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� Introduction

Principal Component Analysis 
PCA� is a power�
ful technique for extracting structure from possi�
bly high�dimensional data sets� It is readily per�
formed by solving an Eigenvalue problem� or by
using iterative algorithms which estimate princi�
pal components� for reviews of the existing liter�
ature� see Jolli�e 
����� and Diamataras � Kung

������ PCA is an orthogonal transformation of
the coordinate system in which we describe our
data� The new coordinate values by which we rep�
resent out data are called principal components� It
is often the case that a small number of principal
components is su�cient to account for most of the
structure in the data� These are sometimes called
the factors or latent variables of the data�
The present work generalizes PCA to the case

where we are not interested in principal compo�
nents in input space� but rather in principal com�
ponents of variables� or features� which are non�
linearly related to the input variables� Among
these are for instance variables obtained by taking
higher�order correlations between input variables�
In the case of image analysis� this would amount
to 	nding principal components in the space of
products of input pixels�
To this end� we are using the method of ex�

pressing dot products in feature space in terms
of kernel functions in input space� Given any al�
gorithm which can be expressed solely in terms
of dot products� i�e� without explicit usage of the
variables themselves� this kernel method enables
us to construct di�erent nonlinear versions of it

Aizerman� Braverman� � Rozonoer� ���� Boser�
Guyon� � Vapnik� ������ Even though this gen�
eral fact was known 
Burges� ������ the machine
learning community has made little use of it� the
exception being Support Vector machines 
Vap�
nik� ������
In this paper� we give some examples of non�

linear methods constructed by this approach� For
one example� the case of a nonlinear form of prin�
cipal component analysis� we shall give details and
experimental results 
Sections � � ��� for some
other cases� we shall brie�y sketch the algorithms

Sec� ���
In the next section� we will 	rst review the stan�

dard PCA algorithm� In order to be able to gener�
alize it to the nonlinear case� we shall then formu�
late it in a way which uses exclusively dot prod�
ucts� In Sec� �� we shall discuss the kernel method
for computing dot products in feature spaces� To�
gether� these two sections form the basis for Sec� �
which presents the proposed kernel�based algo�

rithm for nonlinear PCA� Following that� Sec� �
will discuss some di�erences between kernel�based
PCA and other generalizations of PCA� In Sec� ��
we shall give some 	rst experimental results on
kernel�based feature extraction for pattern recog�
nition� After a discussion of other applications of
the kernel method 
Sec� ��� we conclude with a dis�
cussion 
Sec� ��� Finally� some technical material
which is not essential for the main thread of the
argument has been relegated into the appendix�

� PCA in Feature Spaces

Given a set of M centered observations xk� k �
�� � � � �M � xk � RN �

PM

k�� xk � �� PCA diagonal�
izes the covariance matrix�

C �
�

M

MX
j��

xjx
�
j � 
��

To do this� one has to solve the Eigenvalue equa�
tion

�v � Cv 
��

for Eigenvalues � � � and v � RNnf�g� As Cv �
�
M

PM

j��
xj � v�xj� all solutions v must lie in the
span of x� � � �xM � hence 
�� is equivalent to

�
xk � v� � 
xk �Cv� for all k � �� � � � �M� 
��

The remainder of this section is devoted to
a straightforward translation to a nonlinear sce�
nario� in order to prepare the ground for the
method proposed in the present paper� We shall
now describe this computation in another dot
product space F � which is related to the input
space by a possibly nonlinear map

� � RN � F�

x �� X� 
�

Note that F � which we will refer to as the feature
space� could have an arbitrarily large� possibly in�
	nite� dimensionality� Here and in the following�
upper case characters are used for elements of F �
while lower case characters denote elements ofRN �
Again� we make the assumption that we are

dealing with centered data� i�e�
PM

k���
xk� � �
� we shall return to this point later� Using the
covariance matrix in F �

�C �
�

M

MX
j��

�
xj��
xj�
�� 
��

�More precisely� the covariance matrix is de�ned as
the expectation of xx�� for convenience� we shall use
the same term to refer to the maximum likelihood esti�

mate ��� of the covariance matrix from a �nite sample�

�




if F is in	nite�dimensional� we think of
�
xj��
xj�� as the linear operator which maps
X � F to �
xj�
�
xj� �X�� we now have to 	nd
Eigenvalues � � � and Eigenvectors V � Fnf�g
satisfying

�V � �CV 
��

By the same argument as above� the solutions V
lie in the span of �
x��� � � � ��
xM �� For us� this
has two useful consequences� 	rst� we can consider
the equivalent equation

�
�
xk� �V� � 
�
xk� � �CV� for all k � �� � � � �M�

��

and second� there exist coe�cients �i 
i �
�� � � � �M � such that

V �
MX
i��

�i�
xi�� 
��

Combining 
�� and 
��� we get

�

MX
i��

�i
�
xk� ��
xi�� �

�

M

MX
i��

�i
�
xk� �
MX
j��

�
xj��
�
xj� � �
xi��

for all k � �� � � � �M� 
��

De	ning an M �M matrix K by

Kij �� 
�
xi� � �
xj��� 
���

this reads

M�K� � K�
�� 
���

where � denotes the column vector with entries
��� � � � � �M � As K is symmetric� it has a set of
Eigenvectors which spans the whole space� thus

M�� � K� 
���

gives us all solutions � of Eq� 
���� Note that
K is positive semide	nite� which can be seen by
noticing that it equals


�
x��� � � � ��
xM��
� � 
�
x��� � � � ��
xM ��� 
���

which implies that for all X � F �


X �KX� � k
�
x��� � � � ��
xM��Xk� � �� 
��
Consequently� K�s Eigenvalues will be nonnega�
tive� and will exactly give the solutions M� of
Eq� 
���� We therefore only need to diagonalize
K� Let �� � �� � � � � � �M denote the Eigenval�
ues� and ��� � � � ��M the corresponding complete
set of Eigenvectors� with �p being the 	rst nonzero

Eigenvalue�� We normalize �p� � � � ��M by requir�
ing that the corresponding vectors in F be nor�
malized� i�e�


Vk �Vk� � � for all k � p� � � � �M� 
���

By virtue of 
�� and 
���� this translates into a
normalization condition for �p� � � � ��M �

� �
MX

i�j��

�ki�
k
j 
�
xi� ��
xj��

�
MX

i�j��

�ki�
k
jKij

� 
�k �K�k�

� �k
�
k ��k� 
���

For the purpose of principal component extrac�
tion� we need to compute projections on the Eigen�
vectors Vk in F 
k � p� � � � �M �� Let x be a test
point� with an image �
x� in F � then


