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It is generally accepted that the seasonal cycle of precipitation and temperature in cordillera of the wes-
tern US exhibits a north–south pattern for annual, interannual and decadal time scales related to large-
scale climate patterns. In this paper we explore these relationships, with special attention to the role of
local and regional physiographic, hydrogeologic and anthropogenic conditions on low-frequency climate
and terrestrial response modes. The goal is to try to understand the spatio-temporal structure in histor-
ical precipitation, temperature and streamflow records (P–T–Q) in terms of climate, physiography, hydro-
geology, and human impacts. Spatial coherence in time series is examined by classification of factor
loadings from principal component analysis. Classification pattern of P–T–Q stations indicate that local
physiography, the hydrogeology, and anthropogenic factors transform atmospheric forcing and terrestrial
response into unique clusters. To study the temporal structure, dominant low-frequency oscillatory
modes are identified for a region from historical P–T–Q records using singular spectrum analysis.
Noise-free time trajectories are reconstructed from the extracted low-frequency modes (seasonal–deca-
dal) for each contributing watershed area corresponding to streamflow observation stations, and the
phase–plane plots are obtained. Together, the spatial classification and phase plane provides a means
of detecting how large-scale hydroclimatic patterns relate to major landforms and anthropogenic impacts
across the CRB. The main result of this paper is that resolving the relative impact of basin-wide patterns
of climate, physiography and anthropogenic factors (irrigation, dams, etc.) on runoff response can be a
useful tool for detection and attribution for each source of variability.

� 2009 Elsevier B.V. All rights reserved.
Introduction

Detection and attribution of hydroclimatic variability and
change in runoff has been a major concern in the Colorado River
Basin (CRB), where the US basin States and Mexico rely on runoff
from the late summer monsoon and the annual snowmelt runoff
from higher elevations (Stewart et al., 2004). The consequences
of these climate patterns on the sustainability of water resources
have been well documented in Gleick and Adams (2000). Dettinger
et al. (1998) provide convincing arguments of the importance of
large-scale features of the climate system such as sea-surface tem-
perature and sea-level pressure on interannual and decadal climate
variability in the western US. Beyond climatic effects, we expect
intrabasin variability in streamflow response to be related to soil
and hydrogeologic properties, topographic features (elevation, as-
pect and location), landuse and landcover impacts. Dettinger and
Diaz (2000) highlighted the effect of geographical differences on
flow of world’s largest rivers, while Potter et al. (2004) elucidated
the critical importance of anthropogenic effects which in some
ll rights reserved.
cases is stronger than climate effects on runoff response of large
rivers. Nonetheless, methods for detecting changes in a physio-
graphically and climatically diverse terrestrial system such as
CRB, remains a challenge. Models of the hydroclimatic system pro-
vide insight on the terrestrial response, but are also limited by
inadequate understanding of the coupling mechanisms, processes,
limited data, the spatio-temporal scale of land atmosphere ex-
change and computational needs. For example Shun and Duffy
(1998) have shown that in the Wasatch front, slow responding
groundwater flow system can amplify relatively weak climate forc-
ing modes e.g. interannual or decadal effects of precipitation and
temperature.

In this paper, we use a data-driven strategy from dynamical sys-
tems theory that provides a direct measure of hydroclimatic
change within a river basin or a watershed. The first step in our
analysis involves identifying the spatial coherences in P, T and Q
at locations across different physiographic regions using monthly
data. The approach uses spatial principal component analysis
(PCA) of respective time series followed by k-means clustering of
the factor loading (obtained from PCA) to bracket observed vari-
ables into various classes. Classifications are then analyzed to iden-
tify the commonalities between observation locations (that are
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clustered in the same group) in terms of their physiography and
hydroclimatology. The analysis helps in identification of landform
and climate descriptors that leads to distinctive P–T–Q patterns
in the CRB. The similarity in dynamics at various observation sta-
tions is found to be closely related not only to physiography,
topography and local relief but also to human impacts such as
diversions, dams, irrigation, drains, etc. In the second step, domi-
nant oscillatory modes from the observed noisy P–T–Q data are ex-
tracted using singular spectrum analysis (SSA, Hanson et al., 2004).
The dominant modes (semi-annual, annual, interannual, decadal
time scales) are observed as peaks in the eigenspectrum. These
modes carry a sizeable fraction of the total variance of the record.
Distinctions between P, T and Q observation stations are identified
based on the spatial trends of the dominant modes. Next, in order
to study the simultaneous change of P, T and Q over different
watersheds in the basin, noise-free bP—bT— bQ trajectory plots (time
implicit) are obtained. We note that since the objective of this step
is to study temporal changes in the integrated watershed response
at different locations, reconstructed time series (bPi; bTi; bQ i) for i = 1,
2, . . . ,TR (where TR is the time series length) obtained from the
dominant modes of Q and spatially averaged P (avgP) and T (avgT)
are used. Spatial averaging for P and T time series are performed
over the contributing area to Q observation location. In our inter-
pretation, temperature reconstruction is a proxy for summer
evapotranspiration and winter snow accumulation and melt. ThebP—bT— bQ time implicit trajectory plot represents a qualitative mea-
sure of the local dynamics of the water and energy balance. The
atmospheric, physiographic, and anthropogenic factors that may
lead to changes in the bP—bT— bQ phase plane are also discussed.
By comparison of the phase plane plot for different periods in the
historical record, we are able to get some indication of how the lo-
cal system evolves in time.
Study area

The Colorado River Basin extends from Rocky Mountains of Col-
orado in the north and Wyoming to the Gulf of California in Mexico
in south, covering parts of seven states: Arizona, Colorado, Califor-
nia, Nevada, New Mexico, Utah, and Wyoming. The aerial extent of
the watershed is 246,000 mile2 (637,000 km2). The Colorado River
itself is approximately 1250 mile (2330 km) long and has many
tributaries, the most significant for this analysis being the Green,
the San Juan, and the Gila rivers. The size and relief of the CRB
introduces long range and local climatic gradients as well as com-
plex hydrologic, geomorphic, and anthropogenic conditions which
control basin storage and runoff. The complex changes in the geo-
topographic and climatic framework in space and time in CRB is
discussed in the following subsections.

