass (Thalassia testudinum), sparse macroalgae (Penicillus capitata), and occasional sponges, with a small burrowing fish species (unidentified) and sediment worms (family Terebellidae).

Taylor River Station (FBTR) is approximately 300 meters from the mouth of Taylor River in Little Madeira Bay. Average water depth is 0.7 meters and bottom sediment is approximately 0.8 meters thick. Bottom sediment comprises moderate to fine grained mud that easily resuspends when disturbed. The epibenthic community comprises sparse to moderate seagrass (Thalassia testudinum and Halodule wrightii) and occasional sponges.

Little Madeira Bay Station (FBLM) is just outside the entrance to the Little Madeira Bay Basin. Average water depth is 1.0 meter and bottom sediment is approximately 0.6 meters thick. The benthic community comprises sparse to moderate seagrass (Thalassia testudinum and Halodule wrightii), macroalgae

(Penicillus capitata) and occasional sponges, with various other invertebrates including (anemones, nudibranchs, and tube worms).

Discussion

This report summarizes the first year in a longterm monitoring project. DERM cannot interpret the water quality and benthic habitat data as strong information partly due to the fact that is baseline information for use in future analysis. At this time it is impossible to determine a correlation between any cause and effect unless every possible parameter variation is measured. At best we can only link the parameter changes to weather and seasonality. From the numerous variables affecting the C-111 Basin and Taylor Slough, both natural and anthropogenic, it appears the scope for this monitoring is very narrow. This data will never indicate that increased freshwater delivery is causing any specific variable to change. It will only be intuitive at best by indicating water management practices. However, the SFWMD will use this information in combination with data from other monitoring and scientific projects that include the other variables affecting the ENP system. DERM's monitoring parameters will assist improved speculation on the health of the seagrasses. Initially, the monitoring was to begin prior to initiating the test project in July 1993, however due to government bureaucracy and delays from regulatory agencies and public involvement, this occurred by only one month. This project serves as baseline impact assessment monitoring to observe any effects in the changes of increased freshwater flow of C-111 and Taylor Slough.

Future Monitoring

Originally, the 1994/95 Contract modified the existing monitoring methods by expanding the project area and adding elements to the sampling methods that would allow cross referencing of the data collections of this project with similar monitoring efforts conducted in Florida Bay. Changes to the monitoring program were to include the establishment of six additional stations, three stations as southern extensions of the three existing transects and a transect comprising three stations further west of Little Madeira Bay. Other changes would standardize sample analysis and eliminate duplication of efforts in water quality sampling presently conducted by the Florida International University Southeast Environmental Labs (FIU) in Florida Bay that coincide with the locations and parameters also sampled by DERM. DERM would only collect these samples at the monitoring locations not currently sampled by the University. Additionally, the Department would perform semiannual below ground biomass assessments at each station.

Presently, however, the SFWMD and DERM are discussing new ways to create more time efficient methods and improve statistical integrity regarding the monitoring techniques, and DERM continues using the Contract 1993/94 monitoring methods without collecting chemical water quality samples. This monitoring protocol will remain while the monitoring methods are reevaluated.

Possible modifications to the project, currently being discussed, involve changing the monitoring methods entirely. Changes to the project may include monthly monitoring of the individual basins Highway Creek, Long Sound, Little Blackwater Sound, Joe Bay, Alligator Cove, Little Madeira Bay, the annual monitoring of Seven Palm Lake and Terrapin Bay, and possibly coordinating the present DERM monitoring of Manatee Bay and Barnes Sound with this project. Each month and/or year the biologists would determine sampling locations using randomly generated Global Positioning System (GPS) coordinates within a set number of zones within each basin. At each location,

four 0.5 m grids will be randomly tossed off the boat for use with the Braun-Blanquet cover and abundance scale (Braun-Blanquet, 1932), to estimate the percent cover of each individual seagrass species. The biologists would perform the original method for biomass determination, take core samples to determine below substrate biomass, and collect the original physical water quality parameters. Additionally, the Department would perform monitoring of the original six stations, twice a year, using the original methods.

Future of Florida Bay

Since 1987, the health of the Florida Bay ecosystem has degraded. To date, these symptoms include extensive losses of seagrass habitat, diminished water clarity, microalgal blooms of increasing intensity and duration and population reductions in economically significant species such as pink shrimp, sponges, lobster and recreational game fish. Possible reasons for the decline include lack of fresh water into the system, regionwide water contamination, pollutants from agriculture, and lack of hurricanes.

Concerns for the massive declines in the health of Florida Bay have forced resource managers and scientists to coordinate efforts to resolve the multi-ecosystem problem. Two important objectives are to develop an understanding of the condition of Florida Bay prior to significant alteration by man and separating anthropogenically generated changes in the Bay from natural system variation. The main objective, however, is to restore Florida Bay to a naturally functioning ecosystem.

To support restoration, a program must be committed to the process of integrating scientific understanding into the management decision making process and must focus on interdisciplinary ecosystem based research

(Armentano et al. 1994). This would involve a combined program of monitoring, research, and modeling. By monitoring we can track critical ecosystem parameters and provide baseline data and model construction. By conducting research, we can develop an understanding of the physical and biological processes regulating the status of the ecosystem, test model predictions and evaluate cause and effect relationships. Additionally, resource managers will use computer simulation models to predict and assess the ecosystem response to change, historical conditions, and to develop management alternatives. Through combined efforts, scientists and managers must determine a solution to balance the needs of wildlife, agriculture and South Florida's six million people (Dewar, 1994).

BIBLIOGRAPHY

- Armentano, Thomas V., et al. Florida Bay Science Plan A science planning document provided to the Interagency Working Group on Florida Bay. Florida, April 1994.
- Braun-Blanquet, J. <u>Plant Sociology: the Study of Plant Communities</u>. Transl., rev. and ed. C.D. Fuller and H.S. Conrad. Hafner, London: 1932.
- Carroll, Jr., Joseph D. A letter to the District Engineer of the U.S. Army Corps of Engineers, dated August 16, 1986, Vero Beach, Florida.
- Dewar, Heather. "Plotting a Future for the River of Grass". The Miami Herald 18 September 1994: 1B-2B.
- Finley, Michael V. A letter to Colonel Robert Herndon, District Engineer of the U.S. Army Corps of Engineers, dated March 20, 1989, Dade County, Florida.
- Hefty, Lee. Annual report from Metro Dade County Department of Environmental Resources Management, Miami, Florida, to the South Florida Water Management District, November 1994.
- Orth, R.J. and K.A. Moore. "Submerged vascular plants: Techniques for analyzing their distribution and abundance". <u>Marine Technology Society Journal</u>. 1983, Vol. 17, No.2, 38-52.
- Rozsa, Lori. "Glades Restoration Spawns Another Plan". The Miami Herald 11 July 1993: 6B.
- South Florida Water Management District. Monitoring and Operating Plan For C-11 Interim Construction Project. Revision 3, submitted to the Florida Department of Environmental Resources, 16 May 1990.
- Underwood, Ellen P. and Jan P. Loftin. "The Everglades: Back to the Future". Florida Water Winter 1995, Vol. 4, No. 1, 14-18.
- U.S. Army Corps of Engineers. Experimental Program of Water Deliveries To Everglades National Park Taylor Slough Iteration Final Environmental Assessment, June 1993.
- Van Lent, Thomas J., Robert Johnson, and Robert Fennema. Water

 Management Practices in Taylor Slough and the Rocky Glades and Flows to
 Florida Bay. South Florida Research Center, Everglades National Park,
 6 November 1992.
- Weaver, Cecilia. Water Resource Project Manager, South Florida Water Management District, Telephone interview on the C-111/ Taylor Slough Iteration Project. March 20, 1995.
- Zieman, J.C. and R.G. Wetzel. "Methods and rate of productivity in seagrasses". Handbook of Seagrass Biology, Garland STMP Press, New York, 1980: 87-117.

APPENDIX 1

C-111/Taylor Slough Water Quality and Biological Monitoring Contract C-4227

STATEMENT OF WORK

C-111/Taylor Slough Water Quality and Biological Monitoring

Introduction

The Biscayne Bay SWIM Plan and the Biscayne Bay Management Plan have recognized the need for comprehensive monitoring to detect water quality trends and possible impacts on the health of the Bay ecosystem. This proposed freshwater inflow impact assessment entails surface water and epibenthic habitat quality monitoring in Florida Bay. This project utilizes several of the strategies to address Bay management problems as identified in the Biscayne Bay SWIM Plan.

Specifically, this geographical extension of the existing Bay environmental monitoring efforts shall identify baseline conditions and potential ecosystem changes resultant of the restored freshwater inflow into Taylor Slough.

Project Objectives

Downstream effects shall be examined monthly for three years at six epibenthic habitat and six surface water quality sites in an effort to correlate potential systematic changes to freshwater releases.

In order to maintain database continuity and allow comparative analyses, general field and analytical protocol shall be consistent with procedures followed in the existing routine monitoring programs.

Data shall be reported to the District to be added to the growing databases for these matrices.

Project Methodology

Task 1 - Surface Water Quality Monitoring:

Monthly surface water samples and field measurements shall be collected at six sites in Florida Bay. Analytical parameters quantified shall include color, turbidity, the inorganic nutrients - total phosphate phosphorus, nitrate/nitrite nitrogen, and ammonia nitrogen, chlorophyll-a/pheophytin, and the trace metals copper, lead, cadmium, and zinc. In situ measurements of the water column shall include a photosynthetically active radiation (PAR) profile, pH, dissolved oxygen, salinity, conductivity, temperature, oxidation/reduction potential (ORP), and depth.

Station locations shall be determined following a reconnaissance of the study area shown in Figure 1. Exact site coordinates shall be provided to the District. The results shall be supplied to the District quarterly or upon demand.

The data shall be supplied in both a written and digital form. The digital files shall be supplied on 3.5 inch DOS formatted diskettes in ASCII, Lotus or other compatible format as necessary. The data shall be arranged in a manner specified by the District that facilitates loading the data into the District's database.

Task 2 - Epibenthic Habitat Monitoring:

Monthly monitoring shall be conducted at six bottom stations in the general study area (Figure 1). Exact site locations shall be chosen following a reconnaissance of the study area by District and DERM staff. Station coordinates shall be provided to the District. The following habitat quality parameters shall be subsampled along a transect at each station: Seagrass short shoot and blade density, abundance and diversity of biota, and percent of substrate cover. This shall be accomplished through random subsampling of the subunits in the portable quadrat. Seagrass shall be collected and processed to provide estimates of total standing crop and epibont biomass. Photographs of quadrat stations shall be taken when environmental conditions permit.

The results shall be supplied to the District quarterly or upon demand. The data shall be supplied in both a written and digital form. The digital files shall be supplied on 3.5 inch DOS formatted diskettes in ASCII, Lotus or other compatible format as necessary.

Task 3 - Preparation of a Quality Assurance Project Plan:

A quality assurance project plan shall be submitted to the District.

Deliverables (Tasks 1-3)

Year 1:	August	1993 -	July 1994
---------	--------	--------	-----------

Quarterly Data Report	October 31, 1993
Quarterly Data Report	January 31, 1994
Quarterly Data Report	April 30, 1994
Annual Summary Report	July 31, 1994

Year 2: August 1994 - July 1995

Quarterly Data Report	October 31, 1994
Quarterly Data Report	January 31, 1995
Quarterly Data Report	April 30, 1995
Annual Summary Report	July 31, 1995

Year 3: August 1995 - July 1996

Quarterly Data Report	October 31, 1995
Quarterly Data Report	January 31, 1996
Quarterly Data Report	April 30, 1996
Annual Summary Report	July 31, 1996

Payment Schedule

Quarterly reimbursement requests shall be submitted. Invoiced items shall include actual salary and fringe costs incurred, analytical services and equipment and supplies. Analytical services from the DERM laboratory shall be calculated on a per sample basis according to the schedule (page 3). Copies of actual invoices from the laboratory and copies of invoices for equipment purchases shall be provided as documentation. Payment of invoices shall be contingent upon delivery and acceptance of all products due within the invoiced period.

Per sample costs for the DERM laboratory:

<u>Parameter</u>	Cost/Sample (\$)
Color	10
Turbidity	10
Total Phosphate Phosphorus	12
Nitrate/Nitrite Nitrogen	20
Ammonia Nitrogen	20
Chlorophyll-a/Pheophytin	34
Cadmium	30
Copper	30
Lead	30
Zinc	30

Estimated Costs

The total annual amount of reimbursable costs sought under this Statement of Work from the District shall not exceed \$70,000.00. Capital equipment that is provided at no charge includes the use of automobiles, trucks, sampling equipment, computer hardware and software and dive gear. The actual costs of boat maintenance and supplies shall be reimbursed up to \$8,000.00 per year (this amount is included in the \$70,000.00 limit per year).

Contingencies

Every effort shall be made to complete all the tasks as described; however, due to inclement weather conditions or equipment failure, it is recognized that some samples may be missed occassionally under Task 1. Invoices shall include only the costs f_{0r} samples actually analyzed.

APPENDIX 2

C-111/Taylor Slough Water Quality and Biological Monitoring Quality Assurance Project Plan

Section 1.0 TITLE AND DEP APPROVAL PAGE

Quality Assurance Project Plan

Contract C-4227 Task 3.0

Prepared by:

Dade County Department of Environmental Resources Management 33 S.W. 2nd Avenue, Miami, Florida 33130-1540

33 S.W. Zhu Avenue, Miami, Florida 3313	0-1540
Celandre (305) 372-6789	413/94
Cecelia Weaver Staff Environmental Scientist, SFWMD	(Date)
Maria Loucraft-Manzang) Project OA Officer, SFWMD	7/11/94 (Date)
Carlos Espinosa, V.E. Assistant Director, DERM	5/25/90 (Date)
Donna Fries QA Coordinator, DERM	05/25/94 (Date)
Brian Flynn, R&E Section Chief, DERM	(Date) /94
Ramesh Peter Buch, R&E Section QA Officer, DERM	5/25/94 (Date)

Section 1.0 May 25, 1994 Page <u>2</u> of <u>2</u>	
Lee Hefty, R&E Project Manager, DERM	<u>6/9/94</u> (Date)
Ed Gancher Chief, DERM Laboratory	5/26/44 (Date)
Jana Bares QA Officer, DERM Laboratory	5-26-94 (Date)
Gail Sloane Project Manager, DEP	(Date)
Silvia Labie QA Officer, DEP	(Date)

Section 2.0 May 25, 1994 Page <u>1</u> of <u>2</u>

Section 2.0 TABLE OF CONTENTS

QUALITY ASSURANCE ELEMENTS

Section	No. of <u>Pages</u>	
1.0 Title Page 2.0 Table of Contents 3.0 Project Description 3.1 Site Identification and History 3.2 Project Scope and Purpose 3.3 Project Organization 3.4 Project Objectives 4.0 Field Procedures and Quality Control 4.1 Sampling Equipment 4.2 Field Activities 4.3 Field Measurements 5.0 Laboratory Procedures and Quality Control 5.1 Quality Control Checks 6.0 Quality Assurance Management 6.1 Corrective Action 6.2 Performance and Systems Audits 6.3 Quality Assurance Reports	2 1 7 1 2 1 4 1 1 1 1 1	05/25/94 05/25/94 05/25/94 05/25/94 05/25/94 05/25/94 05/25/94 05/25/94 05/25/94 05/25/94 05/25/94 05/25/94 05/25/94 05/25/94 05/25/94 05/25/94 05/25/94 05/25/94
LIST OF FIGURES		
Figure Number and Name 3.1 Project Organization 3.2 Site Map LIST OF TABLES	<u>Page</u> 5 6	Rev. <u>Date</u> 05/25/94 05/25/94
Table Number and Name 3.1 Summary of Historical Data 3.2 Proposed Samples, Matrices and Analytical Methods for the Project 4.1 Proposed Sampling Equipment 4.2 Field Activities	<u>Page</u> 3 7 2 3	Rev. <u>Date</u> 05/25/94 05/25/94 05/25/94 05/25/94

Section 2.0 May 25, 1994 Page <u>2</u> of <u>2</u>

LIST OF APPENDICES

Appendix Name A-1 Contract Descriptions of Sampling and	No. of <u>Pages</u>	Rev. Date
Analytical Protocol		05/25/94
A-2 Department of Environmental Resources Manag Laboratory S.O.P. for Salt Water Extraction Trace Metals	ement for 6	05/01/92

Section 3.0 May 25, 1994 Page <u>1</u> of <u>7</u>

Section 3.0 PROJECT DESCRIPTION

3.1 Site Identification and History

Site Name: Florida Bay, Everglades National Park

Site Address: Florida Bay, Everglades National Park

Homestead, Dade County, FL 33034

3.1.1 Site History

In an effort to address concerns regarding the water supply to the east Everglades and Florida Bay, State and Federal Water managers have increased the flow of freshwater to Taylor Slough through S-332 by approximately 100 cfs. The South Florida Water Management District (SFWMD) has contracted with Metro-Dade County Department of Environmental Resources Management (DERM) to perform monitoring to assess the possible effects this change in water delivery will have on water quality and epibenthic habitat in northeast Florida Bay. The monitoring will provide baseline data on existing benthic communities and current water quality conditions and will document any changes resulting from the increased flow of freshwater through Taylor Slough.

3.1.2 <u>Summary of the Historical Data</u> - See Table 3.1

3.2 Project Scope and Purpose

3.2.1 Purpose of this Project: This plan is being submitted as a requirement of SWIM Contract C-4227 between South Florida Water Management District (SFWMD) and Metropolitan Dade County. Please see sampling and analytical task assignments as noted in Appendix A-1.

3.2.2	Intended End Use of the Data
	Permit Compliance
	Feasibility Study
	Consent Order Compliance
	Consent Order Compliance Remedial Action
	Contamination Assessment
	
X	Water Quality Data Base:
	(Florida Bay Surface Water Quality and Benthic Habitat
	Monitoring Data Base)
	Facility Operating Report
	raction operating nepote
	Drojected Cabadula and Caona of Work
	Projected Schedule and Scope of Work

Projected Beginning Date: August 1, 1993

Projected Ending Date: July 31, 1996

Section 3.0 May 25, 1994 Page <u>2</u> of <u>7</u>

(quarterly)

Major Project Tasks

Specific Project Activity

1. Sampling/analysis
(monthly)

2. Preparation of progress reports

Scheduled Date
August 1, 1993
October 31, 1993

Section 3.0 May 25, 1994 Page <u>3</u> of <u>7</u>

TABLE 3.1 Summary of the Historical Data

New project. There are no historical data for this project prior to this contract

Section 3.0 May 25, 1994 Page 4 of 7

3.3 Project Organization

3.3.1 <u>Project Organization</u> - Sample collection activities will be conducted by the Dade County Department of Environmental Resources Management (DERM). The Laboratory analytical work will be performed by the DERM Laboratory.