Vk ��
x�� �
MX
i��

�ki 
�
xi� ��
x�� 
���

may be called its nonlinear principal components
corresponding to ��
In summary� the following steps were necessary

to compute the principal components� 	rst� com�
pute the dot product matrix K de	ned by 
�����

second� compute its Eigenvectors and normalize
them in F � third� compute projections of a test
point onto the Eigenvectors by 
����
For the sake of simplicity� we have above made

the assumption that the observations are centered�
This is easy to achieve in input space� but more
di�cult in F � as we cannot explicitly compute the
mean of the mapped observations in F � There is�
however� a way to do it� and this leads to slightly
modi	ed equations for kernel�based PCA 
see Ap�
pendix A��
Before we proceed to the next section� which

more closely investigates the role of the map ��
the following observation is essential� The map�
ping � used in the matrix computation can be an
arbitrary nonlinear map into the possibly high�
dimensional space F � e�g� the space of all nth or�
der monomials in the entries of an input vector�

�If we require that � should not map all observa�
tions to zero� then such a p will always exist�

�Note that in our derivation we could have used
the known result �e�g� Kirby 	 Sirovich� �

�� that
PCA can be carried out on the dot product matrix
�xi �xj�ij instead of ���� however� for the sake of clarity
and extendability �in Appendix A� we shall consider
the case where the data must be centered in F �� we
gave a detailed derivation�
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In that case� we need to compute dot products of
input vectors mapped by �� with a possibly pro�
hibitive computational cost� The solution to this
problem� which will be described in the following
section� builds on the fact that we exclusively need
to compute dot products between mapped pat�
terns 
in 
��� and 
����� we never need the mapped
patterns explicitly�

� Computing Dot Products in
Feature Space

In order to compute dot products of the form

�
x� ��
y��� we use kernel representations of the
form

k
x�y� � 
�
x� ��
y��� 
���

which allow us to compute the value of the dot
product in F without having to carry out the map
�� This method was used by Boser� Guyon� �
Vapnik 
����� to extend the �Generalized Por�
trait� hyperplane classi	er of Vapnik � Chervo�
nenkis 
���� to nonlinear Support Vector ma�
chines� To this end� they substitute a priori chosen
kernel functions for all occurances of dot products�
This way� the powerful results of Vapnik � Cher�
vonenkis 
���� for the Generalized Portrait carry
over to the nonlinear case� Aizerman� Braver�
man � Rozonoer 
���� call F the �linearization
space�� and use it in the context of the poten�
tial function classi	cation method to express the
dot product between elements of F in terms of ele�
ments of the input space� If F is high�dimensional�
we would like to be able to 	nd a closed form ex�
pression for k which can be e�ciently computed�
Aizerman et al� 
���� consider the possibility of
choosing k a priori� without being directly con�
cerned with the corresponding mapping � into F �
A speci	c choice of k might then correspond to a
dot product between patterns mapped with a suit�
able �� A particularly useful example� which is a
direct generalization of a result proved by Poggio

����� Lemma ���� in the context of polynomial
approximation� is


x � y�d � 
Cd
x�� Cd
y��� 
���

where Cd maps x to the vector Cd
x� whose entries
are all possible n�th degree ordered products of
the entries of x� For instance 
Vapnik� ������ if
x � 
x�� x��� then C�
x� � 
x��� x

�
�� x�x�� x�x���

or� yielding the same value of the dot product�

c�
x� � 
x
�
�� x

�
��
p
�x�x��� 
���

For this example� it is easy to verify that�

x�� x��
y�� y��

�
��

� 
x��� x
�
��
p
�x�x��
y

�
� � y

�
��
p
�y�y��

�

� c�
x�c�
y�
�� 
���

In general� the function

k
x�y� � 
x � y�d 
���

corresponds to a dot product in the space of
d�th order monomials of the input coordinates�
If x represents an image with the entries being
pixel values� we can thus easily work in the space
spanned by products of any d pixels � provided
that we are able to do our work solely in terms
of dot products� without any explicit usage of a
mapped pattern cd
x�� The latter lives in a pos�
sibly very high�dimensional space� even though
we will identify terms like x�x� and x�x� into one
coordinate of F as in 
���� the dimensionality of

F � the image of RN under cd� still is
�N�p����
p��N���� and

thus grows like Np� For instance� ����� input im�
ages and a polynomial degree d � � yield a dimen�
sionality of ����� Thus� using kernels of the form

��� is our only way to take into account higher�
order statistics without a combinatorial explosion
of time complexity�
The general question which function k corre�

sponds to a dot product in some space F has
been discussed by Boser� Guyon� � Vapnik 
�����
and Vapnik 
������ Mercer�s theorem of functional
analysis states that if k is a continuous kernel of
a positive integral operator� we can construct a
mapping into a space where k acts as a dot prod�
uct 
for details� see Appendix B�
The application of 
��� to our problem is

straightforward� we simply substitute an a priori
chosen kernel function k
x�y� for all occurances
of 
�
x� ��
y��� This was the reason why we had
to formulate the problem in Sec� � in a way which
only makes use of the values of dot products in
F � The choice of k then implicitly determines the
mapping � and the feature space F �
In Appendix B� we give some examples of ker�

nels other than 
��� which may be used�

� Kernel PCA

��� The Algorithm

To perform kernel�based PCA 
Fig� ��� from now
on referred to as kernel PCA� the following steps
have to be carried out� 	rst� we compute the dot
product matrix 
cf� Eq� 
����

Kij � 
k
xi�xj��ij� 
���

Next� we solve 
��� by diagonalizing K� and nor�
malize the Eigenvector expansion coe�cients �n

by requiring Eq� 
����

� � �n
�
n ��n��
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Figure �� The basic idea of kernel PCA� In some high
dimensional feature space F �bottom right�� we are
performing linear PCA� just as a PCA in input space
�top�� Since F is nonlinearly related to input space
�via ��� the contour lines of constant projections onto
the principal Eigenvector �drawn as an arrow� become
nonlinear in input space� Note that we cannot draw
a preimage of the Eigenvector in input space� as it
may not even exist� Crucial to kernel PCA is the fact
that we do not actually perform the map into F � but
instead perform all necessary computations by the use
of a kernel function k in input space �here� R���

To extract the principal components 
correspond�
ing to the kernel k� of a test point x� we then
compute projections onto the Eigenvectors by 
cf�
Eq� 
�����


kPC�n
x� � 
V
n � �
x�� �

MX
i��

�ni k
xi�x�� 
��

If we use a kernel as described in Sec� �� we
know that this procedure exactly corresponds to
standard PCA in some high�dimensional feature
space� except that we do not need to perform ex�
pensive computations in that space�

��� Properties of �Kernel�� PCA

If we use a kernel which satis	es the conditions
given in Sec� �� we know that we are in fact doing
a standard PCA in F � Consequently� all math�
ematical and statistical properties of PCA 
see
for instance Jolli�e� ����� carry over to kernel�
based PCA� with the modi	cations that they be�
come statements about a set of points �
xi�� i �
�� � � � �M � in F rather than in RN � In F � we can
thus assert that PCA is the orthogonal basis trans�
formation with the following properties 
assuming
that the Eigenvectors are sorted in ascending order
of the Eigenvalue size��

� the 	rst q 
q � f�� � � � �Mg� principal compo�
nents� i�e� projections on Eigenvectors� carry
more variance than any other q orthogonal
directions

� the mean�squared approximation error in
representing the observations by the 	rst q
principal components is minimal

� the principal components are uncorrelated
� the representation entropy is minimized
� the 	rst q principal components have maxi�
mal mutual information with respect to the
inputs

For more details� see Diamantaras � Kung 
������
To translate these properties of PCA in F into

statements about the data in input space� they
need to be investigated for speci	c choices of a
kernels� We shall not go into detail on that mat�
ter� but rather proceed in our discussion of kernel
PCA�

��� Dimensionality Reduction and
Feature Extraction

Unlike linear PCA� the proposed method allows
the extraction of a number of principal compo�
nents which can exceed the input dimensionality�
Suppose that the number of observations M ex�
ceeds the input dimensionality N � Linear PCA�
even when it is based on the M �M dot product
matrix� can 	nd at most N nonzero Eigenvalues
� they are identical to the nonzero Eigenvalues
of the N �N covariance matrix� In contrast� ker�
nel PCA can 	nd up to M nonzero Eigenvalues	

� a fact that illustrates that it is impossible to
perform kernel PCA based on an N � N covari�
ance matrix�

��� Computational Complexity

As mentioned in Sec� �� a 	fth order polynomial
kernel on a ����dimensional input space yields a
�����dimensional space� It would seem that look�
ing for principal components in his space should
pose intractable computational problems� How�
ever� as we have explained above� this is not the
case� First� as pointed out in Sect� � we do not
need to look for Eigenvectors in the full space F �
but just in the subspace spanned by the images
of our observations xk in F � Second� we do not
need to compute dot products explicitly between
vectors in F � as we know that in our case this can
be done directly in the input space� using kernel

�If we use one kernel � of course� we could extract
features with several kernels� to get even more�

�



functions� The proposed kernel principal compo�
nent analysis thus is computationally comparable
to a linear PCA on � observations with an ��� dot
product matrix� The overall computational com�
plexity is not changed by the following additional
cost� we need to evaluate kernel functions rather
than just dot products� If k is easy to compute�
as for polynomial kernels� e�g�� this is negligible�
Furthermore� in the case where we need to use

a large number � of observations� we may want
to work with an algorithm for computing only
the largest Eigenvalues� as for instance the power
method with de�ation 
for a discussion� see Dia�
mantaras � Kung� ������ In addition� we can con�
sider using an estimate of the dot product matrix
computed from a subset ofM � � examples� while
still extracting principal components from all � ex�
amples 
this approach was chosen in some of our
experiments described below��
The situation is di�erent for principal compo�

nent extraction� There� we have to evaluate the
kernel function � times for each extracted princi�
pal component 
��� rather than just evaluating
one dot product as for a linear PCA� In some
cases� e�g� if we were to extract principal com�
ponents as a preprocessing step for classi	cation�
this is a disadvantage� However� in that case� we
can speed up the extraction by a method analogu�
ous to a technique proposed by Burges 
����� in
the context of Support Vector machines� Speci	�
cally� we can try to approximate each Eigenvector
V �

P�

i�� �i�
xi� 
Eq� 
��� by another vector

�V �
mX
j��

�j�
zj�� 
���

where m � � is chosen a priori according to the de�
sired speed�up� and zj � RN � j � �� � � � �m� This
is done by minimizing the squared di�erence

� � kV� �Vk�� 
���

The crucial point is that this also can be done
without explicitly dealing with the possibly high�
dimensional space F � As

� � kVk k �Vk � �
�X

i��

mX
j��

�i�jk
xi� zj�� 
���

the gradient of � with respect to the �j and the
zj is readily expressed in terms of the kernel func�
tion� thus � can be minimized by standard gradient
methods� In the case k
x�y� � 
x � y�� it is possi�
ble to get an exact expansion with at most N vec�
tors zj 
N being the dimension of the input space�
by solving an Eigenvalue problem 
Burges� ������

For the task of handwritten character recognition�
this technique led to a speed�up by a factor of ��
at almost no loss in accuracy� yielding a state of
the art classi	er 
Burges � Sch�olkopf� ������

Finally� we add that although the kernel princi�
pal component extraction is computationallymore
expensive than its linear counterpart� this addi�
tional investment can pay back afterwards� In ex�
periments on classi	cation based on the extracted
principal components� we found that in the non�
linear case� it was su�cient to use a linear Support
Vector machine to construct the decision bound�
ary� Linear Support Vector machines� however�
are much faster in classi	cation speed than non�
linear ones� 
The latter are slower than compara�
ble Neural Networks 
Burges � Sch�olkopf� �������
This is due to the fact that for k
x�y� � 
x�y�� the
Support Vector decision function 
Boser� Guyon�
� Vapnik� �����

f
x� � sgn

�X

i��

�ik
x�xi�  b� 
���

can be expressed with a single weight vector w �P�

i�� �ixi as

f
x� � sgn

x �w�  b�� 
���

Thus the 	nal stage of classi	cation can be done
extremely fast� the speed of the principal compo�
nent extraction phase� on the other hand� and thus
the accuracy�speed tradeo� of the whole classi	er�
can be controlled by the number of components
which we extract� or by the above reduced set pa�
rameter m�

��� Interpretability and Variable
Selection

In PCA� it is sometimes desirable to be able to
select speci	c axes which span the subspace into
which one projects in doing principal component
extraction� This way� it may for instance be pos�
sible to choose variables which are more accessible
to interpretation� In the nonlinear case� the prob�
lem is slightly di�erent� to get interpretability� we
want to 	nd directions in input space 
i�e� input
variables� whose images under � span the PCA
subspace in F � This can be done with an approach
akin to the one in Sec� �� we could parametrize
our set of desired input variables and run the min�
imization of 
��� only over those parameters� The
parameters can be e�g� group parameters which
determine the amount of translation� say� starting
from a set of images�

�



��	 Reconstruction

Being just a basis transformation� standard PCA
allows the reconstruction of the original patterns
xi� i � �� � � � � �� from a complete set of extracted
principal components 
xi � vj�� j � �� � � � � � by ex�
pansion in the Eigenvector basis�
In kernel PCA� this is no longer possible� the

reason being that it may happen that a vector
V in F does not have a pre�image in RN � We
can� however� 	nd a vector z in RN which maps
to a vector that optimally approximates V� To
this end� we can proceed as in Sec� � and write
the distance in F in terms of the kernel function�
Again� we can minimize it by gradient descent�
Alternatively� we can use a suitable regression

method for estimating the reconstruction mapping
from the kernel�based principal components to the
inputs� Once this is estimated from the data� we
can use canonical basis vectors as inputs to esti�
mate the approximate pre�images in RN of the
Eigenvectors in F �

��
 Multi�Layer Support Vector
machines

By 	rst extracting nonlinear principal components
according to 
��� and then training a Support
Vector machine 
Vapnik� ������ we can construct
Support Vector type machines with additional lay�
ers� The number of components extracted then
determines the size of of the 	rst hidden layer�
Combining 
�� with the Support Vector decision
function 
Vapnik� ������ we thus get machines of
the type

f
x� � sgn

�
�X

i��

�iK�
	g
xi�� 	g
x��  b

�

���

with

	g
x�j �
�
Vj ��
x�

�
�

MX
k��

�jkK�
xk�x�� 
���

Here� the expansion coe�cients �i are computed
by a standard Support Vector Machine� Note that
di�erent kernel functions K� and K� can be used
for the di�erent layers� Also note that this can
provide an e�cient means of building multivariate
Support Vector Machines� i�e� q machines mapping
RN � Rq� where q �N� All these machines may
share the 	rst preprocessing layer which includes
the numerically expensive steps� and then use a
simple kernel for the second layer� Similar consid�
erations apply for multi�class classi	cation� where
often a set of binary classi	ers 
which could share
some preprocessing� is constructed�

� Comparison to Other Methods
for Nonlinear PCA

Starting from some of the properties characteriz�
ing PCA 
Sec� ���� it is possible to develop a num�
ber of possible generalizations of linear PCA to
the nonlinear case� Alternatively� one may choose
an iterative algorithm which adaptively estimates
principal components� and make some of its parts
nonlinear to extract nonlinear features�
Rather than giving a full review of this 	eld

here� we brie�y describe just three approaches�
and refer the reader to Diamantaras � Kung

����� for more details�

Hebbian Networks� Initiated by the pioneer�
ing work of Oja 
������ a number of unsupervised
neural�network type algorithms computing prin�
cipal components have been proposed� Compared
to the standard approach of diagonalizing the co�
variance matrix� they have advantages for instance
in cases where the data are nonstationary� It is
fairly straightforward to construct nonlinear vari�
ants of these algorithms by adding nonlinear ac�
tivation functions� The algorithms then extract
features that the authors have referred to as non�
linear principal components� Compared to kernel
PCA� however� these approaches are lacking the
geometrical interpretation as a standard PCA in
a feature space nonlinearly related to input space�
and it is di�cult to understand what exactly they
are extracting�

Autoassociative Multi�Layer Perceptrons�
Consider a linear ��layer perceptron with a hidden
layer which is smaller than the input� If we train it
to reproduce the input values as outputs 
i�e� use
it in an autoassociative mode�� then the hidden
unit activations form a lower�dimensional repre�
sentation of the data� closely related to PCA 
see
for instance Diamantaras � Kung� ������ To gen�
eralize to a nonlinear setting� one uses nonlinear
activation functions and additional layers�
 While
this of course can be considered a formof nonlinear
PCA� it should be stressed that the resulting net�
work training consists in solving a hard nonlinear
optimization problem� with the possibility to get
trapped in local minima� and thus with a depen�
dence of the outcome on the starting point of the

�Simply using nonlinear activation functions in the
hidden layer would not su�ce� already the linear acti�
vation functions lead to the best approximation of the
data �given the number of hidden nodes�� so for the
nonlinearities to have an e�ect on the components� the
architecture needs to be changed �see e�g� Diamantaras
	 Kung� �

���

�



training� Moreover� in neural network implemen�
tations there is often a risk of getting over	tting�
Another problem with neural approaches to non�
linear PCA is that the number of components to
be extracted has to be speci	ed in advance� This
is also the case for the following method� which�
however� has the advantage that there is a clear
geometrical picture of what kind of nonlinear fea�
tures are being extracted�

Principal Curves� An approach with a geo�
metric interpretation in input space is the method
of principal curves 
Hastie � Stuetzle� ������ This
method iteratively estimates a curve 
or surface�
which captures the structure of the data� The data
are projected onto 
i�e� mapped to the closest point
on� a curve� and the algorithm tries to 	nd a curve
with the property that each point on the curve
is the average of all data points projecting onto
it� It can be shown that the only straight lines
satisfying the latter are principal components� so
principal curves are indeed a generalization of the
latter� To compute principal curves� again a non�
linear optimization problem has to be solved�

Kernel PCA� Kernel PCA is a nonlinear gen�
eralization of PCA in the sense that if we use the
kernel k
x�y� � 
x � y�� we recover original PCA�
To get nonlinear forms of PCA� we simpy choose
a nonlinear kernel� Moreover� kernel PCA is a
generalization of PCA is the respect that it is per�
forming PCA in feature spaces of arbitrarily large

possibly in	nite� dimension�

Compared to the above approaches� kernel PCA
has the main advantage that no nonlinear opti�
mization is involved � it is essentially linear alge�
bra� as simple as standard PCA� In addition� we
need not specify the number of components that
we want to extract in advance� Compared to neu�
ral approaches� kernel PCA could be disadvanta�
geous if we need to process a very large number
of observations� as this results in a large matrix
K 
cf� our considerations in Sec� ��� Compared
to principal curves� kernel PCA is so far harder to
interpret in input space� however� at least for poly�
nomial kernels� it has a very clear interpretation
in terms of higher�order features�

� Experiments

In this section� we present a set of experiments
where we used kernel PCA to extract principal
components� First� we shall take a look at a sim�
ple toy example� following that� we describe real�
world experiments where we tried to assess the

Down−
sampling

Figure �� An example image from the MPI chair
database� Left� original view of the chair� right� down�
sampled to �� � ��� This is what the views in the
database look like�

utility of the extracted principal components by
classi	cation tasks�

	�� Toy Examples

To provide some intuition on how the principal
component analysis in F behaves in input space�
we show a set of experiments with an arti	cial ��
D data set� using polynomial kernels 
cf� Eq�
 ����
of degree � through  
see Fig� ���

	�� Object Recognition

In this set of experiments� we used the MPI
database of images of realistically rendered ��D
chair models 
Blanz et al�� ������� It contains
downsampled 
�� � ��� snapshots of �� chairs�
taken from the upper half of the viewing sphere�
for an example image� see Fig� �� The training set
consists of �� regularly spaced views of each chair�
the test set contains ��� random views each� Blanz
et al� compared three di�erent classi	ers on this
task� with a Support Vector classi	er outperform�
ing both an oriented 	lter approach and a ��layer
perceptron�
In the experiment� we computed the dot prod�

uct matrixK from all ���� training examples� and
used polynomial kernel PCA to extract nonlinear
principal components from the training and test
set� To assess the utility of the components� we
trained a linear Support Vector classi	er 
Vapnik
� Chervonenkis� ����� Cortes � Vapnik� ����� on
the classi	cation task�� Table � summarizes our
	ndings� in all cases� nonlinear components as ex�
tracted by polynomial kernels 
cf� Eq� 
��� with
d 
 �� led to signi	cantly better classi	cation ac�
curacy on the test set than standard PCA� Specif�
ically� the nonlinear components a�orded top test
performances between �! and ! error� whereas
in the linear case we obtained ��!� In many cases�
the resulting system even outperformed nonlinear