Geo-topographic framework

The physiographic regions within the CRB are the Basin and
Range on the eastern and southern portion of the CRB, the Colorado
Plateau in the central part, the Wyoming Basin in the north, and the
Rocky Mountains in the east and Middle Rocky Mountains in the
north- and north-central region (Fig. 1). The range of relief in the
Basin/Range is from around 24 m–1200 m, in the central plateau
from 1200 to 2300 m and the eastern mountains reach a height of
4300 m (Fig. 2). Hydrologically, the Rocky mountain region has
highly permeable surficial metamorphic rocks while Basin and
Range region surficial bedrock is predominantly low to moderately
permeable Ogallala formation. The pattern and scale of the topogra-
phy and near surface geology of each physiographic region along
with the landcover/landuse and climate, influence the spatial scales
of change in the terrestrial hydrologic response (Winter, 2001).
Hydro-climatic framework

Hydrology of the CRB is critically dependent on the amount of
snow accumulation, and the air mass temperature conditions that
control the onset of snowmelt over the basin (Piechota and
Dracup, 1996; Cayan, 1996; Stewart et al., 2004; Dettinger et al.,
2004). In fact, Gleick and Chaleki (1999) and McCable and Wolock
(1999) reported that even a small increase in temperature in
snowmelt-dominated basins can cause considerable shifts in
timing and volume of runoff. Stewart et al., 2004 observed an ear-
lier onset of melting in the southwest during recent decades.
These papers indicate that in recent years the snow pack melts
around 1–3 weeks earlier than it did during the early part of the
20th century.

Spatial and temporal variability in precipitation also have sig-
nificant effect in the amount of runoff. Overall, precipitation in
the CRB is bi-seasonal with moisture contributions from frontal
systems, tropical cyclones, and the summer monsoon. Frontal sys-
tems contribute to the maximum amount of annual moisture and
lead to orographic precipitation in the high elevation plateaus
and mountains (above 1500 m) during winter and spring. Runoff
generated from winter and spring precipitation is the main source
for irrigation in summer. Sometimes, warm winter storms that
originate in the tropical Pacific Ocean cause rainfall on snow con-
ditions, resulting in early generation of large runoff leading to
floods in major rivers. Flooding in Basin/Range is also caused by
tropical cyclones but is a relatively rare phenomenon. The summer
monsoon originating in the Gulf of Mexico and/or the eastern Paci-
fic Ocean, causes high intensity rainfall leading to flash floods lo-
cally (Webb et al., 2004).

Temporally, there has been considerable change in the pattern
and amount of precipitation (Cayan et al., 1998) and runoff over
the last hundred years. Merideth, 2000 observed that the 20th cen-
tury was initially wetter than average, followed by a mid-century
dry period that was in turn followed by a wetter period at the
end of century. Subsequently the early part of 21st century faced
persistent drought which is still continuing (Webb et al., 2004).
These decadal-scale oscillations (Merideth, 2000) have been sug-
gested to be due to the reversal of the tropical Pacific trade winds
and warming of tropical oceans due to the El Nino/Southern Oscil-
lation (ENSO). Mantua and Steven, 2002 have reported interdeca-
dal variations on the order of 10–25 years related to Pacific
Decadal Oscillation (PDO). Extended droughts during that period
were likely the results of larger scale coordination in sea-surface
temperature of the North Atlantic and the Pacific Ocean basins.
In general we can say that precipitation or lack of it in the CRB is
affected by circulation associated with ocean–atmosphere interac-
tions in the Tropical and North Pacific Ocean basin, with wet or dry
years depending on the position of the annual storm track. Signif-
icant variability in streamflow was documented by Christensen
et al., 2004 with minimum and maximum annual flow being 6.5
and 29.6 billion m3, respectively, in Colorado River in the last
century.

In this analysis we use 50–90 years of monthly average precip-
itation (cm), temperature (degrees F) and streamflow (m3/s) data
collected at National Weather Service (NWS) cooperative station
network (NCDC Climate Online, 2007) and at USGS observation sta-
tions (USGS, 2007). Missing data values are estimated using corre-
lation with previous year’s data for the same month and from the
data observed at adjacent stations for the same months using a
modified normal ratio method by Young, 1992. Spatially averaged
data (of P and T) for time implicit plots are obtained from PRISM
(Daly et al., 1994). Out of the numerous streamflow gauging sta-
tions operated by USGS, the stations selected here have the longest
contiguous records of Q within a river-reach or a watershed and
are also distributed over all the different physiographic regions
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Fig. 1. Physiographic regions in Colorado River Basin (http://tapestry.usgs.gov/).
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Fig. 2. Topographic map of Colorado River Basin. Black dots represent the streamflow gauging stations with nearby long term concurrent temperature and precipitation data
(�50–90 years). Spatio-temporal structure of forcings and response in the basin is obtained by analysis of these point data sets. bP—bT— bQ phase plane analysis uses averaged
data for contributing area upland of each streamflow gauging stations. More information about observation stations (shown as black dots) is given in Table 1.
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of CRB. Temperature and precipitation stations from different
physiographic regions are shown in Table 1 with the NCDC
COOP ID (precipitation and temperature station) and the associ-
ated USGS Station ID (streamflow station). Length of the record,
geographical location and station identifier of each Q station
corresponding to which implicit P–T–Q plots are obtained are also
listed in the table.
Spatial structure of P–T–Q time series

Spatial analysis of a high dimensional P–T–Q dataset (dimen-
sion = N � L, where N is the number of observation stations and L
is the length of dataset) is discussed next.
Spatial PCA

Spatial principal component analysis (PCA, also related to the
Karhunen–Loève transform, Karhunen, 1947; Loève, 1948) is per-
formed on P, T and Q time series at N observation stations, and
the dominant eigenvalues (variance fraction) and corresponding
eigenvectors are determined. The analysis involves spectral
decomposition of covariance/correlation matrix, S of size N � N ob-
tained by

S ¼ C � CT ð1Þ

where C = (X � l), X is the time series at a observation station, l is
the mean of X. Matrix S in Eq. (1) is symmetric and real and so can
be decomposed as

http://tapestry.usgs.gov/


Table 1
Hydroclimatic observation stations used in the assessment of temporal structure of P–T–Q time series. COOP ID and Station ID are for NCDC and USGS data repository for climate
and streamflow data, respectively.

Precipitation–temperature
station (COOP ID)

Stream flow station
(station ID #)

Time duration
(temp.)

Time duration
(precep.)