Refer to figure 3.1 for the specific organization of this project.

3.3.2 <u>Personnel Modifications or Additions</u> - The following personnel are not included in the CompQAPs of the referenced organizations:

Restoration & Enhancement Section QA Officer Ramesh Peter Buch

3.4 Project Objectives

3.4.1 <u>Data Quality Objectives</u>

 $_{\rm X_}$ The data quality objectives for this project are the routine QA targets listed in the laboratory CompQAP.

The minimum detection limits to be achieved for this study differ from the routine detection limits specified in the laboratory CompQAP and are included as a part of Table 3.2.

The precision and accuracy requirements differ from the routine targets specified in the laboratory CompQAP and are included as a part of Table 3.2.

3.4.2 Proposed Samples for Project

- a. See Figure 3.2 for a map of the project site.
- b. See Table 3.2 of this Section for a summary of the sampling and analysis activities.
- 3.4.3 <u>Summary of Matrix Types, Analytical Methods and OA Targets</u>

Field and laboratory analytical measurements are presented in Table 3.2.

FIGURE 3.1 Project Organization

C-111\TAYLOR SLOUGH WATER QUALITY AND BIOLOGICAL MONITORING STATIONS

FBHC; (Highway Creek) FBLS; (Long Sound)

FBJB; (Joe Bay) FBTC; (Trout Cove) FBTR; (Taylor River) FBLM; (Little Madeira Bay)

TABLE 3.2
PROPOSED SAMPLES, MATRICES AND ANALYTICAL METHODS FOR THE PROJECT

The standards criteria outlined in DER Rule 17-302 are the detection limit criteria for this project. The detection limits reported for this project shall at least meet, or be lower than the stated standards.

FIELD MEASUREMENTS WILL BE PERFORMED BY: the Dade County Department of Environmental Resources Management, whose CompQAP #920035G was approved with annual amendments on 10/21/93.

PARAMETER	METHOD #
Dissolved Oxygen	Field measurement - SM4500-0 G
Salinity	Field measurement - SM2520 B
PH	Field measurement - SM4500-H+ B
Redox	Field measurement - n/a
Specific Conductivity	Field measurement - SM2510 A
Temperature	Field measurement - SM2550 B
Depth	Field measurement - n/a
Par	Field measurement - n/a
	·

FIELD SAMPLE COLLECTION ACTIVITIES WILL BE PERFORMED BY THE ABOVE NAMED ORGANIZATION.

LABORATORY ANALYSES WILL BE PERFORMED BY: the Dade County Department of Environmental Resources Management Laboratory, whose CompQAP # is 870238G with annual amendments approved on 07/01/93.

QUALITY CONTROL SUMMARY QA TAR							RGE	TS				
REQUENCY	SAMPLE MATRIX	SAMPLE SOURCE	# SAMPLES	18	EB	FD	ANALYTICAL METHOD #	COMPONENT	<u> </u>			MDL
1onthly	Water	Surface water	6	0	2	1	EPA 353.2	Nitrate/Nitrite Nitrogen				
lonthly	Water	Surface water	6	0	2	1	EPA 180.1	Turbidity				
onthly	Water	Surface water	6	0	2	1	EPA 365.1	Phosphates (total)				
onthly	Water	Surface water	6	0	2	1	EPA 350.1	Ammonia Nitrogen				
onthly	Water	Surface water	6	0	2	1	SM10200 H	Chlorophyll				
onthly	Water	Surface water	6	0	2	1	SM 2120 B	Color				
onthly	Water	Surface water	6	0	2	1	EPA 213.2	Cadmium¹				
onthly	Water	Surface water	6	0	2	1	EPA 220.2	Copper ¹				
onthly	Water	Surface water	6	0	2	1	EPA 239.2	Lead ¹				
onthly	Water	Surface water	6	0	2	1	EPA 289.2	Zinc'				
onthly	Benthic Vegetation	Seagrass	6	0	0	0	•	Seagrass Abundance and Diversity	,			
uarterly	Benthic Vegetation	Seagrass	18	0	Ō	0	•	Standing Crop Biomass				

* Analytical Methods: The analytical methods for estimating seagrass abundance and diversity and seagrass standing crop biomass are detailed in the DERM CompQAP #920035G, Section 6.5.8.4b, page 58, revised 10/21/93.

TB - Trip Blank

MDL - Method Detection Limit

EB - Equipment Blank

EB - Equipment Blank

P - Precision

A - Accuracy

NOTE: 1) S.O.P. for salt water extraction of trace metals included in Appendix A-2.

Section 4.0 FIELD PROCEDURES AND QUALITY CONTROL

This section specifies the protocols and procedures to be used by the Dade County Department of Environmental Resources Management (DERM) field personnel when conducting sampling activities for this project.

4.1 Sampling Equipment

See Table 4.1 for a list of the equipment used for this project.

4.2 Field Activities - See Table 4.2

- 4.2.1 Sampling protocols for this project that are not specified by the CompQAP specified in Table 4.2 include the following: None
- 4.2.2 Disposal protocols for handling wastes differ from those specified by the CompQAP. Wastes will be handled according to the following protocols: None

4.3 Field Measurements

Field measurements are listed in Table 3.2 of this QAPP. Field screening measurements that will be made are: None.

Section 4.0 May 25, 1994 Page 2 of 4

TABLE 4.1 PROPOSED SAMPLING EQUIPMENT

The following equipment will be used by the Dade County Department of Environmental Resources Management field personnel for this project. With the exception of the additional equipment, discussions on use and restrictions are included in CompQAP # 920035G updated with annual amendments which were approved 10/21/93.

EQUIPMENT DESCRIPTION

CONSTRUCTION MATERIALS

USE

Purging Equipment

1. Peristaltic pump

Aluminum casing with stainless steel heads

2. Tubing

Silicone rubber

Purging* Purging*

* Refer to Table 4.2 of this QAPP, Equipment Decontamination, for specific use of this equipment for purging prior to surface water sample collection.

Sampling Equipment

1. Peristaltic pump

Aluminum casing with stainless steel heads

Sample collection

2. Tubing

Silicone rubber

Sample Collection

Additional equipment not addressed in the CompQAP includes: None.

Field Measurement Equipment

1. Hydrolab Surveyor II	Field Measurement
2. Hydrolab Surveyor III	Field Measurement
3. Li-Cor Photosynthetically Active Radiation Datalogger	Field Measurement
4. Flat Quadrat	Field Measurement
5. Measuring Tape	field Measurement

TABLE 4.2 FIELD ACTIVITIES

The following field protocols will be used by the Dade County Department of Environmental Resources Management. The Comprehensive QA Plan number for this organization is 920035G. The date of the last update approval is 10/21/93.

All protocols, procedures and policies in the above-mentioned document which are pertinent to this Quality Assurance Project Plan will be followed and are summarized below:

	VOCs	Extr. Org.	Metals	lnorg. Anions	Org.	Phys. Prop.	Micro	Other (specify)
Groundwater								
Groundwater (in-place plumbing)								
Potable Water								
Surface Water			х	x	х	х		Chlorophyll
Soil								
Sediment/Sludges								
Automatic Samplers								
Field Filtration						1		
Wastewater						1		
Stormwater runoff								
Seagrass								Blade and Shoot Count and
								Biomass Determination

SAMPLE CONTAINERS

Sample containers will be supplied by: the Dade County Department of Environmental Resources Management Laboratory.

_X.	_Sample containers will	be prepreserved by	the above-referenced	organization and a	dditional acid will
	be provided ¹ ; OR				
	_Field organizations wi	il preserve samples	on site using proto	ocols outlined in t	the CompQAP.

NOTE: 1) S.O.P. for salt water extraction of trace metals included in Appendix A-2.

EQUIPMENT DECONTAMINATION

Equipment decontamination will follow protocols outlined in the above-referenced CompQAP. Modifications of the procedures in the above-referenced CompQAP are:

Equipment Category Modification

Pump Tubing:

Due to the nature of the sampling methodology, the existing natural variability of the sampling medium and the results of a data validation study conducted to determine the levels of cross-contamination associated with existing surface water sampling protocol, new tubing will not be used for each site. Instead sample water will be pumped through tubing for one minute prior to sample collection at each site as was done in the data validation study. This modification was addressed in the DERM QAPP #920036S, approved with revisions, August 1993 for the previous contract (C-3259) for this work. Refer to Appendix A-1 in the above-mentioned QAPP for discussion and data relating to the above-mentioned data validation study.

Section 4.0 May 25, 1994 Page <u>4</u> of <u>4</u>

TABLE 4.2 (continued) FIELD ACTIVITIES

EQUIPMENT SHALL BE PRECLEANED PRIOR TO ON-SITE ARRIVAL

WASTE DISPOSAL

 \underline{X} The procedures for handling wastes from equipment cleaning and from sampling are discussed in the above-referenced CompQAP.

The disposal procedures for handling wastes for this project differ from those outlined in the above referenced CompQAP and are outlined in Section 4.2.2.

Section 5.0 May 25, 1994 Page <u>1</u> of <u>1</u>

Section 5.0 LABORATORY PROCEDURES AND QUALITY CONTROL

The laboratory analyses shall be conducted by the Department of Environmental Resources Management Laboratory. The Comprehensive QA Plan number for this organization is 870238G. The date of the last update approval is 07/01/93.

All protocols, procedures and policies in the above-mentioned document which are pertinent to this Quality Assurance Project Plan shall be followed. The laboratory shall analyze the samples for this project by the methods specified in Table 3.2 of this QAPP.

5.1 Quality Control Checks

The types of laboratory control checks that will be used when analyzing samples for this project are:

Chemical:

X Reagent Blanks __X_ Matrix Spikes __X_ Duplicate Samples __X_ QC Check Samples __X_ Duplicate Matrix Spikes __X_ QC Check Standards

X Continuing Calibration Standards

Section 6.0 May 25, 1994 Page <u>1</u> of <u>1</u>

Section 6.0 QUALITY ASSURANCE MANAGEMENT

6.1 Corrective Actions

In addition to corrective actions cited in the approved Comprehensive QA Plans, ALL INVOLVED PARTIES WILL INITIATE ANY CORRECTIVE ACTION DEEMED NECESSARY BY DEP.

6.2 Performance and Systems Audits

6.2.1 Field Activities

Specific audits planned for this project are:

Audit Type	Frequency/Date	<u>Description</u>
1. Performance	As deemed necessary	Section QA Officer will perform an audit consisting of field analyses of blind QC samples prepared by the QA Officer or Field Supervisor.
2. Internal System	Annually	Section QA Officer will perform an audit on each field personnel to ensure all procedures including decontamination, documentation, measurements, sample handling, and sample custody are performed correctly.

6.2.2 Laboratory Activities

Frequency/Date

Specific audits planned for this project are:

1. Internal System	Semi-Annually	QA Coordinator will assess the compliance of the lab with the QA activities contained in the CompQAP.
2. Internal Performance	As deemed necessary	QA coordinator will assess the accuracy of the total measurement system using select standard reference materials (SRMs). The analyst who normally performs the analysis will measure the SRM. Usage of the SRMs varies from daily for inorganic parameters to quarterly for select organic parameters.

Description

ALL INVOLVED PARTIES WILL CONSENT TO AUDITS BY FDEP IF DEEMED NECESSARY.

6.3 Quality Assurance Reports

Audit Type

Field Activities Internal verbal QA Reports will be submitted by the Section QAO to the
Division Chief/Section Head quarterly. Written QA Reports will be submitted to the FDEP
QAS annually.

Laboratory Activities QA Reports will be submitted internally to the Laboratory Chief Chemist or

Director quarterly. Written QA Reports will be submitted to the FDEP QAS annually.

Note: Frequency must comply with Table IV, Appendix D of the DER Manual for Preparing Quality Assurance Plans or Table 6 of Chapter 17-160, F.A.C., Quality Assurance.

APPENDIX A-1

CONTRACT DESCRIPTIONS OF SAMPLING AND ANALYTICAL PROTOCOL

C-4227

EXHIBIT A"

STATEMENT OF WORK

C-111/Taylor Slough Water Quality and Biological Monitoring

Introduction

The Biscayne Bay SWIM Plan and the Biscayne Bay Management Plan have recognized the need for comprehensive monitoring to detect water quality trends and possible impacts on the health of the Bay ecosystem. This proposed freshwater inflow impact assessment entails surface water and epibenthic habitat quality monitoring in Florida Bay. This project utilizes several of the strategies to address Bay management problems as identified in the Biscayne Bay SWIM Plan.

Specifically, this geographical extension of the existing Bay environmental monitoring efforts shall identify baseline conditions and potential ecosystem changes resultant of the restored freshwater inflow into Taylor Slough.

Project Objectives

Downstream effects shall be examined monthly for three years at six epibenthic habitat and six surface water quality sites in an effort to correlate potential systematic changes to freshwater releases.

In order to maintain database continuity and allow comparative analyses, general field and analytical protocol shall be consistent with procedures followed in the existing routine monitoring programs.

Data shall be reported to the District to be added to the growing databases for these matrices.

Project Methodology

Task 1 - Surface Water Quality Monitoring:

Monthly surface water samples and field measurements shall be collected at six sites in Florida Bay. Analytical parameters quantified shall include color, turbidity, the inorganic nutrients - total phosphate phosphorus, nitrate/nitrite nitrogen, and ammonia nitrogen, chlorophyll-a/pheophytin, and the trace metals copper, lead, cadmium, and zinc. In situ measurements of the water column shall include a photosynthetically active radiation (PAR) profile, pH, dissolved oxygen, salinity, conductivity, temperature, oxidation/reduction potential (ORP), and depth.

Station locations shall be determined following a reconnaissance of the study area shown in Figure 1. Exact site coordinates shall be provided to the District. The results shall be supplied to the District quarterly or upon demand.

The data shall be supplied in both a written and digital form. The digital files shall be supplied on 3.5 inch DOS formatted diskettes in ASCII, Lotus or other compatible format as necessary. The data shall be arranged in a manner specified by the District that facilitates loading the data into the District's database.

Task 2 - Epibenthic Habitat Monitoring:

Monthly monitoring shall be conducted at six bottom stations in the general study area (Figure 1). Exact site locations shall be chosen following a reconnaissance of the study area by District and DERM staff. Station coordinates shall be provided to the District. The following habitat quality parameters shall be subsampled along a transect at each station: Seagrass short shoot and blade density, abundance and diversity of biota, and percent of substrate cover. This shall be accomplished through random subsampling of the subunits in the portable quadrat. Seagrass shall be collected and processed to provide estimates of total standing crop and epibont biomass. Photographs of quadrat stations shall be taken when environmental conditions permit.

The results shall be supplied to the District quarterly or upon demand. The data shall be supplied in both a written and digital form. The digital files shall be supplied on 3.5 inch DOS formatted diskettes in ASCII, Lotus or other compatible format as necessary.

Task 3 - Preparation of a Quality Assurance Project Plan:

A quality assurance project plan shall be submitted to the District.

Deliverables (Tasks 1-3)

Year 1:	August	1993 -	July 1994
---------	--------	--------	-----------

Quarterly Data Report
Quarterly Data Report
Quarterly Data Report
Annual Summary Report

October 31, 1993 January 31, 1994 April 30, 1994 July 31, 1994

Year 2: August 1994 - July 1995

Quarterly Data Report
Quarterly Data Report
Quarterly Data Report
Annual Summary Report

October 31, 1994 January 31, 1995 April 30, 1995 July 31, 1995

Year 3: August 1995 - July 1996

Quarterly Data Report
Quarterly Data Report
Quarterly Data Report
Annual Summary Report

October 31, 1995 January 31, 1996 April 30, 1996 July 31, 1996

Payment Schedule

Quarterly reimbursement requests shall be submitted. Invoiced items shall include actual salary and fringe costs incurred, analytical services and equipment and supplies. Analytical services from the DERM laboratory shall be calculated on a per sample basis according to the schedule (page 3). Copies of actual invoices from the laboratory and copies of invoices for equipment purchases shall be provided as documentation. Payment of invoices shall be contingent upon delivery and acceptance of all products due within the invoiced period.

Per sample costs for the DERM laboratory:

Parameter	Cost/Sample (\$)
Color	10
Turbidity	10
Total Phosphate Phosphorus	12
Nitrate/Nitrite Nitrogen	20
Ammonia Nitrogen	20
Chlorophyll-a/Pheophytin	34
Cadmium	30
Copper	30
Lead	30
Zinc	30

Estimated Costs

The total annual amount of reimbursable costs sought under this Statement of Work from the District shall not exceed \$70,000.00. Capital equipment that is provided at no charge includes the use of automobiles, trucks, sampling equipment, computer hardware and software and dive gear. The actual costs of boat maintenance and supplies shall be reimbursed up to \$8,000.00 per year (this amount is included in the \$70,000.00 limit per year).

Contingencies

Every effort shall be made to complete all the tasks as described; however, due to inclement weather conditions or equipment failure, it is recognized that some samples may be missed occassionally under Task 1. Invoices shall include only the costs $f_{\tt or}$ samples actually analyzed.

C-111\TAYLOR SLOUGH WATER QUALITY AND BIOLOGICAL MONITORING STATIONS

FBHC; (Highway Creek) FBLS; (Long Sound)

FBJB; (Joe Bay) FBTC; (Trout Cove) FBTR; (Taylor River)

FBLM; (Little Madeira Bay)

APPENDIX A-2

DEPARTMENT OF ENVIRONMENTAL RESOURCES MANAGEMENT LABORATORY S.O.P. FOR SALT WATER EXTRACTION FOR TRACE METALS

PARAMETER: Salt Water Freon Extraction for Trace Metals

METHOD: N/A

DETECTION LIMITS: Cadmium = 0.08 ug/L Pb = 0.17 ug/L

Copper = 0.44 ug/L Zn = 12.2 ug/L

DATA REPORTING: micrograms/liter

1. PRINCIPLE

A rapid carbamate extraction method with pyrrolidinedithiocarbamate and diethyldithiocarbamate is used for the determination of cadmium, copper, lead, and zinc in sea water by graphite furnace atomic absorption. The metal-carbamate complexes are extracted from 500ml of sea water into TF bottles with Freon and back-extracted into 15ml of acidified water. By using this procedure, the metals are transferred to a solution in which their concentrations do not change with time, and which can be easily stored for transportation. The sensitivity is high enough for analysis of open ocean waters.

2. SAMPLING CONTAINER

1-Liter Teflon bottles stored at 4°C for up to six months.