�The dataset is available from ftp���ftp�mpik�
tueb�mpg�de�pub�chair dataset��

�Thanks to L� Bottou� C� Burges� C� Cortes for
parts of the code used in the SV optimization�
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Figure �� Twodimensional toy examples� with data generated in the following way� xvalues have uniform
distribution in ���� ��� yvalues are generated from yi � x�i � �� were � is normal noise with standard deviation
���� From left to right� the polynomial degree in the kernel ���� increases from � to �� from top to bottom� the �rst
� Eigenvectors are shown �in order of decreasing Eigenvalue size�� The �gures contain lines of constant principal
component value �contour lines�� in the linear case� these are orthogonal to the Eigenvectors� We did not draw
the Eigenvectors� as in the general case� they live in a higherdimensional space� Note that linear PCA only leads
to � nonzero Eigenvalues� as the input dimensionality is �� In contrast� nonlinear PCA uses the third component
to pick up the variance caused by the noise� as can be seen in the case of degree ��

Test Error Rate for degree
" of components � � �  � � �

� ���� ���� ���� ���� ���� ���� ����
��� ���� ��� ��� ��� ��� ��� ���
��� ���� ��� � ��� �� ��� ���
��� n�a� � ��� ��� ��� ��� ���
��� n�a� �� ��� ��� ��� ��� ��
��� n�a� �� ��� ��� ��� �� ���

Table �� Test error rates on the MPI chair database for linear Support Vector machines trained on nonlinear
principal components extracted by PCA with kernel ����� for degrees � through �� In the case of degree �� we
are doing standard PCA� with the number of nonzero Eigenvalues being at most the dimensionality of the space�
���� thus� we can extract at most ��� principal components� The performance for the nonlinear cases �degree
� �� is signi�cantly better than for the linear case� illustrating the utility of the extracted nonlinear components
for classi�cation�

�



Support Vector machines� which on this data set
achieved �! 
Blanz et al� ������

	�� Character Recognition

To validate the above results on a widely used
pattern recognition benchmark database� we re�
peated the same experiments on the US postal
service 
USPS� database of handwritten digits
collected from mail envelopes in Bu�alo� This
database contains ���� examples of dimensional�
ity ���� ���� of them make up the test set� For
computational reasons� we decided to use a sub�
set of ���� training examples for the dot prod�
uct matrix� Polynomial kernel PCA followed by
a linear Support Vector classi	er leads to perfor�
mance superior to PCA 
see Table ��� The re�
sulting error rate for the best of our classi	ers

��!� is competitive with convolutional ��layer
neural networks 
���! were reported by LeCun
et al�� ����� and nonlinear Support Vector classi�
	ers 
��!� Sch�olkopf� Burges� � Vapnik� ������
it is far superior to linear classi	ers operating di�
rectly on the image data 
a linear Support Vec�
tor machine achieves ���!� Sch�olkopf� Burges� �
Vapnik� ������ We should add that our results
were obtained without using any prior knowledge
about symmetries of the problem at hand� This
explains why the performance is inferior to Vir�
tual Support Vector classi	ers 
���!� Sch�olkopf�
Burges� � Vapnik� ������ and Tangent Distance
Nearest Neighbour classi	ers 
���!� Simard� Le�
Cun� � Denker� ������ We believe that adding
e�g� local translation invariance� be it by generat�
ing �virtual� translated examples or by choosing a
suitable kernel� could further improve the results�
Table � nicely illustrates two advantages of us�

ing nonlinear kernels� 	rst� performance for non�
linear principal components is better than for the
same number of linear components� second� the
performance for nonlinear components can be fur�
ther improved by using more components than
possible in the linear case��

We conclude this section with a comment on
the approach taken� Clearly� in supervised learn�
ing� where we are given a set of labelled obser�
vations 
x�� y��� � � � � 
x�� y��� it would seem advis�
able to make use of the labels not only during the
training of the 	nal classi	er� but already in the

�Thanks to AT	T and Bell Laboratories for the
possibility of using this database�

�If the linear classi�er trained on the components
had not been an SV machine� this might look di�erent
� SV machines are known to possess high general�
ization ability for highdimensional data� due to their
builtin capacity control �Vapnik� �

���

stage of feature extraction� This was not done
in our experiments� nevertheless good results were
obtained� We hope that taking into account the
labels could further improve performance�

Finally� we note that a similar approach can be
taken in the case of regression estimation� We con�
jecture that also in that case� nonlinear principal
components will be more useful for some problems
than standard PCA regression 
e�g� Joli�e� ������

	 Nonlinear Variants of Other
Algorithms

As pointed out in Sec� �� we can use the kernel
method to construct nonlinear variants of any al�
gorithm� as long as it can be cast in terms of dot
products� Clearly� it is beyond the scope of the
present paper to explore all the possibilities in de�
tail� Instead� we shall just give a few examples�
and point out some possibilities for future work�


�� Projection Pursuit� Independent
Components� and Higher Order
Moments

In order to do Projection Pursuit 
Friedman� �����
and Independent component Analysis 
ICA� 
Jut�
ten � Herault� ����� Bell � Sejnowski� ������ we
are� loosely speaking� looking for directions in the
dataset such that the projections onto these are
maximally �non�Gaussian�� The rationale behind
this approach is the following� assume that the
probability distribution underlying the data fac�
torizes in some set of variables� Then its pro�
jections onto directions di�erent from the above
variables will tend to look more Gaussian� as the
basis transformation introduces mixtures� Con�
versely� if we start from mixtures� we thus should
strive to 	nd axis tranformations to make them as
non�Gaussian as possible� To 	nd non�Gaussian
directions� we need to take into account higher�
order statistics of the data�

Kernel PCA provides a convenient way of doing
this� using e�g� polynomial kernels of degree d 
����
we are taking into account d�th order statistics�
In order to get a decomposition of our observa�
tions into independent components� we thus need
to 	nd directions in input space which correspond
as closely as possible to directions in F which lead
to extremal values of some higher�order moments�
speci	ed by a nonlinear kernel 
cf� Sec� ����

In this sense� already linear forms of ICA require
the use of nonlinearities� We can� however� go one
step further and construct tools for nonlinear ICA
and nonlinear Projection Pursuit� To this end� we

��



Test Error Rate for degree
" of components � � �  � � �

�� ��� ��� ��� ��� ��� ��� ����
� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� �� ��
��� n�a� �� �� � ��� �� ��
��� n�a� �� �� � �� �� ��
��� n�a� �� �� �� �� �� �

Table �� Test error rates on the USPS handwritten digit database for linear Support Vector machines trained
on nonlinear principal components extracted by PCA with kernel ����� for degrees � through �� In the case of
degree �� we are doing standard PCA� with the number of nonzero Eigenvalues being at most the dimensionality
of the space� ���� thus� we can extract at most ��� principal components� Clearly� nonlinear principal components
a�ord test error rates which are superior to the linear case �degree ���

describe a way to compute higher�order moments
in feature space�
The same procedure used for computing the co�

variance matrix �C also applies for moments of or�
der higher than �� Tensors belonging to moments
of order p may be written as��

Cp �
�

M

MX
i��

�
xi�	 � � �	 �
xi�� �z �
p times


���

where 	 denotes the outer product� Analogous
to Sec� �� Cp has to be rewritten in terms of dot
products� In the subspace of F spanned by the
images �
xi�� the tensor Cp is determined by its
projections onto the eigenvectors Vi of �C�

Pj����jp �� Cp � �V j� 	 � � �	 V jp
�


���

�
�

M

MX
i��

pY
k��

�
�
xi��V

jk
�
� 
��

Here� we have used the inner product 
��� between
two tensors� Using the expansion 
��

Vjk �
MX

m��

�jkm�
xm��

we get �
�
xi��V

jk
�
�
X
m

Kim�
jk
m

thus

Pj����jp �
�

M

MX
i��

pY
k��

MX
m��

Kim�
jk
m 
���

�	This requires the existence of these moments�
which need not always be the case� as they are the
Taylor expansion of the characteristic function of the
probability density function in feature space�

It may be advisable to sum only over theM
�

eigen�
vectors corresponding to the biggest eigenvalues�
Otherwise� Cp is of size Mp� with M being the
number of samples used for computing the dot
product matrix� This can be computationally in�
feasible for large p�


�� Kernel�k�Means Clustering

The kernel approach is applicable to clustering
techniques� as long as both the clustering algo�
rithm and the clustering result�s usage can be cast
in terms of dot products� As an example� we
consider k�means� but the same reasoning holds
for other algorithms 
for an overview of clustering
techniques� see Buhmann� ������

LetMi� be the cluster assignment variables� i�e�
Mi� � � if xi belongs to cluster �� � otherwise� We
are trying to 	nd k centers 
or means� m� such
that each observation in the training set is close
to at least one of the centers� Clearly� the cen�
ters should lie in the span of �
x��� � � � ��
xM ��
assume this was not the case for m�� say� Then
we could project m� to the above span� and by
Pythagoras reduce the distances to all observa�
tions� We therefore expand them as

m� �
MX
j��

��j�
xj�� 
���

and note that the squared distance between m�

and a mapped pattern �
x� can be expressed as

k�
x��
MX
j��

��j�
xj�k�

� k
x�x�� �
MX
j��

��jk
x�xj�

��



 
MX

i�j��

��i��jk
xi�xj�� 
���

We initialize the means to the 	rst training pat�
terns� i�e� �ij � ij � Then Kernel�k�means pro�
ceeds as follows� each new data point xt��� t � k�
is assigned to the closest mean m�� i�e�

Mt���� �

���	
��

� if for all � 
� �

k�
xt��� �m�k�
� k�
xt��� �m�k�

� otherwise�


���

or� in terms of the kernel function�

Mt���� �

��������	
�������


� if
PM

i�j�� ��i��jk
xi�xj�

� �
PM

j�� ��jk
xt���xj�

�
PM

i�j�� ��i��jk
xi�xj�

� �
PM

j�� ��jk
xt���xj�

for all � 
� �
� otherwise�


���
The expansion coe�cients of the closest mean vec�
tor are then adjusted according to

mt��
� � mt

�  � 
�
xt��� �mt
��� 
��

where

� ��
Mt����Pt��
i��Mi�

� 
��

Substituting 
��� back into 
��

MX
j��

�t���j �
xj�

�
MX
j��

�t�j
�� ���
xj�  ��
xt��� 
��

and sorting the terms for di�erent �
xj� yields an
update equation for �t���i �

�t���j �

�
�t�j
�� �� for j 
� t  �
� for j � t  �


��

Once the clustering procedure has converged for
an initial data set� we want to be able to determine
the distance of a test point to the cluster centers
in F � To this end� we again use Eq� 
����


�� Classi�cation� Image Indexing and
Retrieval

Clearly� distance�based algorithms like k�NN can
be easily recast in the nonlinear kernel framework�
In addition� and more interesting� it would be de�
sirable to develop nonlinear forms of discriminant
analysis based on kernels� A related approach�
using an explicit map into a higher�dimensional

space instead of the kernel method� was proposed
by Hastie� Tibshirani� � Buja 
�����

PCA has been successfully used for face recogni�
tion 
Turk � Pentland� ����� and face representa�
tion 
Vetter � Poggio� ������ Features with good
approximative quality� howewer� are not always
good descriptive features� as irrelevant informa�
tion for the solution of a given problem might be
encoded in the data� too� Swets and Weng 
�����
show a solution to this problem by using PCA as a
preprocessing step only� Discriminant Analysis is
applied in a second step to compute linear combi�
nations that are useful for extracting meaningful
features� PCA� howewer� has the shortcoming of
only being able to take into account second or�
der correlations between pixels� Nonlinear Com�
ponent Analysis provides a drop�in replacement
which also takes into account higher order corre�
lations� We propose this as a method for increas�
ing the precision of image indexing and retrieval
systems� It combines the �exibility of nonlinear
feature extractors with the simplicity of a princi�
pal axis projection�


 Discussion

Constructing Nonlinear Algorithms� This
paper was devoted to the exposition of a new tech�
nique for nonlinear principal component analysis�
To develop this technique� we made use of a kernel
method which so far only had been used in super�
vised learning 
Vapnik� ������ We think that the
present work will not be the last application of the
kernel method in constructing a rather general and
still feasible nonlinear variant of a classical algo�
rithm� Indeed� we have mentioned and� in part�
outlined a number of techniques which could be
made nonlinear with essentially the same method�
Some of them are currently under investigation� in
particular the development of ICA and clustering
techniques�

Feature Space and the Curse of Dimension
ality� Some readers may be puzzled by the fact
that we are doing PCA in �����dimensional fea�
ture spaces� yet getting results 
in 	nite time�
which are comparable to state�of�the�art tech�
niques� The solution is that in fact� we are not
working in the full feature space� but just in a com�
parably small linear subspace of it� whose dimen�
sion equals at most the number of observations�
An important aspect of the proposed method is
that this subspace is chosen automatically� with�
out even knowing the mapping into feature space�

Still� working in a space whose dimension equals

��



the number of observations can pose di�culties�
To deal with these� one can either use only a sub�
set of the extracted features� or use some other
form of capacity control or regularization� In our
case� this was done by using a Support Vector
machine which automatically controls capacity in
constructing the decision surface for classi	cation�

Empirical Issues� The main goal of the present
paper was to present an idea for nonlinear PCA�
however we have not compared the extracted fea�
tures to other techniques for nonlinear feature ex�
traction and dimensionality reduction� We can�
however� compare results to other feature extrac�
tion methods which have been used in the past
by researchers working on the USPS classi	ca�
tion problem� Our system of kernel PCA fea�
ture extraction plus linear Support Vector ma�
chine for instance performed better than LeNet�

LeCun et al�� ������ Even though the latter re�
sult has been obtained a number of years ago� it
should be stressed that LeNet� provides an archi�
tecture which contains a great deal of prior infor�
mation about the handwritten character classi	�
cation problem� It contains shared weights to im�
prove transformation invariance� and a hierarchy
of feature detectors resembling parts of the hu�
man visual system� These feature detectors were
for instance used by Bottou and Vapnik as pre�
processing in their experiments in local learning

������

Even though this result is promising� a full ex�
perimental evaluation of kernel PCA and other
kernel�based methods remains to be carried out�

Main Points of Kernel PCA� Our experi�
ments suggest that compared to linear PCA� ker�
nel PCA does extract features which are more use�
ful for classi	cation purposes� In addition� kernel
PCA has the a priori advantage that it gives us the
possibility to extract more principal components
than linear PCA � which is not too astonish�
ing in the case of polynomial kernels� as there are
many more higher�order features than there are
pixels in an image� Indeed� it is astonishing that
classi	cation works so well already with a number
of principal components which 
even though it is
large compared to the number of linear principal
components� is very small compared to the dimen�
sionality of feature space� In fact� our results show
that to get the same classi	cation performance as
in the linear case� we need fewer nonlinear prin�
cipal components� The main drawback of kernel
PCA compared to linear PCA is that up to date�
we do not have a simple method for reconstructing

patterns from their principal components� There
exist� however� some ideas� discussed in Sec� ���
Compared to other techniques for nonlinear fea�

ture extraction� kernel PCA has the advantages
that 
�� it does not require nonlinear optimization�
but just the solution of an Eigenvalue problem�
and 
�� by the possibility to use di�erent kernels�
it comprises a fairly general class of nonlinearities
that can be used� Clearly� the last point has yet
to be evaluated in practise� however� for the Sup�
port Vector machine� the utility of di�erent kernels
has already been established 
Sch�olkopf� Burges�
� Vapnik� ������

Possible Applications� Linear PCA is being
used in numerous technical and scienti	c appli�
cations� As some further examples not discussed
in the present paper so far� we mention noise re�
duction� density estimation� and the analysis of
natural image statistics� Kernel PCA can be ap�
plied to all domains where traditional PCA has
been used for feature extraction before� with little
extra computational e�ort�

A Centering in High�Dimensional
Space

In Sec� �� we made the assumption that our
mapped data is centered in F � i�e�

MX
n��

�
xn� � �� 
�

We shall now drop this assumption� First note
that given any � and any set of observations
x�� � � � �xM � the points

��
xi� �� �
xi�� �

M

MX
i��

�
xi� 
��

will be centered� Thus� the assumptions of Sec� �
now hold� and we go on to de	ne covariance ma�
trix and dot product matrix �K � ��
xi�

� ��
xj� in
F � We arrive at our already familiar Eigenvalue
problem

���� � �K ��� 
��

with �� being the expansion coe�cients of an
Eigenvector 
in F � in terms of the points 
���

�V �
MX
i��

��i��
xi�� 
��

As we do not have the centered data 
��� we
cannot compute �K directly� however� we can ex�
press it in terms of its non�centered counterpart
K� In the following� we shall use K
xi�xj� �

��



�
xi���
xj�� in addition� we shall make use of
the notation �ij � � for all i� j�
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Using the matrix 
�M �ij �� ��M � we get the more
compact expression

�Kij � K � �MK �K�M  �MK�M � 
��

We thus can compute �K from K� and then solve
the Eigenvalue problem 
��� As in 
���� the solu�
tions ��k are normalized by normalizing the corre�

sponding vectors �V
k
in F � which translates into

��k
��
k � ��k� � �� 
���

For feature extraction� we compute projections
of centered ��images of test patterns t onto the
Eigenvectors of the covariance matrix of the cen�
tered points�
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Consider a set of test points t�� � � � � tL� and de	ne
two L �M test dot product matrices by
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ij �



�
ti�� �

M

MX
m��

�
xm���
�
xj�� �

M

MX
n��

�
xn����


���
Similar to 
��� we can then again express �Ktest

in terms of Ktest� and arrive at
�Ktest � Ktest���MK�Ktest�M �

�
MK�M � 
��

where ��M is the L � M matrix with all entries
equal to ��M �

B Addenda on Kernels

B�� Polynomial Kernels and Higher
Order Correlations

Consider the mappings corresponding to ker�
nels of the form 
���� suppose the monomials
xi�xi� � � �xid are written such that i� � i� � � � ��
id� Then the coe�cients 
as the

p
� in Eq� 
�����

arising from the fact that di�erent combinations of
indices occur with di�erent frequencies� are largest
for i� � i� � � � � � id 
let us assume here that the
input dimensionality is not smaller than the poly�
nomial degree d�� in that case� we have a coe��
cient of

p
d#� If i� � i�� say� the coe�cient will bep


d� ��#� In general� if n of the xi are equal� then
the coe�cient in the corresponding component of
� is

p

d� n ��#� Thus� the terms belonging to

the d�th order correlations will be weighted with
an extra factor

p
d# compared to the terms xdi �

and compared to the terms where only d � � dif�
ferent components occur� they are still weighted
stronger by

p
d� Consequently� kernel PCA with

polynomial kernels will tend to pick up variance
in the d�th order correlations mainly�

B�� Kernels Corresponding to Dot
Products in Another Space

Mercer�s theorem of functional analysis 
e�g�
Courant � Hilbert� ����� gives the conditions un�
der which we can construct the mapping � from
the Eigenfunction decomposition of k� Namely� if
k is the continuous kernel of an integral operator
K�

K � L� � L�

f �� Kf

Kf�
y� �

Z
k
x� y�f
x� dx 
���

which is positive de	nite� i�e�Z
f
x�k
x� y�f
y� dx dy 
 � if f 
� �� 
���

then k can be expanded into a series

k
x�y� �
�X
i��

�i�i
x��i
y� 
���

with positive coe�cients �i� and


�i � �j�L�
� ij 
���

for i� j � N� 
In other words� the compact op�
erator K has an Eigenvector decomposition with
nonnegative Eigenvalues�� Using 
���� it is then
easy to see that

�
x� ��
�X
i��

p
�i�i
x� 
���

�



is a map into a space where k acts as the Euclidean
dot product��� i�e�


�
x� ��
y�� � k
x�y�� 
���

In fact� for the latter to hold� k does not have to
be the kernel of a positive de�nite operator� even
if some of the Eigenvalues �i are zero� the sum

��� maps into the space in which k corresponds
to the dot product�
In practise� we are free to try to use also sym�

metric kernels of inde	nite operators� In that case�
the matrix K can still be diagonalized and we
can extract nonlinear feature values� with the one
modi	cation that we need to modify our normal�
ization condition 
��� in order to deal with possi�
ble negative Eigenvalues� K then induces a map�
ping to a Riemannian space with inde	nite metric�
This implies that we no longer can require vec�
tors to have positive length but unit�length only�
Hence� normalization is done by multiplying by