Time duration
(streamflow)

Time duration
(concurrent)

P–T–Q triplet
identifier

Lat./long.
coordinates

Aztec (Az) [290692] AnimasR. at Farmington
[09364500]

1909/1–2004/
11

1910/1–2004/
11

1930/1–2002/9 1930/1–2002/9 AnimasR 36.75/�108.2

Bluff (Bl) [420778] San Juan R. Nr. Bluff
[09379500]

1911/1–2004/
11

1911/6–2004/
11

1914/10–2003/9 1914/10–2003/9 SanJuanR 37.12/�109.84

Boulder City (BC) [261071] ColoradoR. below Hoover
Dam [09421500]

1931/1–2004/
11

1931/9–1975/
12

1934/4–2003/9 1934/4–1975/12 ColoradoR_HD 36.0/�114.75

Buckeye (B) [21026] Gila R. at Painted Rock Dam
[09519800]

1900/1–2003/
12

1900/1–1996/
4

1959/10–2003/9 1959/10–1996/4 GilaR_PR 33.07/�113

Grand Canyon National Pk.
(GcNP) [23596]

ColoradoR. Nr. Grand
Canyon [09402500]

1903/1–2004/
11

1903/1–2004/
11

1922/10–2003/9 1922/10–2003/9 ColoradoR_GC 36.1/�112.09

Green River Aviation
(GRA)[423418]

Green R. at Green River
[09315000]

1907/12–
2004/11

1900/1–2004/
11

1905/3–2003/9 1907/12–2003/9 GreenR_GR 38.95/�110.15

Green River (GR) [484065] Green R. Nr. Green River
[09217000]

1900/1–2004/
11

1904/12–
1995/7

1951/10–2003/9 1951/10–1995/7 GreenR 41.5/�109.35

Lees ferry (Lf) [24849] ColoradoR. at Lees Ferry
[09380000]

1928/1–2004/
11

1943/6–2004/
11

1921/10–2003/9 1943/6–2003/9 ColoradoR_Lf 36.9/�111.5

Parker (Pk) [26250] ColoradoR. below Parker
Dam [09427520]

1900/1–2004/
11

1900/1–2004/
11

1934/11–2003/9 1934/11–2003/9 ColorradoR_PD 34.3/�114.05

Safford Agriculture Center
(SAC) [27390]

Gila R. at Red Rock
[09431500]

1900/1–2004/
11

1903/9–2004/
11

1962/10–2002/9 1962/10–2002/9 GilaR_RR 32.72/�108.67

St. George (StG) [427516] Virgin R. at Littlefield
[09415000]

1900/1–2004/
11

1900/1–2004/
11

1929/10–2003/9 1929/10–2003/9 VirginR 36.9/�113.9

Tombstone (T) [28619] San Pedro R. at Charleston
[09471000]

1900/1–2004/
11

1900/1–2004/
11

1935/5–2003/9 1935/5–2003/9 SanPedroR 31.6/�110.16
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S ¼ EKET ð2Þ

where columns of the diagonalizing matrix E are orthonormal
eigenvectors and the diagonal entries in the matrix K are eigen-
values of S. Principal components vector A, is obtained from the
eigenvectors by

A ¼ EX ð3Þ

Eigenvalues obtained using Eq. (2) represents the variances of
corresponding principal components. A reduced dimension,
D (D < N) is determined which corresponds to the principal
components (PCs) contributing most of the information or variance
to the original data. Factor loadings or Correlation coefficients of
time series (corresponding to station i) are calculated with PC j
(j 6 D) by

qXiAj
¼ kjejiffiffiffiffiffiffi

rii
p ffiffiffiffi

kj
p ¼

eji
ffiffiffiffi
kj

p
ffiffiffiffiffiffi
rii
p ð4Þ

where ri is the ith column of K in Eq. (2), ej is the jth column of ma-
trix E. Factor loading quantifies how time series at each observation
station loads or is associated with each principal component. Essen-
tially a factor loading calculation based on PCA reduces the data
dimension from N � L to N � D where D� L. We note that all the
D principal components are mutually independent and orthogonal
to each other and so any observation station can be identified by
its D � one-dimensional coordinate vector of factor loadings in an
orthogonal D-dimensional space. Pattern classification of the factor
loadings is then used to cluster observation stations into groups
that can ideally allow interpretation for climatology, geology,
topography and landuse of the region.
Classification of P–T–Q stations

Spatial classification of the respective time series is performed
using k-means clustering methodology (MacQueen, 1967). The
methodology has inherent advantages over other clustering
algorithms (Mantegna, 1999) in terms of its computational effi-
ciency and modification of false classifications over subsequent
iterations thus making it relatively robust.

The k-means clustering algorithm is implemented in a sequence
of the following five steps: (a) identify the value of k a priori where
k is the number of clusters (b) initialize k cluster centers randomly
(c) determine the class membership of each station by assigning
them to nearest cluster center (d) when all the stations have been
assigned, recalculate k cluster centers (e) if none of the stations
changed membership in last iteration, the implementation stops.
Else go to step (c). Mathematically, the algorithm aims to minimize
the cost function given by

Mean square error ðMSEÞ ¼
XN

i¼1

Xk

j¼1;fi2Cj

jfi �mjj2 ð5Þ

where Cj is class j, fi is factor loading coordinate vector of station i
and mj is the mean coordinate vector of class j. Here the number
of classes is obtained in an automated way by minimizing the ratio
of intra-cluster to inter-cluster distance as proposed by Ray and Turi
(2001).

Spatial PCA (i.e. PCA applied to time series distributed in space)
on the historical data series followed by k-means clustering of fac-
tor loading (obtained from PCA) produces three separate classifica-
tion sets, one each for precipitation, temperature and streamflow
time series.
Change detection using P–T–Q clusters

Classification was first performed on the precipitation data set.
Twenty-one precipitation stations (listed in Table 2) cluster into
five distinct classes (see Fig. 3a). Saint George, Boulder City, Yuma
Citrus, Parker, Grand Canyon National Park and Buckeye, all located
in the south-western part of CRB, form the first cluster. The region is
generally characterized as Basin and Range south of the Colorado
plateau. The higher elevation plateau region to the north appears
to serve as an effective orographic barrier creating a distinct precip-
itation regime. In the south-east, Luna RS, Tucson, Tombstone and



Table 2
Classification of temperature/precipitation (in Table 2a) and streamflow (in Table 2b) stations based on clustering of time series in derived factor loading based low dimensional
space. The five obtained classes viz. R (red), B (black), P (purple), G (green) and Bl (blue) are also plotted in Figs. 3a–3c, with each class shown in the same color as their name. Only
the stations in bold are used in concurrent bP—bT— bQ phase plane analysis.