3. APPARATUS

- (a) Nalgene teflon separatory funnels 1000ml volume.
- (b) HDPE storage bottles 125ml volume.
- (c) Eppendorf pipets
- (d) Miscellaneous glassware

SALT WATER FREON EXTRACTION for TRACE METALS

DERM SOP REVISION 1 DATE: 5-1-92 PAGE: 2 OF 6

4. REAGENTS

(a) Nitric Acid (HNO3)

Trace metal grade

(b) Freon

1,1,2-trichloro-1,2,2-trifluroethane

(c) 0.5M Ammonium Citrate Dibasic Buffer

Weigh out 56.5475g of ammonium citrate dibasic and dilute to 500ml with Milli-Q water.

(d) Ammonium Pyrrolidinedithiocarbamate :
 (APDC) and Diethyldithiocarbamic
 Acid, Diethylammonium Salt (DDTC) 1% (w/v) each in the same solution

Weigh out 1.25g of APDC and 1.25g of DDTC. Dissolve in 125ml of Milli-Q water in a clean TFL separatory funnel, add 20 ml of Freon and shake for 3 min. Allow to separate and drain out the Freon. Add another 10ml of Freon and shake for 30 sec. Drain the Freon to the same container. Repeat the 10ml Freon extraction 2-3 times. Use upper layer for carbamate

extraction.

Prepare fresh.

5. PROCEDURE

- A. Glassware and container preparation
 - (1) Soak all glass and plastic containers which have not previously been acid-soaked in 15% HNO3 for 2 days. Otherwise, soak for 2 days in 1+19 trace level HNO3 (3.5%).
 - (2) Rinse 5 times with Milli-Q water. Shake off excess water.
 - (3) Drain. Let them dry up side down.
 - (4) Label separatory funnels as 1,2, etc.

DERM SOP REVISION 1 DATE: 5-1-92 PAGE: 3 OF 6

B. Buffer Blank Determination

- (1) Add 500ml of buffer to a labeled 1-Liter separatory funnel.
- (2) Using a 5-ml adjustable automatic pipet, transfer 3ml of APDC-DDTC into funnel and swirl. Save the pipet tip to use throughout the extraction.
- (3) Add 20ml of Freon
- (4) Shake for 3 minutes, venting through the screw cap, not by venting through the stopcock. IT IS IMPORTANT TO AVOID TRANSFERRING ANY SALT WATER TO THE STORAGE VIAL.
- (5) Drain Freon into a labeled storage vial, leaving a small quantity of Freon in the separatory funnel.
- (6) Add another 10ml of Freon and shake for 30 seconds.
- (7) Add this Freon to the same storage vial.

NOTE: When labeling the storage vial make sure to write down the number of the separatory funnel.

- (8) Repeat steps (2) through (7) placing both Freon extracts into a new storage vial.
- (9) Store the purified buffer in a previously cleaned teflon bottle.

NOTE: The buffer does not have to be re-extracted when used in the future.

C. Total Method Blank Determination

- (1) Place 500ml of Milli-Q water into a clean separatory funnel. Record the number of the separatory funnel.
- (2) Add 3ml of purified buffer (Step 5.B.). Save the pipet tip to use throughout the extraction.
- (3) Add 3ml of APDC-DDTC and swirl.
- (4) Add 20ml of Freon and shake for 3 minutes. See 5.B.4.

SALT WATER FREON EXTRACTION for TRACE METALS

- (5) Drain Freon into a clean, labeled 125-ml storage container.
- (6) Add another 10ml of Freon and shake for 30 seconds.
- (7) Drain Freon into same vial.
- (8) Repeat steps (2) through (7) placing both Freon extracts into a new storage vial.
- (9) Store purified water into a previously cleaned sample container.
- (10) Save BLANK for D.12.

D. Sample Extraction

- (1) Pour sample into a 1-liter separatory funnel up to the 500-ml mark. Record the number of the separatory funnel.
- (2) Add 3ml of purified buffer and mix by swirling.
- (3) Add 3ml of APDC-DDTC and swirl (Resulting pH should be between 5 and 6). If spiking the sample, do so at this point.
- (4) Add 20ml of Freon and shake for 3 minutes. See 5.B.4.
- (5) Allow the phases to separate and drain the Freon layer (lower organic layer) into a clean, labeled 125-ml storage container.

NOTE: Do not allow any water to enter the stopcock.

- (6) Add another 10ml of Freon and shake for 30 seconds.
- (7) Allow the phases to separate and drain the Freon layer into the same container.
- (8) Drain extracted sample into a 1-liter graduated cylinder and record the extracted volume in ml.
- (9) Add 500ul of concentrated HNO₃ to all storage containers, including the blank.
- (10) Shake for 20 seconds.

REVISION 1
DATE: 5-1-92
PAGE: 5 OF 6

- (11) Let stand for at least 5 minutes
- (12) Add 15ml of Milli-Q water that was previously purified by extraction (See C.10).
- (13) Shake for 20 seconds.
- (14) Analyze the top layer using graphite furnace atomic absorption spectrophotometer.

6. NOTES

- (a) Do not wash separatory funnels between samples. Rinse them 4 times with Milli-Q water between samples.
- (b) At least one duplicate and one spike should be extracted for every set of 10 samples.

7. PREPARATION OF SPIKES

	Stock Std (mg/L)	Vol of Stock Std (ul)	Approximate Spike conc. (ug/L)
Cadmium	1.0	100	0.2
Copper	5.0	100	1.0
Lead	5.0	100	1.0
Zinc	10.0	1,000	20.0

DERM SOP REVISION 1 DATE: 5-1-92

SALT WATER FREON EXTRACTION for TRACE METALS

PAGE: 6 OF 6

8. CALCULATIONS

(a) Un-corrected Sample Concentration:

Example:
$$65ug/L \times 15ml \text{ water} = 1.99ug/L = X$$

490 ml sample

(b) Method Blank Correction:

$$\frac{\text{ug/L} \times 15}{500} = B$$

- (c) Final sample concentration (in ug/L) = X B
- (d) Of spikes:

9. REFERENCES

Analytica Chimica Acta, 98 (1978) 47-57. Elsevier Scientific Publishing Company, Amsterdam

[&]quot;An Improved Metal Extraction Procedure for the Determination of Trace Metals in Sea Water by Atomic Absorption Spectrometry With Electrothermal Atomization"

APPENDIX 3

Water Quality and Biological Monitoring Data (data from Hefty, 1994)

TABLE 1

MONTHLY WATER QUALITY OBSERVATIONS HIGHWAY CREEK STATION OCTOBER 1993- SEPTEMBER 1994

STATION	HTMOM	DAY	YEA	AR T		Тепр	рH	SpCond	Salin	DO	DO	Redox	Depth	
						degC	units	mS/cm	ppt	%Sat	mg/l	₩V	meters	SAMPLE
FBHC	10	1	8	1993	102322	28.24	7.61	0.654	0.3	89.8	6.99	305	0.6	BOTTOM
BHC	11		8	1993	104339	25.54	7.78	1.134	0.6	94.7	7.71	332	0.6	BOTTOM
ВНС	12	1	3	1993	110351	16.5	7.87	20.3	12.1	95	8.58	379	0.5	BOTTON
ВНС	1		0	1994	105119	18.38	8.08	13.4	7.7	96.2	8.6	431	0.3	BOTTOM
ВНС	2	1	4	1994	113313	24.1	7.86	24.6	14.9	91.7	7.02	370	0.3	BOTTON
ВНС	3	1	4	1994	104205	22.31	8.16	8.6	4.8	89.4	7.53	402	0.3	BOTTO
BHC	4	. 1	1	1994	111048	24.72	8.03	26.3	16	103.6	7.79	441	0.3	BOTTON
ВНС	5	ı	9	1994	111500	29.89	7.82	12.13	6.9		5.63	386		BOTTO
BHC	6	. 1	3	1994	130250	32.26	8.1	0.749			6.46	357		BOTTO
BHC	7	•	5	1994	130728	30.67	8.16	4.48			7.14	370		BOTTO
BHC	8	}	8	1994	123244	31.86	7.95	31.2			5.72			BOTTO
BHC	9)	6	1994	124213	30.78	7.96	0.71	0.4	87.2	6.49	350	0.6	BOTTO
				ANNU	JAL MEAN	26.27	7.95	12.0	7.2	91.6	7.14	375		
					STD	5.04	0.16	10.7	6.6	6.2	0.93	37		
				,	MAX	32.26	8.16	31.2	19.4	103.6	8.60	441		
				1	MIN	16.50	7.61	0.7	0.3	77.8	5.63	305	0.3	
									A.1.5-		9 .04		Danch	
TAT I ON	MONTH	DAY	YE		Time	Temp	рН	SpCond mS/cm	Salin	DO %Sat	90 mg/ l	Redox	Depth meters	SAMPLI
HOITAT	MONTH	DAY	YE					SpCond mS/cm	Salin ppt	DO %Sat	90 mg/l		•	SAMPL
	MONTH 10		YE.			Temp	рН	•	ppt	%Sat	mg/ l 6.9	mV 320	meters 0	SURFA
внс) 1		AR	Time	Temp degC	pH units	mS/cm	ppt 0.3	XSat 89	mg/l 6.9 7.69	av 320 339	meters 0 0.1	SURFA SURFA
ВНС ВНС	10) 1 I	8	AR 1993	Time 102508	Temp degC 28.43	pH units 7.58 7.8	0.627 1.119 18.2	ppt 0.3 0.6 10.7	XSat 89 94.4	6.9 7.69 8.15	320 339 374	meters 0 0.1 0.2	SURFA SURFA SURFA
BHC BHC BHC	10 11) 1 !	8 8	1993 1993	Time 102508 104439	Temp degC 28.43 25.54	pH units 7.58 7.8 7.85	0.627 1.119	ppt 0.3 0.6 10.7	%Sat 89 94.4 90.1	6.9 7.69 8.15 8.32	320 339 374 426	meters 0 0 0 0.1 0.2 0.7	SURFA SURFA SURFA
BHC BHC BHC BHC	10 11 12		8 8 3	1993 1993 1993	102508 104439 110519	Temp degC 28.43 25.54 16.92	pH units 7.58 7.8 7.85	0.627 1.119 18.2 15 24.6	ppt 0.3 0.6 10.7 8.7 14.9	89 94.4 90.1 93.6 93	6.9 7.69 8.15 8.32 7.12	320 339 374 426 369	meters 0 0 0.1 0.2 0.7 0.1	SURFA SURFA SURFA SURFA
BHC BHC BHC BHC BHC	10 11 12) 1 2 1	8 8 13	1993 1993 1993 1994	102508 104439 110519 105239	Temp degC 28.43 25.54 16.92 18.33	pH units 7.58 7.8 7.85 8.07 7.86	0.627 1.119 18.2	ppt 0.3 0.6 10.7 8.7 14.9	89 94.4 90.1 93.6 93 86.6	6.9 7.69 8.15 8.32 7.12 7.41	320 339 374 426 369 396	0 0.1 0.2 0.1 0.1 0	SURFA SURFA SURFA SURFA SURFA
BHC BHC BHC BHC BHC	10 11 12 1 2) 1 1 2 1	8 8 13 10	1993 1993 1993 1994 1994	102508 104439 110519 105239 113357	Temp degC 28.43 25.54 16.92 18.33 24.1	pH units 7.58 7.85 7.85 8.07 7.86 8.13	0.627 1.119 18.2 15 24.6	ppt 0.3 0.6 10.7 8.7 14.9 2.6	89 94.4 90.1 93.6 93 86.6	6.9 7.69 8.15 8.32 7.12 7.41 6.56	320 339 374 426 369 396	0 0.1 0.2 0.7 0.1 0	SURFA SURFA SURFA SURFA SURFA SURFA
FBHC FBHC FBHC FBHC FBHC FBHC	10 11 12 1 2 3	2 -	8 8 13 10 14	1993 1993 1993 1994 1994 1994	102508 104439 110519 105239 113357 104312	Temp degC 28.43 25.54 16.92 18.33 24.1 22.27	pH units 7.58 7.85 7.85 8.07 7.86 8.13 8.04	0.627 1.119 18.2 15 24.6 4.7 25.7	ppt 0.3 0.6 10.7 8.7 14.9 2.6 15.6	89 94.4 90.1 93.6 93 86.6 87.4 63.3	6.9 7.69 8.15 8.32 7.12 7.41 6.56 4.89	320 339 374 426 369 396 447 375	0 0.1 0.2 0.7 0.1 0	SURFA SURFA SURFA SURFA SURFA SURFA SURFA
FBHC FBHC FBHC FBHC FBHC FBHC FBHC	10 11 12 1 2 3	2	8 8 13 10 14	1993 1993 1993 1994 1994 1994 1994	102508 104439 110519 105239 113357 104312 111230	Temp degC 28.43 25.54 16.92 18.33 24.1 22.27 24.92	PH units 7.58 7.85 7.85 8.07 7.86 8.13 8.04 7.77	0.627 1.119 18.2 15 24.6 4.7 25.7	ppt 7 0.3 0.6 2 10.7 8.7 14.9 2.6 7 15.6 1.6	89 94.4 90.1 93.6 93 86.6 87.4 63.3 88.5	6.9 7.69 8.15 8.32 7.12 7.41 6.56 4.89 6.42	320 339 374 426 369 396 447 375 363	0 0 0.1 0.2 0.7 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SURFA SURFA SURFA SURFA SURFA SURFA SURFA SURFA
FBHC FBHC FBHC FBHC FBHC FBHC FBHC FBHC	10 11 12 1 2 3 4	2	8 8 13 10 14 14	1993 1993 1993 1994 1994 1994 1994	102508 104439 110519 105239 113357 104312 111230 111603	Temp degC 28.43 25.54 16.92 18.33 24.1 22.27 24.92 28.13	pH units 7.58 7.85 7.85 8.07 7.86 8.13 8.04 7.77	0.627 1.119 18.2 15 24.6 4.7 25.7 3.04 0.748	ppt 7 0.3 0.6 2 10.7 8.7 14.9 2.6 1.6 8 0.4 2.3	89 94.4 90.1 93.6 93 86.6 87.4 63.3 88.5 95.5	6.9 7.69 8.15 8.32 7.12 7.41 6.56 4.89 6.42 7.03	320 339 374 426 369 396 447 375 363 371	meters 0 0.1 0.2 0.7 0.1 0 0.1 0 0.2 0 0.1 0 0.2 0 0.2	SURFA SURFA SURFA SURFA SURFA SURFA SURFA SURFA
BHC BHC BHC BHC BHC BHC BHC BHC BHC	10 11 12 1 2 3 4	2	18 8 13 10 14 14 11 9	1993 1993 1993 1994 1994 1994 1994 1994	102508 104439 110519 105239 113357 104312 111230 111603 130435	Temp degC 28.43 25.54 16.92 18.33 24.1 22.27 24.92 28.13 32.28	pH units 7.58 7.85 7.85 8.07 7.86 8.13 8.04 7.77 8.1	0.627 1.119 18.2 15 24.6 4.7 25.7 3.04 4.19	ppt 0.3 0.6 2 10.7 8.7 2.6 15.6 1.6 3 0.4 2.3	89 94.4 90.1 93.6 93 86.6 87.4 63.3 88.5 95.5	6.9 7.69 8.15 8.32 7.12 7.41 6.56 4.89 6.42 7.03	320 339 374 426 369 396 447 375 363 371	meters 0 0.1 0.2 0.7 0.1 0 0.1 0 0.2 0 0.1 0 0 0.1 0 0 0 0.2	SURFA SURFA SURFA SURFA SURFA SURFA SURFA SURFA SURFA
BHC BHC BHC BHC BHC BHC BHC BHC BHC	10 11 12 1 2 3 4 5	2	18 8 13 10 14 14 11 9	1993 1993 1993 1994 1994 1994 1994 1994	102508 104439 110519 105239 113357 104312 111230 111603 130435 130842	Temp degC 28.43 25.54 16.92 18.33 24.1 22.27 24.92 28.13 32.28 30.65 31.93	pH units 7.58 7.87 7.85 8.07 7.86 8.13 8.04 7.77 8.1 8.17 7.96	0.627 1.119 18.2 15 24.6 4.7 25.7 3.04 0.748 4.19	ppt 0.3 0.6 2 10.7 8.7 14.9 2.6 1.6 3 0.4 2.3 19.5	89 94.4 90.1 93.6 93 86.6 87.4 63.3 88.5 95.5 86.3	6.9 7.69 8.15 8.32 7.12 7.41 6.56 4.89 6.42 7.03 5.61	320 339 374 426 369 396 447 375 363 371 374	meters 0 0.1 0.2 0.7 0.1 0 0.1 0 0.2 0 0.1 0 0 0.1 0 0 0 0.2	SURFA SURFA SURFA SURFA SURFA SURFA SURFA SURFA SURFA
BHC BHC BHC BHC BHC FBHC FBHC FBHC FBHC	10 11 12 1 2 3 4 5 6	2	18 8 13 10 14 14 11 9 13 5	1993 1993 1993 1994 1994 1994 1994 1994	102508 104439 110519 105239 113357 104312 111230 111603 130435 130842 123355	Temp degC 28.43 25.54 16.92 18.33 24.1 22.27 24.92 28.13 32.28 30.65 31.93	pH units 7.58 7.85 8.07 7.86 8.13 8.04 7.77 8.1 8.17 7.96	0.627 1.119 18.2 15 24.6 4.7 25.7 3.04 0.748 4.19 31.4	ppt 0.3 0.6 10.7 8.7 14.9 2.6 1.6 0.4 2.3 19.5 0.4	89 94.4 90.1 93.6 93 86.6 87.4 63.3 88.5 95.5 86.3	6.9 7.69 8.15 8.32 7.12 7.41 6.56 4.89 6.42 7.03 5.61 6.46	320 339 374 426 369 396 447 375 363 371 374 355	meters 0	SURFA SURFA SURFA SURFA SURFA SURFA SURFA SURFA SURFA
BHC BHC BHC BHC BHC FBHC FBHC FBHC FBHC	10 11 12 1 2 3 4 5 6	2	18 8 13 10 14 14 11 9 13 5	1993 1993 1993 1994 1994 1994 1994 1994	102508 104439 110519 105239 113357 104312 111230 111603 130435 130435 123355 124342	Temp degC 28.43 25.54 16.92 18.33 24.1 22.27 24.92 28.13 32.28 30.65 31.93 30.85	PH units 7.58 7.85 7.85 8.07 7.86 8.13 8.04 7.77 8.1 8.17 7.96 7.97	0.627 1.119 18.2 15 24.6 4.7 25.7 3.04 0.748 4.19 31.4 0.714	ppt 0.3 0.6 2 10.7 8.7 14.9 2.6 1.6 0.4 2.3 19.5 0.4 3 6.5	89 94.4 90.1 93.6 93 86.6 87.4 63.3 88.5 95.5 86.3 86.9	6.9 7.69 8.15 8.32 7.12 7.41 6.56 4.89 6.42 7.03 5.61 6.46	320 339 374 426 369 396 447 375 363 371 374 355	meters 0	SURFA SURFA SURFA SURFA SURFA SURFA SURFA SURFA SURFA
FBHC FBHC FBHC FBHC FBHC FBHC FBHC FBHC	10 11 12 1 2 3 4 5 6	2	18 8 13 10 14 14 11 9 13 5	1993 1993 1993 1994 1994 1994 1994 1994	102508 104439 110519 105239 113357 104312 111230 111603 130435 130842 123355 124342	Temp degC 28.43 25.54 16.92 18.33 24.1 22.27 24.92 28.13 32.28 30.65 31.93 30.85 26.20	PH units 7.58 7.87 7.85 8.07 7.86 8.13 8.04 7.77 8.1 8.17 7.96 7.97	0.627 1.119 18.2 15 24.6 4.7 25.7 3.04 0.748 4.19 31.4 0.714	ppt 0.3 0.6 10.7 8.7 14.9 2.6 1.6 3 0.4 2.3 6.5 0.4 3 6.5 0.4	89 94.4 90.1 93.6 93 86.6 87.4 63.3 88.5 95.5 86.3 86.9	7.69 7.69 8.15 8.32 7.12 7.41 6.56 4.89 6.42 7.03 5.61 6.46	320 339 374 426 369 396 447 375 363 371 374 355	meters 0	! !