�p
j�ij
� This criterion is much less strict than re�

quiring K to be a positive semide	nite Hilbert�
Schmidt kernel� In fact� many symmetric forms
may induce spaces with inde	nite signature��� In
this case� we can no longer interpret our method
as PCA in some feature space� however� it could
still be viewed as a nonlinear factor analysis���

In the following sections� we shall give some ex�
amples of kernels that can be used for kernel PCA�
Our treatment will be concise� further elaborations
and experimental evaluations will be dealt with in
future investigations�

B�� Kernels Chosen A Priori

As examples of kernels which can be used� Boser�
Guyon� � Vapnik 
����� give polynomial kernels
of the form�	

k
x�y� � 
x � y ��d 
���

radial basis functions

k
x�y� � exp

�
�kx � yk�

� ��


� 
���

��It is not the only one � e�g�� sign reversal in some
of the summands gives other maps corresponding to
the same kernel�

��suggested by Y� LeCun
��The fact that we can use inde�nite operators dis�

tinguishes this approach from the usage of kernels in
the Support Vector machine� in the latter� the de��
niteness is necessary for the optimization procedure�

��Note that this kernel generates not only homoge�
neous polynomials� but all polynomials of degree up
to d� To assign variable weight to the di�erent degrees
of the monomials which appear if we compute ���� or
����� we can use k�x�y� � �x � y � c�d with di�erent
values of c� The choice of c should depend on the range
of the input variables�

and Neural Network type kernels�


k
x�y� � tanh

x � y�  b�� 
���

Interestingly� these di�erent types of kernels al�
low the construction of Polynomial Classi	ers� Ra�
dial Basis Function Classi	ers and Neural Net�
works with the Support Vector algorithm which
exhibit very similar accuracy� In addition� they
all construct their decision functions from an al�
most identical subset of a small number of training
patterns� the Support Vectors 
Sch�olkopf� Burges�
� Vapnik� ������
Besides the above stated kernels� there is a vari�

ety of other kernels which can be used in order to
tailor the type of nonlinearity used to the problem
at hand� as those given in the following section�

B�� Kernels Constructed from Mappings

We stated above that once we have a suitable ker�
nel� we need not worry anymore about exactly
which map � the kernel corresponds to� For the
purpose of constructing kernels� however� it can
well be useful to compute the kernels from map�
pings into some dot product space F � � � RN �
F � Ideally� we would like to choose � such that we
can obtain an expression for 
�
x� � �
y�� which
can be computed e�ciently� Presently� we shall
consider mappings into function spaces�

x �� fx� 
��

with fx being a complex�valued function on some
measure space� We furthermore assume that these
spaces are equipped with a dot product


fx � fy� �
Z

fx
u� fy
u� du� 
���

We can then de	ne kernels of the type

k
x�y� �� 
fx � fy�d� 
���


These kernels can also be used if our observa�
tions are already given as functions� as is usu�
ally the case for the variant of PCA which is re�
ferred to as the Karhunen�Lo$eve�Transformation�
see Karhunen ����� As an example� suppose the
input patterns xi are q � q images� Then we can
map them to two�dimensional image intensity dis�
tributions fxi


e�g� splines on %�� �&��� The cor�
responding kernel will then approximately equal
the original dot product between the images rep�
resented as pixel vectors� which can be seen by
considering the 	nite sum approximation to the
integral�

q�
Z �

�

Z �

�

fx
u�fy
u� d
�u 
���

��The two last kernels allow the construction of neu�
ral network type feature extraction systems�

��



�
qX

i��

qX
j��

fx

�
i� �

�

q
�
j � �

�

q


fy

�
i � �

�

q
�
j � �

�

q


�


���

B�� Scaling with Kernels

We consider two forms of scaling� in images and
in input space� respectively� The former can be
achieved with Kernels of the form 
���� This is
useful if we for instance would like to process im�
age patterns which were taken at di�erent reso�
lution levels q� The second form of scaling� in
input space� can be useful if di�erent input vari�
ables strongly vary in their range� Given a kernel k
which is a function of 
x�y�� and a diagonal matrix
D with nonnegative diagonal elements d�� � � � � dN �
we can construct another kernel

kD
x�y� �� k
x �Dy� 
���

which e�ectively scales direction i of input space
by

p
di���

B�	 Local Kernels

Locality in our context means that the principal
component extraction should take into account
only neighbourhoods� Depending on whether we
consider neighbourhoods in input space or in an�
other space� say the image space� where the input
vectors correspond to ��d functions 
the functions
in 
����� locality can assume di�erent meanings�
In input space� locality consists of basing our com�
ponent extraction for a point x on other points in
an appropriately chosen neighbourhood of x� This
additional degree of freedom can greatly improve
statistical estimates which are computed from a
limited amount of data 
Bottou � Vapnik� ������
In image space� locality is not a statistical con�

cept� but a tool to incorporate domain knowledge�
Suppose we want to take into account correlations
of d pixels� but only if these pixels are close to each
other�
To get locality in image space� we could modify


���� 
��� by adding a suitable smoothing kernel
c
u� v� to get

k
x�y� �

Z
fx
u� c
u� v� fy
v� d�u d�v� 
���

Rather than raising this expression to the d�th
power as in 
���� which would introduce taking
products which are far distant in the image� we

��Together with C� Burges� the �rst two authors
are currently studying the use of kernels of the form
k�x�y� � �Ax�Ay�d� with A being an L �N matrix�
in Support Vector machines� This includes the above
kernels as special cases�

can split the domain of integration into r small
regions� thus getting

k
x�y� �
rX

i��

ki
x�y�� 
���

and then introduce local d�th order correlations by
using

k
x�y� �
X
i

ki
x�y�
d� 
���

Of course� the corresponding kernels can also be
written in terms of the original image vectors�
splitting them into subvectors before raising the
subvector�kernels to the d�th power���

B�
 Constructing Kernels from other
Kernels

Combining Kernels� If k and k� satisfy Mer�
cer�s conditions� then so will k k� and� for � 
 ��
�k� In other words� the admissible kernels form a
cone in the space of all integral operators�
Clearly� k k� corresponds to mapping into the

direct sum of the respective spaces into which k
and k� map� Of course� we could also explicitly
do the principal component extraction twice� for
both kernels� and decide ourselves on the respec�
tive numbers of components to extract� In this
case� we would not obtain combinations of the two
feature types�

Iterating Kernels� Given a kernel k� we can
construct iterated kernels 
e�g� Riesz � Nagy�
����� by

k���
x�y� ��

Z
k
x� z�k
z�y� dz� 
���

In fact� k��� will be positive even if k is not� as can
be seen fromZ

k���
x�y�f
x�f
y� dxdy

�

Z Z
k
x� z�k
z�y�f
x�f
y� dzdxdy

�

Z �Z
k
x� z�f
x� dx

�

dz� 
��

This gives us a method for constructing admissible
kernels�
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