Id Station name (P and T) [Coop ID] Class (P) Class (T) Physiography

1 Buckeye (B) [21026] R R B&R
2 Canyon-de-chelly [21248] B B CP
3 Grand Canyon National Pk. (GcNP) [23596] R R CP
4 Holbrook [24089] B B CP
5 Lees ferry (Lf) [24849] B B CP
6 Parker (P) [26250] R R B&R
7 Prescott [26796] P R B&R
8 Safford Agriculture Center (SAC) [27390] G B B&R
9 Tombstone (T) [28619] G R B&R
10 Tucson [28815] G R B&R
11 Yuma Citrus [29652] R R B&R
12 Aztec (Az) [290692] B B CP
13 Luna RS [295273] G R B&R
14 Boulder City (BC) [261071] R R B&R
15 Bluff (Bl) [420778] B G CP
16 Fort Duschene [422996] Bl G CP
17 Green River Aviation (GRA) [423418] Bl G CP
18 Loa B B CP
19 Moab Bl G CP
20 St. George (StG) [427516] R R B&R
21 Green River (GR) [484065] Bl G WB/ M

Id Station name (Streamflow) [USGS stn. ID] Class (Q) Physiography

1 GilaR. at Painted Rock Dam [09519800] R B&R
2 San Pedro R. Nr. Redington [09472000] R B&R
3 ColoradoR. Nr. Grand Canyon [09402500] Bl CP
4 GilaR. Below Coolidge Dam [09469500] R B&R
5 ColoradoR. at Lees Ferry [09380000] Bl CP
6 ColoradoR. below Parker Dam [09427520] G B&R
7 San Juan R. at Shiprock [09368000] B CP
8 Gila R. at Red Rock [09431500] R B&R
9 San Pedro R. at Charleston [09471000] R B&R
10 ColoradoR. Nr. Cameo [09095500] B CP
11 ColoradoR below Baker Gulch [09010500] B SRM
12 AnimasR. at Farmington [09634500] B CP
13 Los Pinos R. at La Boca [09354500] B CP and SRM
14 Yampa R. Nr. Maybell [09251000] B WB/CP
15 ColoradoR. below Hoover Dam [09421500] G B&R
16 SanJuanR. Nr. Bluff [09379500] B CP
17 ColoradoR. Nr. Cisco [09180500] B CP
18 GreenR. at Green River [09315000] B CP
19 VirginR. at Littlefield [09415000] R B&R
20 GreenR. Nr. Green River[ 09217000] B WB/ M

Fig. 3a. Stations IDs (see Table 2 for detail) corresponding to precipitation time series
at respective observation stations, plotted in three-dimensional factor loading space.
Twenty one stations are classified into five clusters using k-means classification of
factor loadings. Note that stations with different precipitation sources are classified
into different groups. Envelopes around the groups drawn here are merely schematic.
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Safford Agriculture center, lying on the Basin/Range and Colorado
Plateau transition are found to fall in the same cluster, although
the south-western stations cluster separately from south-eastern
stations. This partitioning seems to be indicative of the importance
of atmospheric moisture sources in terms of their timing and mag-
nitude, in addition to local terrain effects. The south-western part of
Basin/Range gets precipitation from summer monsoons and tropi-
cal cyclones that originate from the Gulf of Mexico that spawn high
intensity thunderstorms. The south-eastern region gets its share of
moisture from the hurricanes and the tropical depressions of the
northern pacific (Webb et al., 2004). These hurricanes are rare
and only make the landfall occasionally. The next cluster group is
for stations belonging to the central Colorado plateau. In general
this region is also referred to as the high plateau region, with
dominant orographic influence on precipitation patterns, with
snow dominating in winter. As in the first cluster, there can be
within-cluster effects due to atmospheric sources and the storm
direction. The third significant cluster is the northern Colorado pla-
teau. Generally these stations are at higher elevation than the first
cluster, but with a large range in altitude compared to the second.

Fig. 3b represents the factor loading plot of streamflow time
series data. Observation stations in the Basin/Range provinces of
Gila and San Pedro River, respectively, fall in the same group. These
rivers are characterized by low streamflow conditions with



Fig. 3b. Stations IDs (see Table 2 for detail) corresponding to streamflow time series at respective observation stations, plotted in three-dimensional factor loading space.
Twenty stations are classified into four clusters using k-means classification of factor loadings. Note that stations in different physiographic regions group together unless
there is a significant anthropogenic impact due to dams. Envelopes around the groups drawn here are merely schematic.

Fig. 3c. Stations IDs (see Table 2 for detail) corresponding to temperature time series at respective observation stations, plotted in three-dimensional factor loading space.
Twenty stations are classified into three clusters using k-means classification of factor loadings. Note that stations in different physiographic regions group together.
Envelopes around the groups drawn here are merely schematic.
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intermittent large flash floods from monsoon and tropical cyclonic
thunderstorms. Similarly observation stations located in the upper
Colorado and San Juan River along with its tributaries fall in a un-
ique group. Notably, anthropogenic effects dramatically change the
stream characteristics in the basin. Stations in Basin/Range and
Colorado Plateau which lie below large dams, stand out and form
separate groups.

In the case of temperature time series, the first principal
component carried �98% of the variance. Because of the dominant
annual variation in temperature at all locations, factor loading of
temperature time series to first principal component is found to
be quite high (close to 0.97). In order to account for other low-fre-
quency modes, we performed classification of the temperature
stations based on the next three largest factor loadings (i.e. not
including the factor loading that is largely influenced by the annual
cycle) which are shown in Fig. 3c. Three primary groups were
obtained (Table 2) distinguished by the relative difference in relief
among the Basin/Range, and the northern and southern Colorado
plateau.

Temporal structure of P–T–Q time series

The goal here is to estimate the dominant low-frequency peri-
odic, nearly periodic, or oscillatory variance components in the
P–T–Q records, and to examine these components with respect
to physiographic and hydrologic conditions across the CRB. First,
spectral decomposition of the time series using Singular Spectral
Analysis (SSA) is performed to reveal the oscillatory modes inher-
ent in the time series. In the second step, dominant oscillations
(spectral peaks) are recovered from the original series and the
eigenspectrum of the remaining stochastic components or noise
spectrum is estimated and examined.
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Singular spectrum analysis (SSA)

SSA is closely related to Empirical Orthogonal Function (EOF)
analysis or principal component analysis (Elsner and Tsonis,
1996) and has been used to identify low-frequency components
in the data (Lall and Mann, 1995; Vautard et al., 1992). It is based
on the idea of sliding a window over a particular time series and
looking for patterns which account for a high proportion of the var-
iance. SSA is performed on a lagged cross-covariance matrix which
is computed by the product of time series trajectory matrix and its
transpose. The basis functions are data adaptive, empirical and
orthogonal. The method can be shown to be optimal in the sense
of capturing the maximum variance with fewest independent com-
ponents. Defining a times series vector X of length N, a Toeplitz ma-
trix S that captures the lagged cross-covariance structure of the
data series can be calculated as (Elsner and Tsonis, 1996)

Si;j ¼
1

Lt � ji� jj
XLt�ji�jj

t¼1

xji�jjþtxt ð6Þ

where 1 6 (i, j) 6M, M being the window length and Lt is the length
of time series. Matrix S calculated in Eq. (6) is similar to the one
calculated in Eq. (1) except that S here is a lagged cross-covariance
matrix (or Toeplitz matrix) obtained using only one time series while
the later is a cross-covariance matrix between time series at different
Fig. 4a. Eigenspectrum of precipitation time series at Tombstone. In the case of white no
either rank–order or frequency ordered plots.