MONTHLY WATER QUALITY OBSERVATIONS LONG SOUND STATION OCTOBER 1993- SEPTEMBER 1994

STATION	MONTH	DAY	١	EAR :	lime	Temp degC	pH units	SpCond mS/cm	Salin ppt	DO %Sat	DO mg/l	Redox mV	Depth meters	SAMPLE
FBLS	1	0	18	1993	133809	29.12	7.57	21.7	13	86.1	6.1	326	1.2	BOTTON
FBLS	1	1	8	1993	130525	26.95	7.58	19.7	11.7	88.6	6.57		1.1	BOTTOM
FBLS	1	2	13	1993	133550	18.97	7.92	33.8	21.2	92.8	7.55			BOTTON
FBLS		1	10	1994	132311	19.57	8.05	33.1	20.7	99.7	8.04			BOTTOM
BLS		2	14	1994	134416	25.16	7.89	36.4	23	99.5	7.12			BOTTOM
FBLS		3	14	1994	105452	23.45	8.12	25.1		108.6	8.4		0.9	BOTTOM
FBLS		4	11	1994	135745	25.97	8.76	32.6		105.1	7.54			BOTTOM
FBLS		5	9	1994	130539	29.53	7.74	34.1		83.2	5.57			BOTTON
FBLS		6	13	1994	105841	31.27	7.94	27.8		88.2	5.88			BOTTOM
FBLS		7	5	1994	105828	29.07	7.94	30.4		97.5	6.68			BOTTON
FBLS		8	8	1994	103247	30.61	7.81	41.8		83.7	5.33	356		BOTTOM
FBLS		9	- 6	1994	103310	31.72	7.56	30	18.5	47	3.08	378	1.1	BOTTOM
				ANN	UAL MEAN	26.78	7.91	30.5	19.0	90.0	6.49			
					STD	4.13	0.31	6.0	4.1	15.2				
					MAX	31.72	8.76	41.8	26.9	108.6	8.40			
					MIN	18.97	7.56	19.7	11.7	47.0	3.08	326	0.6	
STATION	MONTH	DAY		YEAR	Time	Temp	pH	SpCond	Salin	DO	DO (1)	Redox	Depth	SAMPLE
						degC	units	mS/cm	ppt	XSat	mg/l	mV	meters	SAMPLE
FBLS	•	10	18	1993	133655	28.82								METER
FBLS	•	11	8	1993	130630	26.57								METER
FBLS	•	12	13	1993	133644	19.02								METER
FBLS		9	6	1994	103514	31.79	7.58	28	17.2	41.8	2.76	371	'	METER
				ANN	WAL MEAN	26.55						,		
					STD	4.73								
					MAX MIN	31.79 19.02								
STATION	MONTH	DAY		YEAR	Time	Temp	рH	SpCond	Salin	00	DO / I	Redox mV	Depth meters	SAMPLE
						degC	units	mS/cm	ppt	XSa t	mg/l			
***		10	18	1993	133902									SURFAC
FBLS		11	8	1993	130858									SURFAC
FBLS FBLS				1993	133753	19.16	7.92	32.						SURFAC
FBLS		12	13								7.8	7 461	1 (SURFA
		12	10	1994	132445	19.57								CHARACA
FBLS FBLS		1 2	10 14	1994 1994	132445 134453	19.57 25.16	7.89	36.4	4 23	98.3	7.0	4 364		SURFA
FBLS FBLS FBLS FBLS		1 2 3	10 14 14	1994 1994 1994	132445 134453 105616	19.57 25.16 23.46	7.89 8.13	36.4 35.1	4 23 1 15.3	98.3 107.5	7.0 8.3	4 36 4 1 415	5 (SURFA
FBLS FBLS FBLS FBLS FBLS		1 2 3 4	10 14 14 11	1994 1994 1994 1994	132445 134453 105616 135858	19.57 25.16 23.46 26.05	7.89 8.13 8.77	36.6 25.7 32.6	4 23 1 15.3 4 20.2	98.3 107.5 103.5	7.0 8.3 7.4	4 364 1 415 2 413	5 (5 (SURFAI
FBLS FBLS FBLS FBLS FBLS		1 2 3 4 5	10 14 14 11 9	1994 1994 1994 1994	132445 134453 105616 135858 130610	19.57 25.16 23.46 26.05 29.55	7.89 8.13 8.77 7.74	36.6 25.7 32.6 34.7	4 23 1 15.3 4 20.2 1 21.4	98.3 107.5 103.5 82.6	3 7.06 5 8.3 5 7.46 5 5.5	4 364 1 415 2 413 3 424	5 (5 (SURFAI SURFAI SURFAI
FBLS FBLS FBLS FBLS FBLS FBLS		1 2 3 4 5 6	10 14 14 11 9 13	1994 1994 1994 1994 1994	132445 134453 105616 135858 130610	19.57 25.16 23.46 3 26.05 29.55 3 3	7.89 8 8.13 8 8.77 6 7.74 1 7.99	36.4 3 25.5 32.4 34.5 2 24	4 23 1 15.3 4 20.2 1 21.4 4 14.5	98.3 107.5 103.5 82.6 90.7	7.06 8.3 7.46 5.55 7.6.16	4 364 1 415 2 413 3 424 6 376	5 (5 (6 0.1	SURFAI SURFAI SURFAI SURFAI
FBLS FBLS FBLS FBLS FBLS FBLS FBLS		1 2 3 4 5	10 14 14 11 9	1994 1994 1994 1994 1994 1994	132445 134453 105616 135858 130610 110148	19.57 25.16 23.46 3 26.05 29.55 3 29.05	7.89 8.13 8.77 7.74 1. 7.99 7.99	36.4 32.6 32.6 34.1 30.2 30.1	4 21 1 15.3 4 20.3 1 21.4 4 14.5 5 18.9	98.3 107.5 103.5 82.6 90.7 94.5	3 7.04 5 8.3 5 7.4 5 5.5 7 6.10 9 6.4	4 364 1 415 2 413 3 424 6 376 9 387	5 (3 5 (3 5 (3 7 (4)	SURFAI SURFAI SURFAI SURFAI SURFAI
FBLS FBLS FBLS FBLS FBLS FBLS FBLS FBLS		1 2 3 4 5 6	10 14 14 11 9 13	1994 1994 1994 1994 1994 1994 1994	132445 134453 105616 135858 130610 110148 105952	19.57 25.16 23.46 26.05 29.55 3 31.0	7.89 8.13 8.77 7.74 7.99 7.95	36.4 325.7 32.6 34.7 30.1 30.1 2 40.1	4 21.4 1 15.3 4 20.3 1 21.4 4 14.3 5 18.5 8 26.	98.3 107.5 103.5 82.6 90.7 94.5	3 7.04 5 8.3 5 7.4 5 5.5 7 6.1 9 6.4 3 4.7	4 364 1 415 2 413 3 424 6 376 9 387 8 353	5 (6 6 0.5 6 0.7 7 (6 5 0.7	SURFA SURFA SURFA SURFA SURFA SURFA SURFA
FBLS FBLS FBLS FBLS FBLS FBLS FBLS FBLS		1 2 3 4 5 6 7	10 14 14 11 9 13 5	1994 1994 1994 1994 1994 1994	132445 134453 105616 135858 130610 110148	19.57 25.16 23.46 26.05 29.55 3 31.0	7.89 8.13 8.77 7.74 7.99 7.95 7.82	36.4 325.7 32.6 34.7 30.1 30.1 2 40.1	4 21.4 1 15.3 4 20.3 1 21.4 4 14.3 5 18.5 8 26.	98.3 107.5 103.5 82.6 90.7 94.5 75.3	3 7.04 5 8.3 5 7.4 5 5.5 7 6.1 9 6.4 3 4.7	4 364 1 415 2 413 3 424 6 376 9 387 8 353	5 (6 6 0.5 6 0.7 7 (6 5 0.7	SURFA SURFA SURFA SURFA SURFA SURFA SURFA
FBLS FBLS FBLS FBLS FBLS FBLS FBLS FBLS		1 2 3 4 5 6 7 8	10 14 14 11 9 13 5	1994 1994 1994 1994 1994 1994 1994 1994	132445 134453 105616 135858 130610 110148 105952	19.57 25.16 23.46 3 26.09 29.55 3 29.09 31.0 30.16	7.85 8.13 6.8.77 6.7.74 7.95 7.95 7.82 7.93	36.4 32.3 32.4 34.1 30.2 30.1 2.40.1 3.24.1	4 21 1 15.3 4 20.3 1 21.4 4 14.1 5 18.6 8 26.3 4 14.3	98.3 107.5 103.5 82.6 90.7 9 94.5 1 75.3 83.3	7.00 5.8.3 7.46 5.55 7.6.10 6.47 3.4.77 5.7.	4 364 1 415 2 413 3 424 6 376 9 387 8 353 3 359	5 (6 0.5 0.5 7 (7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	O SURFAI O SURFAI I SURFAI O SURFAI O SURFAI I SURFAI
FBLS FBLS FBLS FBLS FBLS FBLS FBLS FBLS		1 2 3 4 5 6 7 8	10 14 14 11 9 13 5	1994 1994 1994 1994 1994 1994 1994 1994	132445 134453 105616 135858 130610 110148 105952 103511 103633	19.57 25.16 23.46 3 26.09 3 29.55 3 31.0 3 30.16	7.85 8.13 6 8.77 6 7.74 1 7.95 9 7.95 1 7.82 7.93	36.4 32.4 34.1 30.1	4 21 1 15.3 4 20.3 1 21.4 4 14.1 5 18.6 8 26.3 4 14.3	98.3 107.5 103.5 82.6 90.7 9 94.5 1 75.3 83.3	7.00 5.53 7.40 5.55 7.61 6.10 6.44 7.57 7.7 1.0	4 364 1 415 2 413 3 424 6 376 9 385 8 353 3 359	5 (6 0.5 6 0.7 7 (7 5 0.5 9 0.7 9 0.0 0.7 9 0.0 0.7 9 0.0 0.7 9 0.0 0.7 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	O SURFA D SURFA 1 SURFA 1 SURFA 1 SURFA 1 SURFA 1 SURFA
FBLS FBLS FBLS FBLS FBLS FBLS FBLS FBLS		1 2 3 4 5 6 7 8	10 14 14 11 9 13 5	1994 1994 1994 1994 1994 1994 1994 1994	132445 134453 105616 135858 130610 110148 105952 103511 103633	19.57 25.16 23.46 3 26.05 3 29.55 3 31.0 3 30.16	7.85 8.13 6.8.77 6.7.74 7.95 7.95 7.82 7.93 6.7.93	36.4 32.4 34.1 30.1	4 21 1 15.3 4 20.3 1 21.4 4 14.5 5 18.5 8 26.7 4 14.6 3 17.6 5 5.6	98.3 107.5 103.5 1	7.00 5.53 7.40 5.55 7.61 6.10 6.44 7.57 7.7 1.0	4 364 1 415 2 413 3 424 3 424 9 385 3 355 3 376 0 44 1 46	5 (6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	O SURFAI D SURFAI 1 SURFAI 1 SURFAI 1 SURFAI 1 SURFAI 1 1 2

TABLE 1 (CON'T)