Fig. 4b. Eigenspectrum of discharge time series at Lees Ferry. For signals with a red noi
harmonics of the annual cycle.
locations. Similar to Eq. (2), singular value decomposition is again
performed on the matrix S to obtain eigenvalues and the correspond-
ing eigenvectors. Each column in the eigenvector matrix represents
the amplitude of oscillations at different frequencies. Since the data
time series length varies from station to station, the window length
considered while performing SSA is chosen to preserve the climate
modes with time scales ranging from annual to decadal. We note that
variations in the window length in a sufficiently large range have the
effect of stretching or compressing the spectrum of eigenvalues only,
leaving their relative magnitudes unchanged (Yiou et al., 1994). In
the present analysis, window length is chosen such that interannual
climate variability due to reversal of the tropical pacific trade winds
(of typical time scale ranging from 2 to 6 years) and one related to cy-
cles in Monsoon moisture flow (of typical time scale ranging from 6
to 10 years) can be captured. Interdecadal variations on the order of
10–25 years which are related to PDO are also captured in cases
where the data length is sufficiently long. A rule of thumb for selec-
tion of window length is – it should be less than one-third of the time
series length (Shun and Duffy, 1998).

Eigenvectors from SSA represent the basis of the time series
while eigenvalues quantify the variance carried by each mode.
The estimated eigenvalues from SSA are plotted against the esti-
mated frequency of each mode, and the resulting eigenspectrum
plot is used to separate signal (e.g. dominant oscillatory modes
or spectral peaks) from the noise.
ise, eigenvalues lying above the noise floor can be identified with relative ease using

se eigenspectrum, re-ordering of the eigenvalues by frequency helps to identifying
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Eigenspectra and dominant oscillatory modes

The Eigenspectrum is a rank–order plot of eigenvalues ki in
descending order of magnitude. Although each eigenvalue repre-
sents the fraction of variance corresponding to a particular eigen-
mode, in the presence of correlated noise rank–order plotting of
the eigenvalues may cause statistically significant modes to be
ignored because of their plotting position being adjacent to higher
frequency eigenvalues of the same magnitude. This problem is re-
solved by re-ordering of eigenvalues with respect to the dominant
frequency of each mode as suggested by Allen and Smith, 1996
(Figs. 4a and 4b). The dominant frequency of each eigenmode is
determined by applying a Fast Fourier transform and estimating
the dominant frequency of each mode. The eigenspectrum estima-
tor is then presented as a plot of eigenvalues (ki) versus frequency
(fi) corresponding to each eigenmode. Although Fourier-covariance
Fig. 5. Eigenspectrum of precipitation, temperature and streamflow data at GreenR, Col
these stations is in Table 1).
analysis can also be used for signal decompositions, it can be shown
SSA will represent the original data with the fewest possible inde-
pendent modes (Priestley, 1981). SSA can also provide a statistical
dimension or a first estimate of the degrees of freedom required
to describe the dynamical system represented by the record (Elsner
and Tsonis, 1996) which is roughly the number of eigenvalues
above the noise floor (Vautard and Ghil, 1989). Adjacent eigen-
values with nearly the same magnitude in an eigenspectrum plot
and with their respective eigenvectors being in quadrature are
assumed to be an oscillation pair (periodic or nearly periodic). Plot-
ted eigenmodes allow visual inspection of the period and the phase
of the oscillation pairs. Fig. 5 shows the eigenspectrum plot for P, T
and Q at four different stations viz. GreenR (in Rocky Mountains),
ColoradoR_GC (in Plateau), SanJuanR (in Plateau) and SanPedroR
(in B/R). The ‘‘low-pass” streamflow eigenspectrum is fitted with
the ‘‘red noise” theoretical spectrum (Priestley, 1981) using
oradoR_GC, SanJuanR, SanPedroR stations in the CRB (More information on data at
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/rðf Þ ¼
A

Bþ ð2pfTcÞ
2 ð7Þ

where Tc is the characteristic relaxation time for physical phenom-
ena or the threshold frequency for low-pass filtering (Jin and Duffy,
1994). For generating the fit, eigen-pairs are removed till no other
pairs can be removed without removing a single eigenvalue and
also without violating the chi-square test for the data (a = 0.025
and b = 0.975 level, Priestley, 1981). Dominant frequencies (cycle/
month) are shown as circles in Fig. 5. In Fig. 5, a frequency of
0.166 (=6/12) corresponds to semi-annual oscillation, 0.0833 (=1/
12) corresponds to an annual oscillation, 0.00833 (=1/120) to deca-
dal oscillation and so on.

Change detection using P–T–Q eigenmodes

Table 3 lists the dominant time periods of P, T and Q at 12 dif-
ferent stations which have long concurrent records (listed in Table
1). The dominant low-frequency oscillation for precipitation for
stations in plateau region is the annual cycle, while the semi-an-
nual dominates in the Basin/Range (see Table 3 and Fig. 5). The to-
tal variance explained by all low-frequency modes is on the order
of 15–20% of the total variance of the time series with annual,
interannual and semi-annual components contributing around
4–6% each. As we move northwards from the southern Basin and
Range in Arizona towards the Colorado Plateau, the dominant
mode shifts from semi-annual to annual: Tombstone (semi-
annual) ? Buckeye (semi-annual) ? Parker (semi-annual &
annual) ? Boulder City (annual) ? Lees Ferry (annual). This
change in precipitation pattern from south to north was also
corroborated by Higgins et al. (1997). At a higher latitude and ele-
vation, annual snowfall in winter is the major precipitation source;
while the bi-seasonal summer monsoon and winter precipitation
dominates the Basin/Range. For Basin/Range precipitation is
mainly in the form of rainfall, with distinct summer and winter
maxima. Winter precipitation comes from incursions of Pacific
air, while summer precipitation is monsoonal. The bi-seasonal pre-
cipitation regime in the Basin/Range was also noticed by Hereford
et al., 2002. Precipitations at Bluff and Green River also have signif-
icant decadal oscillations. On the other hand Tombstone has sea-
sonal (intra-annual) dominant time modes as well. We note that
for precipitation the interannual and decadal modes tend to be rel-
atively weak, with most of the spectrum variance being associated
with the annual cycle and higher frequency components.

In the case of temperature, as expected the dominant low-fre-
quency mode is the annual oscillation for all stations in the CRB.
The annual and other low-frequency modes explain a cumulative
variance of �90%. By examining each mode individually, we see
Table 3
Dominant time periods present in temperature, precipitation and streamflow record. Period
M correspond to Colorado Plateau, Basin/Range and Mountain, respectively.

Station name
(P–T–Q triplet
ID)

Physiographic
region

Dominant oscillations with time
periods (in years) for precipitation
data

Dominant o
periods (in
data

AnimasR P 1, 0.5, 2, 12, 4, 27, 0.33, 0.25 1, 0.5, 14, 0
SanJuanR P 1, 4.5, 0.5 1,0.5, 14, 0
ColoradoR_HD B/R 0.5, 0.75, 0.33, 1 1, 0.5, 4
GilaR_PR B/R 0.5, 1, 0.33, 2, 0.75, 8 1, 0.5, 14, 3
ColoradoR_GC P 0.5, 14, 0.33, 0.6, 1 1, 14, 0.5,
GreenR_GR P 1, 0.25, 2 1, 0.5, 0.33
GreenR M 1, 0.5, 14, 0.33 1, 0.5, 14, 4
ColoradoR_Lf P 1, 0.5, 0.33, 1, 0.5, 0.33
ColorradoR_PD B/R 0.5, 1, 14, 0.6, 5 1, 0.5, 14, 4
GilaR_RR B/R 0.5, 1, 0.33, 14, 5 1, 0.5, 0.33
VirginR B/R 1, 0.5, 0.2, 14 1, 0.5, 12, 0
SanPedroR B/R 0.5, 1, 0.33, 0.25, 0.2, 2 1, 0.33, 0.5
that the annual, semi-annual, interannual and decadal components
contribute 60%, 8–16%, 0–4% and 0–14%, respectively. Thus signif-
icant variance is found in frequencies other than the annual oscil-
lation. The interannual component (2–6 years) likely relates to the
El Nino/Southern Oscillation (ENSO) and decadal oscillations (12–
15 year) to the Pacific Decadal Oscillations (PDO) (Hanson et al.,
2002).

Finally we perform SSA on the streamflow time series, with par-
ticular attention to how relatively weak atmospheric modes ob-
served in P and T are expressed in the streamflow response of
the terrestrial system. It is expected that dominant modes in
streamflow will reflect both atmospheric forcing and human activ-
ities with smoothing, sharpening, amplification, and phase effects
of particular modes depending on the time scale (memory), and fil-
tering effect operating in the watershed or river-reach.

Fig. 5 also shows streamflow eigenspectra at four locations lo-
cated in three of the physiographic regions. The annual and in-
tra-annual harmonics are found to be strengthened in all these
cases as witnessed by larger eigenvalue magnitudes relative to that
of precipitation and temperature eigenvalues. This is due to the fil-
tering of higher frequency components in streamflow from soil
moisture, groundwater storage and even dams and irrigation
which act as a low-pass filter. The interannual modes for stream-
flow remain just above or within the noise floor (confidence inter-
val). The cumulative variance for annual oscillatory harmonics
explains approximately 60% of the variance of streamflow, with an-
nual, semi-annual, third-annual (4 months) and fourth-annual
(3 months) harmonics contributing �40%, 16%, 4% and 2%,
respectively.

In Fig. 5, the variance of dominant low-frequency components
in runoff is proportionally greater than for precipitation and tem-
perature at the same frequencies. For a watershed or a stream
reach we expect ‘‘storage” to act as a ‘‘low-pass” filter. So relatively
higher frequency components existing in temperature (and thus
evapotranspiration and snowmelt) and precipitation time series
are reduced or filtered. We note that runoff at stations with large
dams show significant decadal components (e.g. ColoradoR_HD
and ColoradoR_PD). It would appear that the eigenspectrum for
these records documents the longer term memory associated with
storage and diversion on downstream runoff. Also from Fig. 5, the
fitted time scale of low-pass noise spectrum (Eq. (7)) is shown to
be larger in the plateau region (ColoradoR_GC and SanJuanR) than
in the Basin/Range (SanPedroR) streamflow time series. This may
be related to geologic conditions, with bedrock controls on ground-
water and springflow in the plateau region having a lower filtering
time scale, than the alluvial basin region where shallow water
table conditions and rapid communication with groundwater is
expected. Within the plateau, we also expect that the characteristic
s are written in decreasing order of corresponding eigenvalue magnitudes. P, B/R and

scillations with time
years) for temperature

Dominant oscillations with time
periods (in years) for streamflow data

Streamflow
(USGS stn.
ID)

.33, 20 1,0,5, 0.33, 0.25, 0.2 09364500
.85, 0.33 1, 0.5, 3.6, 0.33, 0.25 09379500

10, 14, 1, 0.33, 0.2 09421500
.6 Not resolvable 09519800

1, 0.5, 14, 12, 0.33, 0.2 09402500
, 14 1, 0.5, 12, 0.33, 0.25, 0.2 09315000
, 0.33 1, 0.5, 12, 0.33, 0.25, 0.2 09217000

, 1, 0.5, 14, 9, 0.33, 0.25 09380000
, 8, 0.33 12, 14, 10 09427520

, 14 1, 0.5, 0.25 09431500
.33 1, 20, 0.5 09415000

, 15 1, 0.5, 0.33, 0.25, 6, 1.25 09471000
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time scale of the noise floor to be large where large dams increase
the retention time and overall time scale of storage (Vorosmarty
and Sahagian, 2000) while inducing a large bank exchange with
groundwater.

Extracting the hydroclimatic signal

The process of separating the signal or dominant oscillatory
modes in a time series from the residual noise, allows ‘optimal’
reconstruction of the time series. Optimal in this case implies that
we wish to reconstruct only those modes which exhibit a statisti-
cally significant spectral peak. Hidalgo et al., 2000 discusses opti-
mal reconstruction using a minimum number of significant
components, which we adopt here.

Reconstructing bP—bT— bQ modes

In this study, optimal reconstruction of the data is performed by
using the dominant frequency components (again using the modes
above the noise floor as discussed earlier in ‘‘Temporal structure of
P–T–Q time series”) obtained by performing SSA on each series in
Table 1. The reconstruction is performed by using (Plaut and Vau-
tard, 1994)

x̂iþj�1 ¼
XD

j¼1

ak
i ek

j ð8Þ
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Fig. 6. Original noisy time series and noise-removed reconstructed time series using
(ColoradoR_GC).
where i = 1, 2, . . ., N and j = 1, 2, . . ., D, ek
j ’s and ak’s are the kth eigen-

vector and principal component (of the corresponding matrices as
calculated in Eq. (2)). We note that the reconstruction also includes
the estimated mean of the record.

Fig. 6 shows the noisy observed data series and the correspond-
ing reconstructed signal using the all dominant eigenmodes for
P–T–Q data on Colorado River at Grand Canyon National Park
(ColoradoR_GC). Note that the reconstructed precipitation signal
carried only a small fraction of the original noisy precipitation ser-
ies. However, it captures the low-frequency modal rise and fall in
the historical record as is witnessed by a wet period in the initial
20th century followed by a mid century drought and thereafter a
slight increase in precipitation in the later part of the century.
The reconstructed signal nicely captures the gradual and the sharp
dramatic shifts in mean magnitude over time as is seen in the
reconstruction of streamflow time series in Fig. 6.