MONTHLY WATER QUALITY OBSERVATIONS JOE BAY STATION OCTOBER 1993- SEPTEMBER 1994

	MONTH D	AY	YEAR	Time	Тетр	рH	SpCond	Salin	DO	DO	Redox	Depth	
					degC	units	m\$/cm	ppt	%Sat	mg/l	mV	meters	SAMPLE
FBJB	10	20	1993	93547	29.74	7.36	15.3	8.9	41.4	2.97	331	1	BOTTOM
FBJB	11	9	1993	102353	26.52	7.56	8.9	5	82.9	6.45	360	0.9	BOTTOM
FBJB	12	14	1993	112519	19.74	8.04	23.1	13.9	109.3	9.15	401	0.9	BOTTOM
FBJB	1	12	1994	94209	21.88	7.99	21	12.5	78.7	6.37	421	0.5	BOTTOM
FBJB	2	15	1994	110423	21.68	7.8	28.8	17.7	85.9	6.77	365	0.6	BOTTOM
FBJB	3	16	1994	71130	21.19	8.12	8.34	4.7	84.4	7.27	449	0.7	BOTTON
FBJB	4	13	1994	111319	26.39	8.91	24.7	15	102.6	7.53	395	0.6	BOTTON
FBJB	5	11	1994	114815	30.22	7.86	30.7	19	91.9	6.16	411	0.7	BOTTOM
FBJB	6	14	1994	111939	31.6	7.88	26.3	16.1	81.9	5.46	376	0.7	BOTTON
FBJB	7	7	1994	105824	29.59	7.95	27.3	16.8	93	6.38	376	0.8	BOTTON
FBJB	8	10	1994	104632	31.57	7.74	50.3	33.1	42.7	2.58	367	0.9	BOTTOM
FBJB	9	7	1994	113537	30.47	7.8	13.51	7.8	74.4	5.31	352	0.9	BOTTON
			ANN	UAL MEAN	26.72	7.92	23.2	14.2	80.8	6.03	384	0.8	
				STD	4.27	0.36	10.9	7.4	19.7	1.75	32	0.1	
				MAX	31.60	8.91	50.3	33.1	109.3	9.15	449	1.0	
				MIN	19.74	7.36	8.3	4.7	41.4	2.58	331	0.5	
					_						.	9 ob	
STATION	MONTH D	AY	YEAR	Time	Temp	ρH	SpCond	Salin	DO	DO	Redox	Depth	
					degC	units	mS/cm	ppt	XSat	mg/l	WV	meters	SAMPLE
FBJB	10	20	1993	93724	28.79	7.51	7.12	4	59.8	4.5	325	0.8	METER
STATION	MONTH D	AY	YEAR	Time	Темр	pH	c-cd					Danah	
SIAIION	MONIN D	A1	IEAR					Salin	DO	ÐΩ	Redox	Decitor	
				, , mc	degC	units	SpCond mS/cm	Salin ppt	DO %Sat	DO mg/l	Redox nV	Depth meters	SAH
FBJB	10	20	1993	93918	degC	-	•	ppt	% Sat	mg/l	₩	meters	SAM: SURFAC.
FBJB FBJB	10 11	20 9	1993 1993		degC 28.32	units 7.52	mS/cm	ppt 2.5	% Sat 73	mg/l 5.59	mV 330	meters 0	
				93918	degC 28.32 26.53	units 7.52 7.6	mS/cm 4.59	ppt 2.5	%Sat 73 80.7	mg/l 5.59 6.27	mV 330 362	meters 0 0.1	SURFACE
FBJB	11	9	1993	93918 102513	28.32 26.53 19.47	7.52 7.6 8.05	mS/cm 4.59 8.95	2.5 5 13.2	73 80.7 106.3	mg/l 5.59 6.27 8.98	330 362 397	meters 0 0.1 7 0.1	SURFAC.
FBJB FBJB	11 12 1	9 14	1993 1993	93918 102513 112653	28.32 26.53 19.47 22.29	7.52 7.6 8.05 7.99	MS/cm 4.59 8.95 21.9 17.9	2.5 5 13.2 10.6	73 80.7 106.3 81.8	5.59 6.27 8.98 6.65	330 362 397 417	meters 0 0 2 0.1 7 0.1	SURFACE SURFACE
FBJB FBJB FBJB	11 12	9 14 12	1993 1993 1994	93918 102513 112653 94315	28.32 26.53 19.47 22.29 21.66	7.52 7.6 8.05 7.99 7.82	MS/cm 4.59 8.95 21.9 17.9	2.5 5 13.2 10.6 17.6	73 80.7 106.3 81.8 86.3	5.59 6.27 8.98 6.65 6.81	330 362 397 417 363	meters 0 0.1 0.1 0.1 0.1 0.1	SURFACE SURFACE SURFACE SURFACE
FBJB FBJB FBJB FBJB	11 12 1 2	9 14 12 15	1993 1993 1994 1994	93918 102513 112653 94315 110601	28.32 26.53 19.47 22.29 21.66 20.77	7.52 7.6 8.05 7.99 7.82 8.14	#S/cm 4.59 8.95 21.9 17.9 28.6 7.76	2.5 5 13.2 10.6 17.6 4.3	73 80.7 106.3 81.8 86.3	mg/l 5.59 6.27 8.98 6.65 6.81 7.58	330 362 397 417 363 438	meters 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1	SURFACE SURFACE SURFACE SURFACE SURFACE
FBJB FBJB FBJB FBJB FBJB	11 12 1 2 3 4	9 14 12 15 16	1993 1993 1994 1994 1994	93918 102513 112653 94315 110601 71253	28.32 26.53 19.47 22.29 21.66 20.77 26.39	7.52 7.6 8.05 7.99 7.82 8.14 8.92	#S/cm 4.59 8.95 21.9 17.9 28.6 7.76	2.5 5 13.2 10.6 17.6 4.3	73 80.7 106.3 81.8 86.3 87 102.1	5.59 6.27 8.98 6.65 6.81 7.58 7.49	330 362 397 417 363 438 393	meters 0 0 2 0.1 7 0.1 7 0 3 0.1 8 0.1 9 0	SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE
FBJB FBJB FBJB FBJB FBJB FBJB	11 12 1 2 3	9 14 12 15 16	1993 1993 1994 1994 1994	93918 102513 112653 94315 110601 71253	28.32 26.53 19.47 22.29 21.66 20.77 26.39 30.23	7.52 7.6 8.05 7.99 7.82 8.14 8.92 7.76	MS/CM 4.59 8.95 21.9 17.9 28.6 7.76 24.6	2.5 5 13.2 10.6 17.6 4.3 14.9	73 80.7 106.3 81.8 86.3 87 102.1 71.2	5.59 6.27 8.98 6.65 6.81 7.58 7.49	330 362 397 417 363 438 393 401	meters 0 0 2 0.1 7 0.1 7 0 3 0.1 8 0.1 9 0	SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE
EBTB EBTB EBTB EBTB EBTB EBTB EBTB EBTB	11 12 1 2 3 4 5	9 14 12 15 16 13	1993 1993 1994 1994 1994 1994 1994	93918 102513 112653 94315 110601 71253 111412 114944	28.32 26.53 19.47 22.29 21.66 20.77 26.39 30.23 31.87	7.52 7.6 8.05 7.99 7.82 8.14 8.92 7.76	MS/CM 4.59 8.95 21.9 17.9 28.6 7.76 24.6 23.8 20.5	2.5 5 13.2 10.6 17.6 4.3 14.9 14.4	73 80.7 106.3 81.8 86.3 87 102.1 71.2 69.3	5.59 6.27 8.98 6.65 6.81 7.58 7.49 4.9	330 362 397 417 363 438 393 401 375	meters 0 0 0.1 7 0.1 7 0.1 8 0.1 9 0 0.1 9 0 0.1	SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE
EFTB EFTB EFTB EFTB EFTB EFTB EFTB EFTB	11 12 1 2 3 4 5 6 7	9 14 12 15 16 13 11	1993 1993 1994 1994 1994 1994 1994 1994	93918 102513 112653 94315 110601 71253 111412 114944 112112	28.32 26.53 19.47 22.29 21.66 20.77 26.39 30.23 31.87 29.61	7.52 7.6 8.05 7.99 7.82 8.14 8.92 7.76 7.84 7.97	MS/CM 4.59 8.95 21.9 17.9 28.6 7.76 24.6 23.8 20.5 27.4	2.5 5 13.2 10.6 17.6 4.3 14.9 14.4 12.2	73 80.7 106.3 81.8 86.3 87 102.1 71.2 69.3 90.2	mg/l 5.59 6.27 8.98 6.65 6.81 7.58 7.49 4.9	330 362 397 417 363 438 393 401 375 376	meters 0 0 0.1 7 0.1 7 0.1 8 0.1 8 0.1 9 0 9 0 9 0 9 0	SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE
EBTB EBTB EBTB EBTB EBTB EBTB EBTB EBTB	11 12 1 2 3 4 5	9 14 12 15 16 13 11 14	1993 1993 1994 1994 1994 1994 1994 1994	93918 102513 112653 94315 110601 71253 111412 114944 112112	28.32 26.53 19.47 22.29 21.66 20.77 26.39 30.23 31.87 29.61	7.52 7.6 8.05 7.99 7.82 8.14 8.92 7.76 7.84 7.97	MS/CM 4.59 8.95 21.9 17.9 28.6 7.76 24.6 23.8 20.5 27.4 46.5	2.5 5 13.2 10.6 17.6 4.3 14.9 14.4 12.2 16.8 30.3	73 80.7 106.3 81.8 86.3 87 102.1 71.2 69.3 90.2 75.1	mg/l 5.59 6.27 8.98 6.65 6.81 7.58 7.49 4.9 4.71 6.2	330 362 397 417 363 438 393 401 375 376 362	meters 0 0 0.1 7 0.1 7 0.1 8 0.1 8 0.1 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9	SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE
ERIB ERIB ERIB ERIB ERIB ERIB ERIB ERIB	11 12 1 2 3 4 5 6 7 8	9 14 12 15 16 13 11 14 7	1993 1993 1994 1994 1994 1994 1994 1994	93918 102513 112653 94315 110601 71253 111412 114944 112112 105931 104748	28.32 26.53 19.47 22.29 21.66 20.77 26.39 30.23 31.87 29.61 29.48 30.06	7.52 7.6 8.05 7.99 7.82 8.14 8.92 7.76 7.84 7.97 7.83	MS/CM 4.59 8.95 21.9 17.9 28.6 7.76 24.6 23.8 20.5 27.4 46.5	2.5 5 13.2 10.6 17.6 4.3 14.9 14.4 12.2 16.8 30.3 7	73 80.7 106.3 81.8 86.3 87 102.1 71.2 69.3 90.2 75.1 82.1	mg/l 5.59 6.27 8.98 6.65 6.81 7.58 7.49 4.9 4.71 6.2 4.78 5.93	330 362 397 417 363 438 393 401 375 376 362 349	meters 0 0 0.1 7 0.1 7 0.1 8 0.1 8 0.1 9 0 10 0	SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE
ERIB ERIB ERIB ERIB ERIB ERIB ERIB ERIB	11 12 1 2 3 4 5 6 7 8	9 14 12 15 16 13 11 14 7	1993 1993 1994 1994 1994 1994 1994 1994	93918 102513 112653 94315 110601 71253 111412 114944 112112 105931 104748 113700	28.32 26.53 19.47 22.29 21.66 20.77 26.39 30.23 31.87 29.61 29.48 30.06	7.52 7.6 8.05 7.99 7.82 8.14 8.92 7.76 7.84 7.97 7.83 7.88	mS/cm 4.59 8.95 21.9 17.9 28.6 7.76 24.6 23.8 20.5 27.4 46.5	2.5 5 13.2 10.6 17.6 4.3 14.9 14.4 12.2 16.8 30.3 7	73 80.7 106.3 81.8 86.3 87 102.1 71.2 69.3 90.2 75.1 82.1	5.59 6.27 8.98 6.65 6.81 7.58 7.49 4.9 4.71 6.2 4.78 5.93	330 362 397 417 363 438 393 401 375 376 362 349	meters 0 0 0.1 7 0.1 7 0.1 8 0.1 8 0.1 9 0.0 9 0.0 9 0.0	SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE
ERIB ERIB ERIB ERIB ERIB ERIB ERIB ERIB	11 12 1 2 3 4 5 6 7 8	9 14 12 15 16 13 11 14 7	1993 1993 1994 1994 1994 1994 1994 1994	93918 102513 112653 94315 110601 71253 111412 114944 112112 105931 104748 113700	28.32 26.53 19.47 22.29 21.66 20.77 26.39 30.23 31.87 29.61 29.48 30.06	units 7.52 7.6 8.05 7.99 7.82 8.14 8.92 7.76 7.84 7.97 7.83 7.88	#S/cm 4.59 8.95 21.9 17.9 28.6 7.76 24.6 23.8 20.5 27.4 46.5 12.26	2.5 5 13.2 10.6 17.6 4.3 14.9 14.4 12.2 16.8 30.3 7	73 80.7 106.3 81.8 86.3 87 102.1 71.2 69.3 90.2 75.1 82.1	5.59 6.27 8.98 6.65 6.81 7.58 7.49 4.9 4.71 6.2 4.78 5.93	330 362 397 417 363 438 393 401 375 376 362 349	meters 0 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1	SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE

TABLE 1 (CON'T)

MONTHLY WATER QUALITY OBSERVATIONS TROUT COVE STATION OCTOBER 1993- SEPTEMBER 1994

STATION	MONTH	DAY	YEAR	Time	Temp	рH	SpCond	Salin	DO	DO	Redox	Depth	
					degC	units	mS/cm	ppt	%Sat	mg/l	₩	meters	SAMPLE
FBTC	10	25	1993	94157	29.1	7.41	42.5	27.3	90.7	5.91	297	0.8	BOTTON
FBTC	11	9	1993	135216	27.81	7.47	41.5	26.7	101.2	6.77	383	0.8	BOTTOM
FBTC	12	15		144253	21.12	7.83	43.8			8.09		0.8	BOTTOM
FBTC	1	12		133013	24.14	7.86	44		100.4	7.09		0.5	BOTTON
FBTC	2	15		142736	22.78	7.85	47.2						BOTTOM
FBTC	3	16		105505	22.51	8.05	37.9		107.3				BOTTOM
FBTC	4	13		91540	25.54	8.88	41.9						BOTTOM
FBTC	5	11		94500	28.56	7.87	46.5						BOTTOM
FBTC	6	14		91230	30.11	7.97	39.2			5.54		0.6	BOTTOM
FBTC	7	7		90801	28.54	7.83	43.2						BOTTOM
FBTC	8	10		91416	29.31	7.78	55.7						BOTTOM
FBTC	9	7	1994	94518	31.06	7.61	48.3	31.6	61.9	3.8	359	0.9	BOTTOM
			ANI	IUAL MEAN	26.72	7.87	44.3	28.7	92.2	6.29	378	0.7	
				STD	3.20	0.36	4.5	3.3	13.7	1.29	33	0.1	
				MAX	31.06	8.88	55.7	37.0	108.2	8.09	428	0.9	
				MIN	21.12	7.41	37.9	24.1	61.9	3.80	297	0.5	
STATION	MONTH	DAY	YEAR	Time	Temp	pHi	SpCond	Salin	DO	DO	Redox	Depth	
					degC	units	mS/cm	ppt	%Sat	mg/l	wV	meters	SAMPLE
FBTC	10	25	1993	94320	29.04	7.46	42.3	27.2	89.3	5.82	302	0	SURFACE
FBTC	11	9		135346		7.54	41.5	26.7	101.3	6.77	378	0.1	SURFACE
FBTC	12	15	1993	144407	21.12	7.85	44.2	28.6	107.8	8.05	396	0.1	SURFACE
FBTC	1	12	1994	133148	25.02	7.86	42	27	97.2	6.82	409	-0.1	SURFACE
FBTC	2	15	1994	142853	22.78	7.86	47.2	30.7	103.9	7.42	356	0.1	SURFACE
FBTC	3	16	1994	105651	22.58	8.05	37.8	3 24	104.2	7.78	420	0	SURFE
FBTC	4	13	1994	91649	25.54	8.9	42	27	97.9	6.8	398	0	SURFA
FBTC	5	11	1994	94619	28,68	7.88	46.6	30.3	86.8	5.59	355	0	SURFAC:
FBTC	6	14	1994	91410	30.11	7.98	39.2	2 25	82.5	5.35	375	0.1	SURFACE
FBTC	7	7	1994	90931	28.52	7.86	43.3	28	83.7	5.49	377	0.1	SURFACE
FBTC	8	10	1994	91517	29.08	7.8	55.8	37.1	71.4	4.39	366	0.1	SURFACE
FBTC	9	7	1994	94637	28.23	7.85	31.7	7 19.7	89.9	6.21	350	0.1	SURFACE
			AN	NUAL MEAN	26.54	7.91	42.8	3 27.6	93.0				
	,			STD			5.5	4.0	10.4	1.05	30	0.1	
	•			MAX	30.11			37.1	107.8	8.05	420	0.1	
				MIN	21.12				71.4	4.39	302	-0.1	

TABLE 1 (CON'T)

MONTHLY WATER QUALITY OBSERVATIONS TAYLOR RIVER STATION OCTOBER 1993- SEPTEMBER 1994

STATION	MONTH DAY		YEAR	Time	Temp degC	pH units	SpCond mS/cm	Salin ppt	DO %Sat	DO mg/l	Redox mV	Depth meters SAMPL
FBTR	12	15	1993	103731	20.85	7.94	35.7	22.5	100.7	7.83	342	1 80770
FBTR	1	11	1994	101241	20.61	7.86	31.7	19.7	95.7	7.6	458	0.6 BOTTO
FBTR	2	16	1994	112341	22.85	7.85	31.8	19.8	85.6	6.51	380	0.6 BOTTO
FBTR	3	15	1994	74256	21.02	8.04	30.9	19.2	92	7.28	340	0.6 80110
FBTR	4	14	1994	111212	26.29	8.86	38.3	24.3	93.1	6.48	392	0.5 BOTTO
FBTR	5	10	1994	104500	28.63	8.01	43.4	28	88.6	5.79	438	0.7 BOTTO
FBTR	6	15	1994	114048	30.13	7.99	38.5	24.5	94.6	6.15	373	0.6 BOTTO
FBTR	7	6	1994	113210	29.06	7.91	45.2	29.3	89.1	5.74	387	0.7 BOTTO
FBTR	8	9	1994	111828	31.91	7.97	48.9	32	83.4	5.03	364	0.9 BOTTO
FBTR	9	8	1994	120240	29.81	7.89	37	23.5	98.7	6.5	343	0.9 BOTTO
			AN	NUAL MEAN	26.12	8.03	38.14	24.3	92.2	6.49	382	0.7
				STD	4.16	0.28	5.79	4.1	5.3	9.63	38	0.2
				MAX	31.91	8.86	48.90	32.0	100.7	7.83	458	1.0
				MIN	20.61	7.85	30.90	19.2	83.4	5.03	340	0.5

STATION	HONTH DAY	YE	EAR	Time	Temp degC	pH units	SpCond mS/cm	Salin ppt	DO %Sat	DO mg/l	Redox mV	Depth meters	SAMPLE
FBTR	12	15	1993	103858	20.89	7.98	34.7	21.8	97.6	7.62	340	0.2	SURFACE
FBTR	1	11	1994	101557	20.61	7.88	31.6	19.6					SURFACE
FBTR	2	16	1994	112437	22.69	7.86	31.6	19.6					SURFACE
FBTR	3	15	1994	74425	21.02	8.06	31	19.2				0.1	SURFACE
FBTR	4	14	1994	111231	26.31	8.87	38.2	24.3	93.6	6.52	387	0	SURFACE
FBTR	5	10	1994	104547	28.69	8.01	43.3	27.9	86	5.62	430	0.1	SURFACE
FBTR	6	15	1994	114158	30.17	7.98	39	24.8	92.2	5.98	372	0.2	SURFACE
FBTR	7	6	1994	113338	29.11	7.91	45.1	29.3	87.6	5.64	385	0	SURFACE
FBTR	8	9	1994	112003	31.88	7.97	48.9	32	81.1	4.9	359	0.1	SURFACE
FBTR	9	8	1994	120345	29.91	7.89	34.8	21.9	90.9	6.03	343	0.1	SURFACE
			ANI	IUAL MEAN	26.13	8.04	37.8	24.0	89.8	6.34	378	0.1	
				STD			5.9	4.2	4.9	0.85	33	0.1	
				MAX	31.88	8.87	48.9	32.0	97.6	7.62	438	0.2	!
				MIN	20.61	7.86	31.0	19.2	81.1	4.90	340	0.0)

MONTHLY WATER QUALITY OBSERVATIONS LITTLE MADEIRA BAY STATION OCTOBER 1993- SEPTEMBER 1994

STATION	MONTH	DAY		YEAR	Time	Temp	рH	SpCond	Salin	DO	00	Redox	Depth	
						degC	units	mS/cm	ppt	%Sat	mg/l	₩V	meters	SAMPLE
FBLM	1	0	27	1993	121838	28.88	7.56	35.8	22.6	96.8	6.5	355		BOTTO
FBLM		1	15	1993	104127	26.67	7.53	37.9	24.1	92.4	6.39	380	1.1	BOTTO
FBLM	1	2	15	1993	133650	21.05	7.99	40.2	25.7	110.2	8.39	345	1.2	BOTTO
FBLM		1	11	1994	133727	21.71	8.05	41	26.3	108.8	8.14	480	0.8	BOTTO
FBLM		2	16	1994	131726	23.1	7.96	39.4	25.1	111.4	8.18	347	1	BOTTO
FBLM		3	15	1994	101845	22.15	7.99	39.6	25.3	101.6	7.59	456	0.9	BOTTO
FBLM		4	14	1994	92500	25.75	8.85	40	25.5	97.3	6.79	393	0.7	BOTTO
FBLM		5	10	1994	90500	28.7	7.84	45.4	29.5	86.1	5.57	416	0.9	BOTTO
FBLM		6	15	1994	93616	29.85	7.86	46.5	30.2	83.4	5.27	378	0.8	BOTTO
FBLM		7	6	1994	92517	29	7.87	49.2	32.2	85.9	5.44	388	0.9	BOTTO
FBLM		8	9	1994	93525	30.84	7.83	50.8	33.4	69.6	4.25	364	1.2	BOTTO
FBLM		9	8	1994	93542	29.61	7.78	46	29.9	83.5	5.31	360	1.1	BOTTO
				ANN	UAL MEAN	26.44	7.93	42.7	27.5	93.9	6.49	389	1.0	•
					STD	3.42	0.32	4.5	3.3			41	0.2	!
					MAX	30.84	8.85	50.8	33.4		8.39	480		
					MIN	21.05	7.53	35.8	22.6			345		
STATION	MONTH	DAY		YEAR	Time	Temp	pH	SpCond	Salin	DO	DO	Redox	Depth	
						degC	units	mS/cm	ppt	%Sat	mg/l	₩V	meters	SAMPLE
FBLM	1	10	27	1993	122026	28.94	7.6	35.8	22.6	98.3	6.6	352	0.9	METER
FBLM	1	11	15	1993	104342	26.66	7.63	37.8	24	92	6.37	373	1	METER
FBLM		12	15	1993	133809		8.01	40.2	25.7	110	8.36	344	. 1	METER
FBLM		8	9	1994	93640	30.88	7.84	50.7			4.02	360	1	METER
FBLM		9	8	1994	93639		7.8			79	5.03	357	0.9	METER
				ANN	IUAL MEAN	27.43	7.78	42.1	27.1	89.0	6.08	357	1.0	1
					STD	3.46	0.15	5.5	4.0	15.3	1.48	. 10	0.0)
					MAX	30.88	8.01	50.7	33.4	110.0	8.36	373	1.0	1
					MIN	21.06	7.60	35.8	22.6	65.9	4.02	344	0.9	•
STATION	MONTH	DAY		YEAR	Time	Temp	рН	SpCond	Salin	DO	DO	Rediox	Depth	
						degC	units	mS/cm	ppt	%Sat	mg/l	m∨	meters	SAMPLE
FBLM		10	27	1993	122138									SURFA
FBLM	•	11	15	1993	104455	26.82	7.68							SURFA
FBLM	,	12	15	1993	133934									SURFAC
FBLM		1	11	1994	133 9 02	21.74								SURFA
FBLM		2	16	1994	131840		7.91							SURFA
FBLM		3	15	1994	1.2001	22.17	8							SURFA
FBLM		4	14		92751									SURFA
FBLM		5	10	1994	90642									SURFAC
FBLM		6	15	1994	93748									SURFA
FBLM		7	6		92641									SURFA
FBLM		8	9		93738									SURFA
FBLM		9	8	1994	93741	29.39	7.82	45.3	29.4	80.6	5.16	355	0.1	SURFA
IBLA				• • • •					24.4	90.1	4 25	383	0.1	1
TOLM				ANI	NUAL MEAN	26.48	7.95	41.4						
roce				ANI	NUAL MEAN STD								0.1	}
roce				ANI			0.30	5.9	4.2	12.4	1.30	38 3469	0.1	l ?