The bP—bT— bQ phase plane

Next we define a hydroclimatic phase plane in terms of a 3D
parametric plot (time implicit) of the trajectories of normalized
reconstructed precipitation, temperature and streamflow. We reit-
erate that the P and T time series used in time implicit plot are low-
frequency reconstructions of spatially averaged precipitation
(avgP) and temperature (avgT) over the contributing watershed
area, upland of the streamflow gauge station. Spatially averaged
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Fig. 7. Phase-plane trajectories for normalized bP—bT— bQ for (a) Original noisy time series (b) Noise removed time series at Grand Canyon National Park for a ten year period of
09/1932 to 10/1942.

Table 4
Time ranges for which bP—bT— bQ trajectory plot is shown in Fig. 8.

Time interval AnimasR SanJuanR ColoradoR_Lf VirginR GreenR_GR SanPedroR

Pre 1960 1/(1943–63) 1/(1943–63) 1/(1943–63) 1/(1943–63) 10/(1951–63) 1/(1943–63)
Post 1976 8/(1977–97) 7/(1975–95) 5/(1976–96) 6/(1976–96) 10/(1976–96) 5/(1976–96)
Post 1997 8/(1997–2002) 8/(1997–2003) 8/(1997–2003) 8/(1997–2003) 8/1997–4/2002 8/(1997–2003)

Fig. 8. Time-averaged Normalized bP—bT— bQ trajectory plot of low-frequency reconstructed time records for three time intervals at SanJuanR, AnimasR, ColoradoR_Lf, VirginR,
GreenR_GR and SanPedroR. More information about observation stations is in Table 1 and the precise time averaging interval is listed in Table 4.
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P and T data for time implicit plots are obtained from PRISM (Daly
et al., 1994). The spatial resolution of the data is 2.50. Clearly this
could be done on a local watershed with climate station and runoff
records as well, however the goal here is to examine large-scale
and low-frequency response and the spatial average data are most
appropriate. Normalization of each record is performed on each
reconstructed time series by rescaling it by its respective maxi-
mum and minimum values using

bXðtÞ ¼ x̂ðtÞ � x̂min

x̂max � x̂min
ð9Þ

where bXðtÞ is normalized bP; bT or bQ ’s magnitude at time t,
x̂max and x̂min are the maximum and minimum of the variable over
the concurrent record length (as listed in Table 1 for respective sta-
tions) under consideration. The path traced by the vector, Norm
jbP; bT; bQ j can be thought of as a qualitative measure of degree of
interaction between modes which exist in the atmosphere and land.
Note that we interpret temperature as a proxy for evapotranspira-
tion rate in the warm season, and snowmelt in the cold season.
Since streamflow Q contains the response from the terrestrial sys-
tem, Norm jbP; bT; bQ j provides a measure of dynamic behavior of
the atmosphere-terrestrial hydroclimatic system. Changes along
either the P or T axes during periods of large changes in streamflow
Fig. 9. Q–T and P–T plots at SanPedroR and ColoradoR_Lf. Note the contraction of the pha
century. Also, a distinct increase in winter precipitation and decrease in summer precip
indicate the influence of strong atmospheric forcing. Anthropogenic
impacts are marked by significant changes along the Q axis. By
averaging the pattern of changes over different parts of the histor-
ical record we also get some idea of the effect of longer term change
from climate and human activity on watershed dynamics.

Fig. 7 shows a bP—bT— bQ plot for a 10 year reconstruction for the
normalized unfiltered P–T–Q time series, and the normalized and
filtered (high frequency noise removed) bP—bT— bQ time series near
Grand Canyon on Colorado River. Note that the filtered bP—bT— bQ
phase plane plot is relatively smooth representing the lower fre-
quency oscillators in the data and serves as a tool for detecting
change in the dynamic hydrologic response across the CRB. A
reconstructed bP—bT— bQ time series set used for each phase plane
plot are shown in Fig. 6.

Change detection using bP—bT— bQ phase plane

Next we study the hydroclimatic change over the historical re-
cords at locations identified in Fig. 2. To account for secular change,
the reconstructed time series is partitioned into three periods: the
mid 20th century (1943–1963) drought, mid-to-late 20th century
(1976–1997) relatively wet period, and the most recent drought
period (1997–2004). Noise-removed reconstructed low-frequency
se space (highlighted by vertical lines along Q-axis) in Q–T plane in the later part of
itation (highlighted by horizontal arrows along P-axis) is observed at SanPedroR.
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San Pedro. The interannual and decadal low-frequency components in both the time series capture the longer time scale changes in streamflow response.
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modes for bP—bT— bQ are estimated from monthly averages. Because
of the differences in available record lengths, the precise averaging
intervals are slightly different for different sets of bP—bT— bQ (see
Table 4).

Figs. 8 and 9 show the time averaged bP—bT— bQ as well as planar
projections in P–T and Q–T planes for the three time intervals
listed in Table 4. Note that trajectories are color coded: 1943–63
(orange), 1976–97 (blue)1, recent 1997–2004 (grey), indicating
the changes in the bP—bT— bQ phase plane pattern over time at each
location. Also shown in Figs. 8 and 9 are large dots which corre-
spond to the reconstructed unaveraged-value of P, T and Q data
for the months of January, May and August, respectively. These
three months are indices for assessing the variation about the
mean bP—bT— bQ trajectory, during the winter low-flow (January),
early spring runoff (May), and either the late tail of the runoff re-
sponse or the early runoff from the summer monsoon (August).

We see in Fig. 8 that the minimum streamflow and temperature
occur in January at most stations, while maximum annual stream-
flow is observed in May for all the snowmelt dominated streamflow
stations. In the south-east, the San Pedro River at Tombstone peaks
in August with significant runoff from the Monsoon. A bi-lobed
structure in the bP—bT— bQ plot suggests the presence of important
intra-annual frequencies. Multi-lobe plots generally reflect har-
monics of the annual cycle in bP—bT— bQ or other higher frequency
components.