TABLE 2

C-111/TAYLOR SLOUGH WATER QUALITY AND BIOLOGICAL MONITORING SUMMARY OF MONTHLY WATER QUALITY ANALYSIS

					HIGHWAY C	REEK STAT	ION	OCTOBER 1	1993 - SEP	TEMBER 19	94			
SAMPLE	MONTH DAY		Parameter Method >> M.D.L. >> Units >> YEAR	T-P04 365.2 .001 mg/L	NH3-N 350.1 0.02 mg/L	NOx-N 353.2 0.01 mg/L	A-COLOR 21208 5 pcu	TURB 180.1 0.02 ntu	CHLOR. 10200 H n/a mg/M3	PHEO. 10200 H n/a mg/M3	Cd 213.2 .1/.08 ug/L	Cu 220.2 2/.44 ug/L	Pb 239.2 2/.17 ug/L	2n 3005 3/12.2 ug/L
FBHC	10	18	1993	0.006	0.03	0.02	35	1.88	0.00	0.62	0	0	0	•
FBHC	11	8		0.002	0.00	0.01	25	1.28	0.27	0.02	ŏ	0	0.2	0
FBHC	12	13		0.003	ō	0.01	25	1.20	0.60	0.19	Ö	0	0.2	0
FBHC	1	10	1994	0.007	Õ	Ŏ	30	2.70	1.34	0.25	Ŏ	ŏ	Ŏ	Ö
FBHC	2	14	1994	0.004	0	Ō	25	6.50	1.54	0.15	•	•	·	·
FBHC	3	22	1994	0.004	0.12	0.03	25	3.80	0.40	0.25	0	0	0	0
FBHC	4	11	1994	0.007	0.11	0.01	25	26.0	0.84	0.45	Ō	Ö	Ö	ō
FBHC	5	9		0.004	0.16	0	30	4.7	0.53	0.18	0	Ō	Ö	Ŏ
FBHC	6	13		0.003	0	0.02	20	1.7	0.41	0.00	C	0	0	0
FBHC	7 .	5		0.001	0.08	0.04	20	7.1	0.92	0.29	0	0	0	Ö
FBHC	8	8		0.006	0	0	36	3.2	1.67	0.07	0	0	0	0
FBHC	9	6	1994	0	0.02	0.02	41	0.7	0.13	0.21	0	0	0	. 0
			MEAN	0.004	0.043	0.013	28.083	5.061	0.721	0.222	0.000	0.000	0.018	0.000
			STD	0.002	0.056	0.013	6.211	6.616	0.527	0.170	0.000	0.000	0.057	0.000
			MAX	0.007	0.160	0.040	41.000	26.000	1.670	0.620	0.000	0.000	0.200	0.000
			MIN	0.000	0.000	0.000	20.000	0.670	0.000	0.000	0.000	0.000	0.000	0.000
					LONG SOUN	D STATION)	OCTOBER 1	1993 - SEP	TEMBER 19	94			
			Parameter	T-P04	NH3-N	NOx-N	A-COLOR	TURB	CHLOR.	PHEO.	Cď	Cu	Pb	Zn
			Method >>	365.2	350.1	353.2	2120B	180.1	10200 H	10200 H	213.2	220.2	239.2	3005
			M.D.L. >>	1	0.02	0.01	5	0.02	n/a	n/a	.1/.08	2/.44	2/.17	3/12.2
			Units >>	mg/L	mg/L	mg/L	pcu	ntu	mg/H3	ing/M3	ug/L	ug/L	ug/L	ug/L
SAMPLE	MONTH DAY		YEAR									-		
FBLS	10	18		0.006	0.04	0.04	30	7.50	0.00	0.42	0	0	0	0
FBLS	11	8		0.003	0	0.02	30	6.50	1.05	0.02	0	0	0	Ó
FBLS	12	13		0.007	0	0	15	6.50	0.54	0.35	0	0	0	0
FBLS	1	10		0.001	0	0	15	3.00	0.76	0.15	0	0	0	0
FBLS	2	14		0.003	0	0	10	7.10	1.34	0.25				
FBLS	3 4	22		0.003	0.02	0.02	15	2.10	0.56	0.15	0	0	0	0
FBLS FBLS	5	11 9	1994 1994	0.004 0.003	0.13 0.33	0.01	20	29.0	1.00	0.03	0	0	0	0
FBLS	6	13		0.003	0.08	0.03 0.04	15	9.3	0.94	0.33	0	0	0	0
FBLS	7	5		0.006	0.06	0.03	10 10	3.4 7.3	0.53	0.26	0	0	0	0
FBLS	8	8		0.008	0.07	0.03	38	6.4	0.54 0.66	0.38 0.24	0	0	0	0
FBLS	9	6		0.002	0.07	0.03	32	1.9	0.85	0.56	0	0	0	0
	ŕ	·							v.03	0.76	J	U	0	0
			MEAN	0.004	0.070	0.020	₹0.000	7.500	0.731	0.262	0.000	0.000	0.000	0.000
			STD	0.002	0.089	0.014	9.434	6.871	0.327	0.152	0.000	0.000	0.000	0.000
			MAX MIN	0.008	0.330	0.040	38.000 10.000	29.000	1.340	0.560	0.000	0.000	0.000 0.000	0.000

TABLE 2 (CON'T)

C-111/TAYLOR SLOUGH WATER QUALITY AND BIOLOGICAL MONITORING SUMMARY OF MONTHLY WATER QUALITY ANALYSIS

						JOE BAY ST	TAT LON	(OCTOBER 1	993 - SEP	TEMBER 19	94			
SAMPLE	MONTH	DAY		Parameter Method >> M.D.L. >> Units >> YEAR	T-PO4 365.2 1 mg/L	NH3-N 350.1 0.02 mg/L	NOx-N 353.2 0.01 mg/L	A-COLOR 21208 5 pcu	TURB 180.1 0.02 ntu	CHLOR. 10200 H rv/a mg/M3	PHEO. 10200 H r/a mg/H3	Cd 213.2 .1/.08 ug/L	Cu 220.2 2/.44 ug/L	Pb 239.2 2/.17 ug/L	Zn 3005 3/12.2 ug/L
FBJB	10	0	20	1993	0.008	0.06	0.03	35	6.80	2.10	0.11	0	0	0	0
FBJB	1		9	1993	0.004	0	0.01	40	8.60	2.53	0.80	Õ	Ö	ō	Ŏ
FBJB	1		14	1993	0.011	Õ	0	20	3.50	1.40	0.33	Ö	Ö	Ŏ	Ŏ
FBJB		1	12	1994	0.006	Ō	Ö	20	4.50	1.47	0.17	Ö	Ö	0	Ö
FBJB		2	15	1994	0.005	0	0.01	20	8.90	1.20	0.39				-
FBJB		3	22	1994	0.009	0.04	0.06	20	5.00	1.34	0.25	0	0	0	0
FBJB		4	13	1994	0.006	0.04	0.06	10	8.9	0.60	0.19	0	0	Ö	Ö
FBJB	!	5	11	1994	0.003	0.07	0.03	20	6.3	1.34	0.16	0	0	0	Ŏ
FBJB		6	14	1994	0.004	0	0.03	25	9.3	1.00	0.40	0	0	0	0
FBJB		7	7	1994	0.009	0.02	0.04	10	4.5	0.49	0.61	Ö	Ō	Ó	Õ
FBJB		8	10	1994	0.004	0.11	0.01	23	6.0	0.53	0.12	0	Ó	0	Ö
FBJB		9	7	1994	0.004	0.17	0.04	39	2.0	0.87	0.30	0	0	0	0
				MEAN	0.006	0.043	0.027	23.500	6.192	1.239	0.319	0.000	0.000	0.000	0.000
				STD	0.002	0.051	0.020	9.456	2.282	0.590	0.200	0.000	0.000	0.000	0.000
				MAX	0.011	0.170	0.060	40.000	9.300	2.530	0.800	0.000	0.000	0.000	0.000
				MIN	0.003	0.000	0.000	10.000	2.000	0.490	0.110	0.000	0.000	0.000	0.000
						TROUT COV	E STATION	ļ	OCTOBER 1	1993 - SEF	TEMBER 19	94			
				Parameter Method >> M.D.L. >> Units >>	T-PO4 365.2 1 mg/L	NH3-N 350.1 0.02 mg/L	NOx-N 353.2 0.01 mg/L	A-COLOR 2120B 5 pcu	TURB 180.1 0.02 ntu	CHLOR. 10200 H r/a mg/M3	PHEO. 10200 H r/e mg/M3	Cd 213.2 .1/.08 ug/L	Cu 220.2 2/.44 ug/L	Pb 239.2 2/.17 ug/L	Zn 3005 3/12.2 ug/L
SAMPLE	MONTH	DAY		YEAR		.	-	•		-	•	•		-	•
FBTC	1	0	25	1993	0.006	0.18	0.03	15	4.40	0.07	0.26	0	0	0	0
FBTC		1	9	1993	0.005	0.11	0.05	20	6.30	0.27	0.11	0	0	0	0
FBTC		2	14	1993	0.003	0	0	30	32.00	0.25	0.19	0	0	0	0
FBTC		1	12	1994	0.001	0	0	25	11.80	0.27	0.11	0	0	0	0
FBTC		2	15	1994	0.003	0	0.02	15	16.50	0.60	0.19				
FBTC		3	22	1994	0.002	0.09	0.02	20	18.80	0.28	0.09	0	0	0	0
FBTC		4	13	1994	0.016	0.15	0	10	4.3	0.27	0.05	0	0	0	0
FBTC		5	11	1994	0	0.08	0	5	5.6	0.27	0.19	0	0	0	0
FBTC		6	14	1994	0	0.07	0.02	10	8.6	0.35	0.23	0	0	0	0
FBTC		7	7	1994	0.003	0.12	0.02	5	7.6	0.25	0.14	0	0	0	Ó.
FBTC		8	10	1994	0.003	0.15	0.02	22	5.9	0.36	0.27	0	0	0	0
FBTC		9	7	1994	0.001	0.19	0.02	34	3.2	0.47	0.42	0	0	0	0
				MEAN	0.004	0.095	0.017	17.583	10.417	0.309	0.188	0.000	0.000	0.000	0.000
				STD	0.004	0.065	0.014	8.921	8.023	0.124	0.096	0.000	0.000	0.000	0.000
				MAX	0.016	0.190	0.050	34.000	32.000	0.600	0.420	0.000	0.000	0.000	0.000
				MIN	0.000	0.000	0.000	5.000	3.200	0.070	0.050	0.000	0.000	0.000	0.000

TABLE 2 (CON'T)