We note that in all the watersheds the basic pattern (shape) of
the low-frequency bP—bT— bQ trajectory remains the same for the
three averaging periods for all the stations in Figs. 8 and 9, though
the magnitude and range of the trajectories is significantly differ-
1 For interpretation of color in Figs. 1–11, the reader is referred to the web version
of this article.
ent. The consistency in shapes (bimodal or multimodal dumbells)
of the trajectory plots, for all periods, is maintained because of
the existence of same oscillatory modes. Though we observe that
atleast at two locations (ColoradoR_Lf and SanPedroR) the phase
volumes have shrunk over the century due to changes in the ampli-
tude and/or phase of dominant oscillations. At Lee Ferry (Colora-
doR_Lf) the bP—bT— bQ phase volume changed due to the
construction of a major dam. Large dams introduce low-frequency
modes and trends in the downstream streamflow. The contracted
phase volume in Colorado River at Lee Ferry for the period ranging
from 1977 to 1997 is indicative of the reduction in the extremes
(variance) of seasonal to interannual modes of streamflow below
the dam compared to the period before 1960. This is illustrated
by the low-frequency reconstructed time series in Fig. 10. The sup-
pression of variability in later part of century is easily discernible in
the interannual reconstructions. Notably, for the period 1997–
2004, there is further contraction in the phase volume which is
likely an indicator of the recent drought (Webb et al., 2004). Con-
traction of the phase volume is also observed in the San Pedro Riv-
er at Tombstone. The streamflow plot in Fig. 10 illustrates that the
flow magnitude has been reduced significantly since early 1970’s.
Low-frequency reconstruction based on interannual modes high-
light the extended low streamflow period from 1976 to 1984. This
might be the result of decreasing precipitation, but the more likely
reason is increase in ground-water pumping that is lowering the
water table and baseflow, and possibly because of the changes in
landcover and riparian vegetation that have occurred (Thomas
and Pool, 2006). Low-frequency reconstructions exhibit a gradual
decrease in peak streamflow as well. The explanation of increased
pumping and aquifer interaction has been suggested by several
authors (Corell et al., 1996; Vionnet and Maddock, 1992). Besides
decreasing baseflow, pumping also lowers the water table height
over time which can induce bank storage. It is interesting to note
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that the winter streamflow magnitude has increased which can be
attributed to the increase in winter precipitation and/or deep re-
charge under irrigated agricultural areas.

Figs. 8 and 9 show that the stations in basin and range (e.g. San-
PedroR), show a distinct increase in winter precipitation and a
slight decrease in summer precipitation (Webb and Betancourt,
1990). We see that winter precipitation after 1976 has increased
while the summer precipitation has decreased possibly due to neg-
ative Southern Oscillation phase (Swetnam and Betancourt, 1997).
Average monthly precipitation plot (Fig. 11) for a 20 year period at
both locations supports the observation from the phase plane plot
analysis. The minimum streamflow magnitude (January) is also
found to have increased in the later part of the 20th century, while
the maximum streamflow magnitude has decreased. This can be
related to factors such as the summer–winter precipitation rever-
sal in the later part of century (Swetnam and Betancourt, 1997),
earlier snowmelt (Stewart et al., 2004) and possible irrigation ef-
fects that have altered the evapotranspiration/recharge/baseflow
balance over this time frame. The snowmelt dominated portion
of the basin shows a reduced May runoff peak.

Conclusions

The spatial pattern of precipitation in the CRB seems to be more
complex than a simple north–south variation (Dettinger et al.,
1998), which also happens to be the alignment of major landforms
or physiographic regions in the basin. Classification of factor load-
ings from principal component analysis reveals regional patterns
in precipitation including variations due to: latitude, physiographic
features, and the sources of precipitation. Stations belonging to the
south-eastern Basin/Range such as Tucson and Tombstone fall in a
cluster different from the stations from the south-western Colo-
rado plateau such as Parker and Buckeye. Notably the sources of
precipitation, and hence precipitation intensity and timing, for
the two clusters are also different with one being dominated by
monsoonal precipitation while the other is affected by hurricanes
that originate as tropical depressions in the northern pacific (Webb
et al., 2004). Stations located in the Colorado Plateau cluster in two
groups – one in south-central plateau region that includes Lees
Ferry and Holbrooke and the other in northern plateau region with
stations like Green River and Moab – reflecting a generic oro-
graphic precipitation trend produced as a result of high altitude
frontal systems. Classification of loading factors for air tempera-
ture, which is a proxy for evapotranspiration and snowmelt, is al-
most entirely explained as a function of altitude.

Classification of streamflow stations indicates that local physi-
ography, the hydrogeology, and anthropogenic factors may trans-
form atmospheric forcing into unique clusters. A Basin and Range
cluster of streamflow stations is identified which includes the Gila
at Painted Rock, and the San Pedro at Reddington and is character-
ized by low streamflow conditions with intermittent large flash
floods. A second cluster is found for plateau streamflow sites
including the San Juan at Bluff, and the Green River at Green River
Wyoming. Streamflow observation stations just below large dams
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in each physiographic regions form a distinct cluster. Within the
plateau region this cluster includes the Colorado at Lees Ferry and
the Colorado at Grand Canyon, while the Basin and Range cluster in-
cludes discharge sites below Hoover dam and Parker dam on the
Colorado. Clearly anthropogenic impacts of large dams stand out
as unique spatial clusters for runoff from the CRB but differences
are also found from dams within different physiographic regions.

Singular spectrum analysis further explores the spatial pattern
of low-frequency temporal modes associated with each P–T–Q
time series by estimating the variance of low-frequency periodic
and nearly periodic modes inherent in the time series. This exercise
also reinforces and refines the interpretations made through the
spatial analysis. The dominant frequency in precipitation time ser-
ies is observed to gradually change from a semi-annual to annual
mode as we move from Tombstone and Buckeye in the south to
Boulder city and Lees Ferry in the north. This is because at higher
latitude and elevations, annual winter snowfall is the primary
source of precipitation while in Basin/Range, precipitation is
bi-seasonal. The annual cycle represents the dominant mode in
temperature across the basin, however significant interannual
modes also exist. Observation stations lying in the same physio-
graphic regions, with significant elevation and latitudinal differ-
ences, have similar interannual modes. For streamflow, locations
gauges located just below a dam, such as the Hoover dam and Par-
ker dams on the Colorado, introduce a shift in the response to
interannual, decadal and longer time scales of runoff. It seems that
dams act as a low-pass filter to higher frequency modes in runoff.

The bP—bT— bQ phase plane is used to explore the temporal
change in regional hydroclimatology, either due to changes in forc-
ing pattern/magnitude or due to anthropogenic impacts. A reversal
in precipitation pattern due to a negative southern oscillation is
immediately identified in Basin/Range region including at Lee Fer-
ry and Tombstone (Swetnam and Betancourt, 1997). A dramatic
contraction of the phase plane shape (reduction in phase volume)
at Lee Ferry on the Colorado and the San Pedro at Tombstone is
indicative of anthropogenic impacts in form of dam construction
and excessive ground-water pumping, respectively. We recognize
the qualitative nature of the change analysis largely because of
the sparseness of long term distributed data of all the characteristic
hydroclimatic descriptors at same locations. Nonetheless, thebP—bT— bQ phase plane plot analysis along with spatio-temporal clas-
sification is shown to be a useful diagnostic tool for detecting and
attributing change. Together, spatial principal components, spec-
tral analysis of time series, and the reconstructed phase plane
through time, appear to be useful for physical interpretation and
detecting hydrologic changes from physiographic, climatic, and
human forcing.
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