C-111/TAYLOR SLOUGH WATER QUALITY AND BIOLOGICAL MONITORING SUMMARY OF MONTHLY WATER QUALITY ANALYSIS

				1	TAYLOR RIV	ER STATI	ON (OCTOBER 1	993 - SEP	TEMBER 19	94			
SAMPLE	MONTH DAY		Parameter Method >> M.D.L. >> Units >> YEAR	T-PO4 365.2 1 mg/L	NH3-N 350.1 0.02 mg/L	NOX-N 353.2 0.01 mg/L	A-COLOR 21208 5 pcu	TURB 180.1 0.02 ntu	CHLOR. 10200 H n/a mg/H3	PHEO. 10200 H n/a mg/M3	Cd 213.2 .1/.08 ug/L	Cu 220.2 2/.44 ug/L	Pb 239.2 2/.17 ug/L	Zn 3005 3/12.2 ug/L
FBTR	12	15	1993	0.002	0	0	20	6.80	0.54	0.25	0	0	0	0
FBTR	1	11	1994	0.002	Ö	Ö	20	5.80	0.49	0.10	Ŏ	Ŏ	Ŏ	Ŏ
FBTR	2	16	1994	0.003	0.04	0.01	20	13.10	0.36	0.25				
FBTR	3	22	1994	0.004	0.09	0.07	10	9.30	0.40	0.00	0	0	0	0
FBTR	4	14	1994	0.003	0.04	0	10	10.5	0.34	0.37	0	0	0	0
FBTR	5	10	1994 1994	9.002 0	0.20	0.03	15	22.0	1.67	0.34	0	0	0	0
FBTR FBTR	6 7	15 6	1994	0.005	0.0 3 0.10	0.04 0.06	20 10	22.0 36.0	0.64 0.40	0.21 0.35	0	0	0 0	0 0
FBTR	8	9	1994	0.002	0.09	0.02	36	7.0	0.40	0.16	Ö	0	Ö	0
FBTR	9	8	1994	0.004	0.11	0.03	75	10.1	0.74	0.29	ŏ	ŏ	Ŏ	Ŏ
			MEAN STD MAX MIN	0.003 0.001 0.005 0.000	0.070 0.058 0.200 0.000	0.026 0.024 0.070 0.000	23.600 18.645 75.000 10.000	14.260 9.109 36.000 5.800	0.598 0.378 1.670 0.340	0.232 0.112 0.370 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000
					LITTLE MAI	DEIRA BAY	STATION	OCTOBER 1	993 - SEP	TEMBER 19	94			
			Parameter	T-P04	M-EHM	NOx-N	A-COLOR	TUR	CHLOR.	PHFO.	Cd	Cu	Ph	70
			Parameter Method >>	T-P04 365.2	NH3-N 350.1	NOX-N 353.2	A-COLOR 2120B	TURB 180.1	CHLOR. 10200 H	PHEO. 10200 H	Cd 213.2	Cu 220.2	Pb 239.2	Zn 3005
			Parameter Method >> M.D.L. >>	T-P04 365.2 1	NH3-N 350.1 0.02	NOX-N 353.2 0.01	A-COLOR 2120B 5	TURB 180.1 0.02	CHLOR. 10200 H	PHEO. 10200 H	Cd 213.2 .1/.08	Cu 220.2 2/.44	Pb 239.2 2/.17	Zn 3005 3/12.2
SAMPLE	MONTH DAY		Method >>	365.2	350.1	353.2	2120B	180.1	10200 H	10200 H	213.2	220.2	239.2	3005
		27	Method >> M.D.L. >> Units >> YEAR	365.2 1	350.1 0.02 mg/L	353.2 0.01 mg/L	2120B 5	180.1 0.02 ntu	10200 H r/a mg/M3	10200 H n/a mg/M3	213.2 .1/.08	220.2 2/.44	239.2 2/.17 ug/L	3005 3/12.2 ug/L
SAMPLE FBLM FBLM	MONTH DAY	27 15	Method >> M.D.L. >> Units >>	365.2 1 mg/L	350.1 0.02	353.2 0.01	2120B 5 pcu	180.1	10200 H	10200 H	213.2 .1/.08 ug/L	220.2 2/.44 ug/L	239.2 2/.17	3005 3/12.2
FBLM FBLM FBLM	10 11 12	15 15	Method >> M.D.L. >> Units >> YEAR 1993 1993 1993	365.2 1 mg/L 0.004 0.009 0.006	350.1 0.02 mg/L 0.12 0.09	353.2 0.01 mg/L 0.03 0.02 0	2120B 5 pcu 10 20 15	180.1 0.02 ntu 3.60 7.40 4.10	10200 H n/a mg/M3 0.53 0.22 0.44	10200 H n/m mg/M3 0.26 0.25 0.01	213.2 .1/.08 ug/L 0 0	220.2 2/.44 ug/L 0 0.65	239.2 2/.17 ug/L 0 0	3005 3/12.2 ug/L 0 0
FBLM FBLM FBLM FBLM	10 11 12 1	15 15 11	Method >> M.D.L. >> Units >> YEAR 1993 1993 1993 1994	365.2 1 mg/L 0.004 0.009 0.006 0	350.1 0.02 mg/L 0.12 0.09 0	353.2 0.01 mg/L 0.03 0.02 0	2120B 5 pcu 10 20 15 20	3.60 7.40 4.10 7.70	10200 H n/e mg/M3 0.53 0.22 0.44 0.27	10200 H n/a mg/M3 0.26 0.25 0.01 0.03	213.2 .1/.08 ug/L 0 0	220.2 2/.44 ug/L 0 0.65	239.2 2/.17 ug/L 0 0	3005 3/12.2 ug/L 0 0
FBLM FBLM FBLM FBLM FBLM	10 11 12 1 2	15 15 11 16	Method >> M.D.L. >> Units >> YEAR 1993 1993 1993 1994 1994	365.2 1 mg/L 0.004 0.009 0.006 0	350.1 0.02 mg/L 0.12 0.09 0 0.03	353.2 0.01 mg/L 0.03 0.02 0	2120B 5 pcu 10 20 15 20	3.60 7.40 4.10 7.70 5.90	10200 H n/a mg/M3 0.53 0.22 0.44 0.27 0.42	10200 H n/a mg/M3 0.26 0.25 0.01 0.03 0.01	213.2 .1/.08 ug/L 0 0	220.2 2/.44 ug/L 0 0.65 0	239.2 2/.17 ug/L 0 0 0	3005 3/12.2 ug/L 0 0 0
FBLM FBLM FBLM FBLM FBLM FBLM	10 11 12 1 2 3	15 15 11 16 22	Method >> M.D.L. >> Units >> YEAR 1993 1993 1993 1994 1994	365.2 1 mg/L 0.004 0.009 0.006 0 0.002 0.002	350.1 0.02 mg/L 0.12 0.09 0 0.03 0	353.2 0.01 mg/L 0.03 0.02 0 0	2120B 5 pcu 10 20 15 20 15	3.60 7.40 4.10 7.70 5.90 4.80	10200 H n/a mg/M3 0.53 0.22 0.44 0.27 0.42 0.30	10200 H n/a mg/H3 0.26 0.25 0.01 0.03 0.01 0.07	213.2 .1/.08 ug/L 0 0 0	220.2 2/.44 ug/L 0 0.65 0 0	239.2 2/.17 ug/L 0 0 0 0	3005 3/12.2 ug/L 0 0 0 0
FBLM FBLM FBLM FBLM FBLM FBLM FBLM	10 11 12 1 2 3	15 15 11 16 22 14	Method >> M.D.L. >> Units >> YEAR 1993 1993 1993 1994 1994 1994	365.2 1 mg/L 0.004 0.009 0.006 0 0.002 0.002 0.002	350.1 0.02 mg/L 0.12 0.09 0 0.03 0 0.20 0.02	353.2 0.01 mg/L 0.03 0.02 0 0 0.04 0.02	2120B 5 pcu 10 20 15 20 15 10 5	3.60 7.40 4.10 7.70 5.90 4.80 5.9	10200 H n/a mg/M3 0.53 0.22 0.44 0.27 0.42 0.30 0.29	10200 H n/a mg/M3 0.26 0.25 0.01 0.03 0.01 0.07 0.12	213.2 .1/.08 ug/L 0 0 0 0	220.2 2/.44 ug/L 0 0.65 0 0	239.2 2/.17 ug/L 0 0 0 0	3005 3/12.2 ug/L 0 0 0 0
FBLM FBLM FBLM FBLM FBLM FBLM	10 11 12 1 2 3	15 15 11 16 22	Method >> M.D.L. >> Units >> YEAR 1993 1993 1993 1994 1994 1994	365.2 1 mg/L 0.004 0.009 0.006 0 0.002 0.002	350.1 0.02 mg/L 0.12 0.09 0 0.03 0	353.2 0.01 mg/L 0.03 0.02 0 0	2120B 5 pcu 10 20 15 20 15	3.60 7.40 4.10 7.70 5.90 4.80	10200 H n/a mg/M3 0.53 0.22 0.44 0.27 0.42 0.30	10200 H n/a mg/H3 0.26 0.25 0.01 0.03 0.01 0.07	213.2 .1/.08 ug/L 0 0 0	220.2 2/.44 ug/L 0 0.65 0 0	239.2 2/.17 ug/L 0 0 0 0	3005 3/12.2 ug/L 0 0 0 0
FBLM FBLM FBLM FBLM FBLM FBLM FBLM FBLM	10 11 12 1 2 3 4	15 15 11 16 22 14	Method >> M.D.L. >> Units >> YEAR 1993 1993 1993 1994 1994 1994 1994 199	365.2 1 mg/L 0.004 0.009 0.006 0.002 0.002 0.002	350.1 0.02 mg/L 0.12 0.09 0 0.03 0 0.20 0.02 0.13	353.2 0.01 mg/L 0.03 0.02 0 0 0.04 0.02	2120B 5 pcu 10 20 15 20 15 10 5	3.60 7.40 4.10 7.70 5.90 4.80 5.9	10200 H n/a mg/M3 0.53 0.22 0.44 0.27 0.42 0.30 0.29 0.31	10200 H n/a mg/H3 0.26 0.25 0.01 0.03 0.01 0.07 0.12 0.00	213.2 .1/.08 .ug/L 0 0 0 0	220.2 2/.44 ug/L 0 0.65 0 0	239.2 2/.17 ug/L 0 0 0 0	3005 3/12.2 ug/L 0 0 0 0 0
FBLM FBLM FBLM FBLM FBLM FBLM FBLM FBLM	10 11 12 1 2 3 4 5 6 7	15 15 11 16 22 14 10 15 6	Method >> M.D.L. >> Units >> YEAR 1993 1993 1993 1994 1994 1994 1994 199	365.2 1 mg/L 0.004 0.009 0.002 0.002 0.002 0.002 0.003 0.004	350.1 0.02 mg/L 0.12 0.09 0 0.03 0 0.20 0.02 0.13 0.07 0.12	353.2 0.01 mg/L 0.03 0.02 0 0 0.04 0.02 0.03 0.04	2120B 5 pcu 10 20 15 20 15 10 5 5 10 5	3.60 7.40 4.10 7.70 5.90 4.80 5.9 6.1 8.0 15.0	10200 H r/a mg/M3 0.53 0.22 0.44 0.27 0.42 0.30 0.29 0.31 0.43 0.17	10200 H n/a mg/M3 0.26 0.25 0.01 0.03 0.01 0.07 0.12 0.00 0.30 0.14 0.21	213.2 .1/.08 .ug/L 0 0 0 0 0 0	220.2 2/.44 ug/L 0 0.65 0 0 0 0	239.2 2/.17 ug/L 0 0 0 0 0 0	3005 3/12.2 ug/L 0 0 0 0 0 0
FBLM FBLM FBLM FBLM FBLM FBLM FBLM FBLM	10 11 12 1 2 3 4 5 6 7	15 15 11 16 22 14 10 15	Method >> M.D.L. >> Units >> YEAR 1993 1993 1993 1994 1994 1994 1994 199	365.2 1 mg/L 0.004 0.009 0.006 0 0.002 0.002 0.002 0.003	350.1 0.02 mg/L 0.12 0.09 0 0.03 0 0.02 0.02 0.13 0.07	353.2 0.01 mg/L 0.03 0.02 0 0 0.04 0.02 0 0.03	2120B 5 pcu 10 20 15 20 15 10 5 5	3.60 7.40 4.10 7.70 5.90 4.80 5.9 6.1 8.0	10200 H n/a mg/M3 0.53 0.22 0.44 0.27 0.42 0.30 0.29 0.31 0.43 0.17	10200 H n/a mg/M3 0.26 0.25 0.01 0.03 0.01 0.07 0.12 0.00 0.30 0.14	213.2 .1/.08 .ug/L 0 0 0 0 0	220.2 2/.44 ug/L 0 0.65 0 0 0	239.2 2/.17 ug/L 0 0 0 0 0	3005 3/12.2 ug/L 0 0 0 0 0
FBLM FBLM FBLM FBLM FBLM FBLM FBLM FBLM	10 11 12 1 2 3 4 5 6 7	15 15 11 16 22 14 10 15 6	Method >> M.D.L. >> Units >> YEAR 1993 1993 1993 1994 1994 1994 1994 199	365.2 1 mg/L 0.004 0.009 0.002 0.002 0.002 0.002 0.003	350.1 0.02 mg/L 0.12 0.09 0 0.03 0 0.20 0.02 0.13 0.07 0.12	353.2 0.01 mg/L 0.03 0.02 0 0.04 0.02 0.03 0.04 0.02 0.03	2120B 5 pcu 10 20 15 20 15 10 5 5 10 5 28 36	3.60 7.40 4.10 7.70 5.90 4.80 5.9 6.1 8.0 15.0 6.4 9.9	10200 H n/a mg/M3 0.53 0.22 0.44 0.27 0.42 0.30 0.29 0.31 0.43 0.17 0.25 0.29	10200 H n/a mg/H3 0.26 0.25 0.01 0.03 0.01 0.07 0.12 0.00 0.30 0.14 0.21 0.19	213.2 .1/.08 ug/L 0 0 0 0 0 0 0	220.2 2/.44 ug/L 0 0.65 0 0 0 0 0 0 0 0	239.2 2/.17 ug/L 0 0 0 0 0 0	3005 3/12.2 ug/L 0 0 0 0 0 0
FBLM FBLM FBLM FBLM FBLM FBLM FBLM FBLM	10 11 12 1 2 3 4 5 6 7	15 15 11 16 22 14 10 15 6	Method >> M.D.L. >> Units >> YEAR 1993 1993 1993 1994 1994 1994 1994 199	365.2 1 mg/L 0.004 0.009 0.002 0.002 0.002 0.002 0.003 0.004 0.003	350.1 0.02 mg/L 0.12 0.09 0.03 0.02 0.02 0.13 0.07 0.12 0.16 0.13	353.2 0.01 mg/L 0.03 0.02 0 0.04 0.02 0 0.03 0.04 0.02	2120B 5 pcu 10 20 15 20 15 10 5 5 5 10 5 28 36	3.60 7.40 4.10 7.70 5.90 4.80 5.9 6.1 8.0 15.0 6.4 9.9	10200 H n/a mg/M3 0.53 0.22 0.44 0.27 0.42 0.30 0.29 0.31 0.43 0.17 0.25 0.29	10200 H n/a mg/H3 0.26 0.25 0.01 0.03 0.01 0.07 0.12 0.00 0.30 0.14 0.21 0.19	213.2 .1/.08 ug/L	220.2 2/.44 ug/L 0 0.65 0 0 0 0 0	239.2 2/.17 ug/L 0 0 0 0 0 0 0 0	3005 3/12.2 ug/L 0 0 0 0 0 0 0 0

TABLE 3
C-111/TAYLOR SLOUGH WATER QUALITY AND BIOLOGICAL MONITORING PROJECT LIGHT DATA

DATE	TIME	STATION	DECK VALUE	BOTTOM DEPTH	SUBM VALUE	RATIO	IMMERS FACTOR	DECK VALUE	CORRDECK - SUB	DEPTH METERS	K	AVG K
931108	1105	FBHC	0.6	1		2				•		
931108		FBHC	2739	1	1443	0.524	1296					
931108		FBHC	2761	2	1014	0.3989	1296	1465	0.367952	0.3048	-1.20719	-1.20719
931213 931213		FBHC FBHC	0.5	1	1674	2 0.6036	1152					
931213		FBHC	2826 2079	2		0.5128	1152		-0.11406	0.3048	-0.37421	N/A
940314		FBHC	0.3	1		2		,	0111400			
940314	1050	FBHC	2707	1	1966	0.6898	741					10
940411	1117		0.3	1		2						
940411 940509	1118 1118	FBHC	3023 0.3	1	1554	0.527 8 2	1469					ID
940509		FBHC	2723	, 1	1573	0.5754	1150					ID
940613	1313		0.4	1		2	,,,,,					
940613	1315		2710	1	1882	0.6803	828					10
940705	1315		0.4	1		2	4007					
940705 940808	1317 1242		2797 0.5	1	1510	0.531 2	1287					ID
940808	1243		2737	1	2063	0.7109	674					ID
940906	1253		0.6	1		2	•					
940906	1254	FBHC	3033	1	1637	0.5797	1396					ID
931018	1500	501 C	1.2	1								
931018	1500		2499	i		0.04425	2391.1					
931018	1501		2503	2		0.02704	2391.1		0.487565			-1.21049
931018	1501		2503	3		0.02361	2391.1		0.639729		-1.04942	
931018	1502		2518	4	51.68		2391.1	126.9	0.898329	0.9144	-0.98242	
931108	1331		1.2 2623	1	1508	0.5952	1115					
931108 931108	1331 1331		2609	ż		0.3732	1115	1494	0.325422	0.3048	-1.06766	-1.08438
931108	1332		2633	3		0.2954	1115		0.669194		-1.09776	
931108	1332		2648	4	567	0.2222	1115	1533	0.994623	0.9144	-1.08773	
931213	1358		1.1	1		4						
931213	1401		993.9	1	381	0.3837 0.326	612.9	707 5	0.149152	0.70/8	-0.48934	-0 71234
931213 931213	1402 1402		995.4 997	2 3		0.2544	612.9 612.9		0.436265		-0.71566	-0.71230
931213	1402		1001	4	165.5	0.1799	612.9	_	0.852292		-0.93208	
940314	1316		0.9	1		3						
940314	1321		1828	1	943.4	0.5362	884.6				A 73/47	0.7/04/
940314	1321		1684	2 3		0.4461	884.6 884.6		0.098794		-0.32413 -0.37218	-0.34616
940314 940411	1321 1354		1628 0.8	3 1	592.5	0. 383 3	004.0	143.4	0.220003	0.0070	0.37210	
940411	1355		3325	i	2520	0.7679	805					
940411	1355	FBLS	2648	2	1212	0.462	805		0.419123		-1.37507	-1.37624
940411	1355		2180	3	593.8	0.2726	805	1375	0.839666	0.6096	-1.37741	
940509	1310		0.8 2923	1	1410	2 0.4576	1313					
940509 940509	1311 1312		2899	2	1610 1100	0.3786	1313	1586	0.365905	0.3048	-1.20048	-1.20048
940613	1105		1	1		6						
940613	1105		2700	1	1542	0.5903	1158					
940613	1106		2698	2		0.5119	1158		0.14435			-0.57369
940613	1106		2713	3 4		0.2586 0.6859	1158 1158		0.959662	0.9144	-1.57425	
940613 940613	1107 1107		2715 2687	5	1893 1348	0.5573	1158		0.125992		-0.10334	
940613	1107		2705	6		0.458	1158		0.21879		-0.14356	
940705	1110		0.8	1		3						
940705	1119		1095	1		0.4443	606.5	,	A 4/555:	0 70/5	1 17715	-4-4/7/2
940705	1119		1103	2		0.3566	606.5 606.5		0.345374		-1.13312 -1.19372	-1.10342
940705 940808	1119 1045		1116	3 1		0.2406 3	6.500	JUY.J	4.121072	0.0070	1.17316	
940808	1046		2676	i		0.7296	721					
940808	1046		2667	ž	1484	0.5711	721		0.271035			-0.85603
940808	1046		2663	3	1176	0.4665	721	1942	0.5016	0.6096	-0.82283	
940906	1046		1	_	474	3	4043					
940906 940906	1049		2728 2688	1 2		0.6368 0.5124	1012 1012	1674	0.180652	0.3048	-0.59269	-0.64169
940906	1050 1053		2758	3		0.4055	1012		0.42105		-0.6907	
770700	,0,3		2730	,	0	J. 7033	.012	0				

TABLE 3 (CON'T)

C-111/TAYLOR SLOUGH WATER QUALITY AND BIOLOGICAL MONITORING PROJECT LIGHT DATA

DATE	TIME	STATION	DECK VALUE	BOTTOM DEPTH	SUBM VALUE	RATIO	IMMERS FACTOR	DECK VALUE	CORRDECK - SUB	DEPTH METERS	K	AVG K
931020	1100	FBJB	1.1	1		3						
931020		FBJB	3113	1			1543					
931020		FBJB	3112	2		0.3014	1543		0.50268		-1.64921	-1.54701
931020 931109	1101	FBJB	3153	3	667.3	0.2085	1543	1610	0.88075	0.6096	-1.4448	
931109		FB1B	0.9 967.4	1	322.3	0.3142	645.1					
931109		FBJB	962.6	ż		0.2286	645.1	317.5	0.431146	0.3048	-1.41452	-1.50409
931109		FBJB	1008	3		0.1358	645.1	362.9	1.042879		-1.71076	
931109		FBJB	1516	4	245	0.1405	645.1	870.9	1.268269	0.9144	-1.387	
931214 931214		FBJB FBJ8	1 2563	1	1197	3 0.4783	1366					
931214		FBJ8	2549	2		0.364	1366	1183	0.258963	0.3048	-0.84962	-0.62532
931214		FBJB	2539	3		0.3478	1366		0.244469	0.6096	-0.40103	
940316		FBJB	0.7	1		2						
940316 940316		FBJB FBJB	2518 2508	1 2	1453	0.5765 0.4755	1065 1065	1//3	0.399764	0.30/8	-1.31156	.1 31154
940413	1118		0.6	1	967.5	0.4755	1003	1443	0.377104	0.3040	-1.51150	1.3(1)0
940413	1119		3065	1	1932	0.6165	1133					10
940511	1150		0.7	1		2						
940511	1151		2593	1	1308	0.5082	1285	1771	0.129107	0.30/8	-0.42358	-0 42308
940511 940614	1151 1126		2606 0.7	2	1161	0.453 2	1285	1321	0.129107	0.3048	-0.42336	-0.423.5
940614	1127		3223	i	1713	0.5598	1510					
940614	1127		3205	2	1070	0.3504	1510	1695	0.460024	0.3048	-1.50927	-1.50927
940707	1106		0.8	1		2						
940707 940707	1108		2696	1 2	1744	0.6476 0.5194	952 952	1724	0.274254	0.3048	-0.89978	-0 8007R
940707	1108 1058		2678 0.9	. 1	1312	0.5194	734	1720	0.2/4254	0.3046	-0.07776	-0.07770
940810	1058		3000	1	1620	0.5369	1380					
940810	1058	FBJ8	2827	2	1247	0.4509	1380	1447	0.148752	0.3048	-0.48803	-0.48803
940907	1150		0.9	- 1		3	4/47 4					
940907 940907	1151 1152		2615 2581	1 2	931.9 666.7	0.3253 0.2679	1683.1 1683.1	807 0	0.297719	0 3048	-0.97677	-0 03140
940907	1152		2571	3		0.2077	1683.1		0.540236		-0.88621	0.75.47
, , , , , ,				_								
931025	1105		0.8	1		2						
931025	1107		2791	1 2	1774 666.3	0.642 0.451	1017 1017	554	-0.18458	0 3048	-0.60556	N/A
931025 931109	1108 1415		1571 0.8	1	000.3	3	1017	7,74	-0.10430	0.3040	0.00330	W/ A
931109	1417		1017	i	472.2	0.4531	544.8					
931109	1417		1005	2	355.9	0.3607	544.8		0.257011		-0.84321	-0.69387
931109	1417		1016	3	338.1	0.3327	544.8	471.2	0.331941	0.6096	-0.54452	
931215 931215	1509 1511		0.8 2526	1	1432	3 0.5962	1094					
931215	1511		2524	2	679.2	0.2708	1094	1430	0.744514	0.3048	-2.44263	-1.99375
931215	1511		2506	3	550.6	0.2155	1094	1412	0.941754	0.6096	-1.54487	
940316	1323	FBTC	0.7	1		2						
940316	1324		2682	1	2570	0.9921	112 112		0.184566	0.30/8	-0 40553	5220A n.
940316 940413	1324	FBTC	2699 0.5	2	2151	0.8214	112	2301	0.104500	0.3040	-0.00333	0.00333
940413		FBTC	1367	i	795.9	0.5909	571.1					ID
940511		FBTC	0.6	1		2						
940511		FBTC	2421	1	1714	0.6963	707		0.092562	0.70/8	-0.70748	-0 30348
940511 940614		FBTC FBTC	2415 0.6	2	1557	0.6306 2	707	1706	0.092362	0.3046	-0.30300	-0.30300
940614		FBTC	2587	i	1704	0.6538	883					
940614		FBTC	2595	2	1298	0.5174	883	1712	0.276838	0.3048	-0.90826	-0.90826
940707		FBTC	0.7	1	_	2						
940707		FBTC	2488	1	1671	0.6791	817		0.303411	0.30/=	-0.99544	-0 00544
940707 940810		FBTC FBTC	2483 0.9	2	1230	0.5056 3	817	1000	U.3U3411	0.3048	-0.77344	U.77344
940810		FBTC	783.6	i	479	0.5988	304.6					
940810		FBTC	784.2	2	478.6	0.6039	304.6		0.002087		-0.00685	-0.16608
940810		FBTC	789.9	3	398	0.5035	304.6	485.3	0.198315	0.6096	-0.32532	
940907		FRTC	8.0	1	200 7	2 0.4029	570.9					
940907 940907		FBTC FBTC	961.1 956.3	1 2		0.4029	570.9		0.133309	0.3048	-0.43737	-0.43737
740707	730		7,10.3	2	د. ۱در	·	310.7	202.7				

TABLE 3 (CON'T)

C-111/TAYLOR SLOUGH WATER QUALITY AND BIOLOGICAL MONITORING PROJECT LIGHT DATA

DATE	TIME	STATION	DECK	BOTTOM DEPTH	SUBM VALUE	RATIO	IMMERS FACTOR	DECK VALUE	CORRDECK - SUB	DEPTH METERS	ĸ	AVG K
931215	1101	FBTR	1	1		3						
931215		FBTR	2524	i		0.6129	1070					
931215		FBTR	2430	ż	1308	0.5121	1070	1360	0.038985	0.3048	-0.12791	-0.4377
931215		FBTR	2469	3	887	0.3641	1070		0.455668		-0.74749	0.43//
940315		FBTR	0.6	1	٠	2		.377	0.423000	0.0070	••••	
940315		FBTR	2570	1	2003	0.7717	567					
940315		FBTR	2562	2	1400	0.5706	567	1995	0.354172	0.3048	-1.16198	-1.16198
940414		FBTR	0.5	1		2						
940414	1120	FBTR	2738	1	2213	0.8292	525					10
940510		FBTR	0.7	1		2						
940510		FETR	2773	1	2438	0.869	335					
940510		FBTR	2770	2	1455	0.5425	335	2435	0.514941	0.3048	-1.68944	-1.68944
940615		FBTR	0.5	1		2						
940615		FBTR	2796	1	2340	0.8382	456				4 //8/5	
940615		FBTR	2789	2	1403	0.5291	456	2333	0.508542	0.3048	-1.66845	-1.66845
940706		FBTR	0.9	1	7027	2 0. 8 629	504					
940706 940706		FBTR FBTR	3527 3521	1 2	3023 1686	0.5784	504 504	3017	0.581904	0.3048	-1 00013	-1,90913
940809		FETR	0.9	1	1000	0.5764	, , , , , , , , , , , , , , , , , , , 	3017	0.301904	0.3046	-1.70713	-1.90713
940809		FBTR	2766	i	2372	0.8463	394					
940809		FBTR	2758	ż	1850	0.7037	394	2364	0.245169	0.3048	-0.80436	-0.80436
940908		FBTR	1	1	.030	2	3,4					
940908		FBTR	1030	i	455	0.4428	575					
940908		FBTR	1012	Ž	337.1	0.3365	575	437	0.259554	0.3048	-0.85155	-0.85155
931027	1337	FBLM	1.2	1		3						
931027	1342	FBLM	1183	1	547.6	0.4695	635.4					
931027	1342	FBLM	1181	2	458	0.3848	635.4		0.175017		-0.5742	-0.68716
931027		FBLM	1231	3	365.7	0.2983	635.4	595.6	0.487756	0.6096	-0.80012	
931115		FBLM	1.1	1		3						
931115		FBLM	2765	1	1920	0.7137	845					
931115		FBLM	2777	2	1447	0.5133	845		0.289063		-0.94837	-1.05414
931115		FBLM	2782	3	955.1	0.3507	845	1937	0.70708	0.6096	-1.15991	
931215		FBLM	1.2	1		3	~					
931215		FBLM	1882	1	1120	0.2002	762 762	570	-0.06912	0.30/8	-0.22676	-0.03007
931215 931215		FBLM FBLM	1300 1443	2	576.5 615.9	0.0127	762 762		0.100478		-0.16483	0.03071
940315		FBLM	0.9	1	013.9	3	102	٠.	0.100410	0.5070	0	
940315		FBLM	2638	i	2489	0.9655	149					
940315		FBLM	2629	ż	2335	0.9007	149	2480	0.060247	0.3048	-0.19766	-0.20718
940315		FBLM	2646	3	2188	0.8391	149		0.132102		-0.2167	
940414		FBLM	0.7	1		2						
940414		FBLM	1916	1	1236	0.6445	680					
940414	930	FBLM	1709	2	732.6	0.4223	680	1029	0.339743	0.3048	-1.11464	-1.11464
940510	923	FBLM	0.9	1		3						
940510	924	FBLM	2264	1	1578	0.6972	686					
940510		FBLM	2274	2	1330	0.5814	686		0.177296			-0.55904
940510		FBLM	2260	3	1135	0.4944	686	1574	0.326987	0.6096	-0.5364	
940615		FBLM	0.8	1		3						
940615		FBLM	2521	1	1836	0.7368	685			. 70/0	4 40/35	4 44004
940615		FBLM	2530	2	1285	0.539	685		0.361721			-1.11991
940615		FBLM	2524	3	967.8	0.398	685	1839	0.641952	0.0096	-1.05307	
940706		FBLM	0.9	1	000 4	3 50//	T					
940706 940706		FBLM	1728 1510	1	998.1 600.5	0.5944 0.4046	729.9 729.9	720 1	0.261659	ה זהגת	-0.85844	-0.89937
940706		FBLM FBLM	1633	2 3	509.1	0.3272	729.9		0.201039		-0.94027	0.0//3
940809		FBLM	1.1	1	307.1	0.3212		,03.1	J.J.J.07	0.0070	V	
940809		FBLM	2194	1	1617	_	577					
940809		FBLM	2203	ż	1347		577	1626	0.188243	0.3048	-0.6176	-0.64637
940809		FBLM	2222	3		0.5143			0.411563		-0.67514	
940908		FBLM	1.1	1		3						
940908		FBLM	529	1	190.3	0.3615	338.7					
940908		FBLM	526.4	2	142.4	0.267			0.276205			-0.92337
940908		FBLM	527.3	3		0.2072		188.6	0.573363	0.6096	-0.94056	

TABLE 4

C-111/TAYLOR SLOUGH WATER QUALITY AND BIOLOGICAL MONITORING SEAGRASS SHOOT AND BLADE DENSITY

			Thalassi	• 1	testudinum	Syringodium (f	liforme	Halodule	wrightii	Ruppia mas	ritime
STATION	MONTH	YEAR	Shoots/m2(stderr) (Blades/m2(stderr)	Shoots/m2(stderr))				Shoots/m2	
FBHC	10	1993	0	0	0 0	0 ()	0 0	**261	**144	**261	**144
FBHC	11	1993	₹	0	0 0	0 (0 0	83	83	233	103
FBHC	12	1993	-	0	0 0	0 (-	0 0	72	72	58	51
FBHC	1	1994	-	0	0 0	0 (0 0	93	88	123	65
FBHC	2	1994	*	0	0 0	~)	0 0	35	24	65	29
FBHC	3	1994	_	0	0 0	•)	0 0	83	83	208	108
FBHC	4	1994	0	0	0 0	·-)	0 0	82	82	97	58
FBHC	5	1994	0	0	0 0	•)	0 0	62	50	140	56
FBHC	6	1994	0	0	0 0	0 ()	0 0	87	70	152	77
FBHC	7	1994	0	0	0 '0	0 ()	0 0	135	130	272	122
FBHC	8	1994	0	0	0 0	0 ()	0 0	100	83	125	40
FBHC	9	1994	· 0	0	0 0	0)	0 0	57	47	333	35
			Thalassi	ia	testudinum	Syringodium	fí	liforme	Halodule	wrightii	Ruppia mas	ritima
STATION	MONTH	YEAR	Shoots/m2(stdern	-)	Blades/m2(stderr)	Shoots/m2(stderr)	Blades/m2(stderr)	Shoots/m2	stderr	Shoots/m2	(stderr)
FBLS	10			75	432 169)	0 0		117	0	0
FBLS	11			1	437 109	0 ()	0 0	197	135	0	0
FBLS	12	1993	185 3	50	418 59	0	0	0 0	107	69	0	0
FBLS	1			56	422 121	Ŏ ()	0 0	128	98	Ö	Ö
FBLS	2			51	380 166		0	0 0		60	0	Ō
FBLS	3	1994		28	567 239		0	0 0		83	Ō	Ö
FBLS	4	1994		55	420 175		D	0 0		70		Ō
FBLS	5	1994		78	492 212		Ď	0 0	98	70	Ō	Ŏ
FBLS	6			74	613 188	Ţ.	0	0 0		142	-	Õ
FBLS	7			98	763 252	<u>-</u>	Ö	Ŏ Ŏ		147	_	ŏ
FBLS	8			88	727 217	•	0	o o		165	ŏ	Ŏ
FBLS	9			74	697 175		Ö	o o		150	Ŏ	Ŏ
			Thalassi	ia	testudinum	Syringodium	fi	liforme	Halodule	wrightii	Ruppia mai	ritima
STATION	MONTH	YEAR	Shoots/m2(stder	 r)	Blades/m2(stderr)	Shoots/m2(stderr	· · }	Blades/m2(stderr)	Shoots/m2	stderr	Shoots/m2	(stderr)
FBJB	10	1993		Ò	0 0		0	O O		634	2220	1164
FBJB	11			0	0 0	0	0	0 0		437	2320	1025
FBJB	12			Ō	o o		Ō	0 0		692		1124
FBJ8	1		•	ŏ	ŏ ŏ		Ö	o o	•	514	3182	1029
FBJB	ż		~	ŏ	o o	-	Ď	0 0		463	1175	478
FBJB	3		~	ŏ	o o	•	0	å ö	• • •	389	1410	606
FBJB	4			ŏ	0 0	•	Ö	0 0		372	1047	425
FBJB	3	1994	•	ō	0 0	•	0	ů O		367	452	159
FBJB	6		-	ă	0 0	•	D	û O		258	220	101
	7		~	0	0 0	•	0	0 0		121	20	3
FBJB FBJB	8			0	0 0		0	ė 0		217		9
	ç			0	0 0	=	0	0 0		232		0
FBJB	,	1994	U	U	U U	U	U	U U	212	٤٥٤	U	U

^{**} Indicates combined value of Halodule and Ruppia shoots

TABLE 4 (CON'T)

C-111/TAYLOR SLOUGH WATER QUALITY AND BIOLOGICAL MONITORING SEAGRASS SHOOT AND BLADE DENSITY

				Tha	lessia	testudinum		Syringoo	iium fili	forme		Halodule wr	ightii	Ruppia ma	ritime
MOLTATE	MONTH	YEAR	Shoo	ots/m2(s	tderr)	Blades/m2(s	tderr)	Shoots/m2(st	derr) Bl	ades/m2(stde	irr)	Shoots/m2 s	tderr	Shoots/m2	(stderr
FBTC	1	0 199	73	305	79	620	156	0	0	0	Ó	0	0		()
FBTC	1	1 199	3	243	32	517	53	0	0	0	0	0	0	0	0
FBTC	1	2 199	73												
BTC		1 199	74	275	19	465	19	0	0	0	0	0	0	0	0
BTC		2 199	4	193	27	393	48	0	0	0	0	0	0	Ó	ō
BTC		3 199	74	257	38	598	82	0	0	0	0	C	0	Ō	Ö
BTC		4 199	14	278	37	713	79	0	0	0	0	Ò	ō	_	ă
BTC		5 199	4	283	42	758	90	0	0	Ó	Ó	Ō	Ō	_	ō
BTC		6 199	4	243	39	613	71	Õ	Ŏ	Ŏ	ŏ	ŏ	Õ	•	ď
BTC		7 199	4	255	46	562	91	Ö	Ŏ	Ö	ō	ŏ	ő	•	Ŏ
BTC		B 199		243	34	513	62	-	ŏ	ŏ	ŏ	ž	2	-	0
BTC		9 199	94	250	18	532	36	Ŏ	Ö	Ö	Ö	ž	2		Ö
				The	lassia	testudinum		Syringod	fium fili	forme		Halodule wr	ightii	Ruppia ma:	ritima
STATION	MONTH	YEAR	Shor	nts/m2(s	tderr)	Riades/m2(s	tderr)	Shoots/m2(st	decc) Bl			Shoote/m2 =	 •denn	Shoota/=2	· · · · · · · · · · · · · · · · · · ·
BTR	1		7	-	,	D. BOES/ ME(S	tuer ,	31100(8/102(8)	Cerry St	BG62\ IIK (2 (G6	: 1 7	31100(8/MZ 8	toerr	Shoots/m2	(stoern
BTR		1 19													
BTR		2 19	_	457	83	1048	139	0	0	0	0	7		•	
BTR		1 199		198	12		39	ŏ	ŏ	Ö	0	7	3		0
BTR		2 19		368	51	958	70	0	0	0	0	12	6	-	0
BTR		3 199		422	75			0	•	-	_	18	18	0	0
BTR		4 19		443		1087	172	•	0	0	0	3	3		0
		5 19			44	1192	172	0	0	0	0	5	3	0	0
FBTR				278	9		39	0	0	0	0	5	5	0	0
FBTR		6 19	•	342	98		295	0	Ō	0	0	0	0	0	0
BTR		7 19		358	90		242	0	0	0	0	2	2	0	0
FBTR		8 19	•	487	112		302	.0	0	0	0	5	3	0	0
BTR		9 19	74	410	116	1180	299	0	0	0	0	12	7	0	0
				Tha	lassia	testudinum		Syringoo	lium fili:	forme		Halodule wr	ightii	Ruppia mar	ritime
NOTATE	MONTH	YEAR	Shoo	ots/m2(s	tderr)	Blades/m2(s	tderr)	Shoots/m2(st	derr) Bla	ades/m2(stde	rr)	Shoots/m2 st	tderr	Shoots/m2	(stderr
FBLM		0 19	73	445	43	885	135	0	Ó	0	0	0	0	0	0
FBLM	1		73	337	27	653	108	0	0	Ö	Ö	Ŏ	Ö	Õ	Ŏ
FBLM	1	2 19	73	287	63	517	107	Ö	Ŏ	Ŏ	ŏ	Ŏ	Ŏ	ŏ	Ô
FBLM		1 19	74	297	31	488	58	Õ	Ŏ	Ŏ	ŏ	Ŏ	Ō	ő	0
BLM		2 19	74	358	35	672	92	Ŏ	ŏ	ŏ	ŏ	13	11	Ô	0
BLM		3 19		332	91	722	235	ŏ	Ŏ	ŏ	Ö	5	` <u>'</u> 5	Õ	0
FBLM		4 19	-	335	13	792	25	ŏ	Ŏ	ŏ	ŏ	ó	0	ñ	0
FBLM		5 19		317	9		31	ŏ	Ö	ŏ	ŏ	Ö	0	0	0
FBLM		6 19		348	26		31	Ö	Ö	ő	0	0	0	-	_
FBLM		7 19		398	9		20	Ö	0	Ö	0	2		0	0
					-			-		_	- 7		2	0	0
FBLM		8 194	<i>)</i>	357	27	# C /	74	0	0	0	Ò	2	2	0	0

TABLE 5
C-111\TAYLOR SLOUGH WATER QUALITY AND BIOLOGICAL MONITORING
SEAGRASS BIOMASS

STATION	DATE		Y TOTAL BIMAS/m2 g/m2	E/(E+BL)	EPI FRACTION		EPI % OF TOTAL
FBHC	12/93	0.40	9.88	0.61	0.43	3.62	36.64
FBHC	3/94	0.05	1.30	0.04	0.00	0.03	2.11
FBHC	6/94	0.02	0.47	0.00	0.00	0.00	0.00
FBHC	9/94	0.17	4.28	0.18	0.03	0.54	12.56
FBLS	12/93	0.73	18.24	0.25	0.18	3.38	18.53
FBLS	3/94	0.68	17.05	0.07	0.06	1.10	6.48
FBLS	6/94	1.31	32.84	0.01	0.01	1.92	5.84
FBLS	9/94	1.11	27.75	0.03	0.04	0.69	2.49
FBJB	12/93	0.72	17.93	0.04	0.02	0.73	4.08
FBJB	3/94	0.70	17.60	0.11	0.11	1.23	7.00
FBJB	6/94	0.56	13.97	0.01	0.00	0.34	2.47
FBJB	9/94	0.09	2.29	0.21	0.03	0.44	19.29
FBTC	12/93						
FBTC	3/94	0.71	17.70	0.03	0.01	1.04	5.85
FBTC	6/94	0.59	14.84	0.02	0.02	0.46	3.07
FBTC	9/94	0.51	12.84	0.07	0.02	1.53	1,1.89
FBTR	12/93	0.78	19.38	0.08	0.08	1.25	6.46
FBTR	3/94	1.08	27.02	0.10	0.09	1.67	6.19
FBTR	6/94	1.45	36.26	0.02	0.04	0.55	1.52
FBTR	9/94	1.33	33.28	0.06	0.05	1.65	4.95
FBLM	12/93	0.34	8.60	0.06	0.02	0.66	7.70
FBLM	3/94	0.64	16.03	0.38	0.26	4.77	29.78
FBLM	6/94	0.49	12.35	0.20	0.13	2.47	19.99
FBLM	9/94	0.37	9.17	0.13	0.04	1.19	13.03

HIGHWAY CREEK STATION

SEAGRASS SHOOT DENSITY

LONG SOUND STATION

JOE BAY STATION

SEAGRASS SHOOT DENSITY

TROUT COVE STATION

SEAGRASS SHOOT DENSITY 350 300 250 SHOOTS/m2 FIGURE 4 200 150 100 50 5/94 6/94 7/94 9/94 10/93 11/93 12/93 1/94 3/94 8/94 2/94 4/94 MONTH/YEAR

__ HAL __ RUP

__ THAL __ SYR

TAYLOR RIVER STATION

SEAGRASS SHOOT DENSITY

LITTLE MADEIRA BAY STATION

HIGHWAY CREEK

TRANSECT COMPOSITION

LONG SOUND

JOE BAY

TROUT COVE

TAYLOR RIVER

TRANSECT COMPOSITION

E MADEIRA BAY

HIGHWAY CREEK

SEAGRASS BIOMASS

Sample Composition: Halodule, Ruppia

LONG SOUND

SEAGRASS BIOMASS

Sample Composition: Thalassia, Halodule

JOE BAY

SEAGRASS BIOMASS

Sample Composition: Halodule, Ruppia

TROUT COVE

SEAGRASS BIOMASS

Sample Composition: Thalassia

TAYLOR RIVER

SEAGRASS BIOMASS

Sample Composition: Thalassia, Halodule

LITTLE MADEIRA BAY

SEAGRASS BIOMASS

Sample Composition: Thalassia, Halodule

HIGHWAY CREEK STATION

LONG SOUND STATION

FIGURE 20

FIGURE 19

JOE BAY STATION

TROUT COVE STATION

TAYLOR RIVER STATION

LITTLE MADEIRA BAY STATION

