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Many processes in science and engineering develop multiscale tem-
poral and spatial patterns, with complex underlying dynamics and
time-dependent external forcings. Because of the importance in un-
derstanding and predicting these phenomena, extracting the salient
modes of variability empirically from incomplete observations is a
problem of wide contemporary interest. Here, we present a tech-
nique for analyzing high-dimensional, complex time series that ex-
ploits the geometrical relationships between the observed data points
to recover features characteristic of strongly nonlinear dynamics
(such as intermittency and rare events), which are not accessible
to classical singular spectrum analysis (SSA). The method employs
Laplacian eigenmaps, evaluated after suitable time-lagged embed-
ding, to produce a reduced representation of the observed samples,
where standard tools of matrix algebra can be used to perform trun-
cated singular value decomposition despite the nonlinear geometrical
structure of the data set. We illustrate the utility of the technique
in capturing intermittent modes associated with the Kuroshio cur-
rent in the North Pacific sector of a general circulation model, and
dimensional reduction of a low-order atmospheric model featuring
chaotic intermittent regime transitions, where classical SSA is al-
ready known to fail dramatically.
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The analysis of complex spatio-temporal signals is a cen-
tral problem in science and engineering, arising in a di-

verse range of disciplines, including experimental and theoret-
ical fluid dynamics [1, 2], climate science [3, 4, 5], molecular
dynamics [6, 7], and astrophysics [8, 9]. In these and other
applications, there is a strong interest in extracting physically-
meaningful information about the spatial and temporal vari-
ability of data from models, experiments, or observations,
with the goal of enhancing the understanding of the underly-
ing dynamics, and improving predictive capabilities. In many
cases, observations of the system under study are incomplete;
i.e., only a subset of the full phase space is accessible.

A classical way of attacking this problem is through
singular spectrum analysis (SSA), or one of its variants
[3, 10, 11, 12]. Here, a low-rank approximation of a dynamic
process is constructed by first embedding a time series of a
scalar or multivariate observable in a high-dimensional vec-
tor space H (called embedding space) using the method of
delays [13, 14, 15], and then performing a truncated singular-
value decomposition (SVD) of the matrix X containing the
embedded data [16]. In this manner, information about the
dynamical process is extracted from the spatial and tempo-
ral singular vectors of X with the K largest singular values
[12]. The temporal singular vectors form a set of empirical
orthogonal functions (EOFs) in H, which, at each instance of
time, are weighted by the corresponding principal components
(PCs) determined from the temporal singular vectors to yield
a rank-K reconstruction of X.

A potential drawback of this approach is that it is based
on minimizing an operator norm which may be unsuitable for
signals generated by nonlinear dynamical systems. Specifi-

cally, the PCs are computed by projecting onto the principal
axes of the k-dimensional ellipsoid that best fits the covariance
of the data in H in the least-squares sense. This construction
is optimal when the underlying dynamics is linear, but non-
linear processes in general will produce data lying on a curved
manifold M in embedding space, with non-Gaussian distribu-
tions departing significantly from the ellipsoid defined by the
covariance operator in H. Physically, a prominent manifes-
tation of this phenomenon is failure to capture via SSA the
intermittent patterns arising in turbulent dynamical systems;
i.e., temporal processes that carry low variance, but play an
important dynamical role [17, 18].

Despite their inherently nonlinear character, such data
sets possess a natural linear structure, namely the Hilbert
space L2(M,µ) of square-integrable functions on M with in-
ner product inherited from the volume element µ of M (the
Riemannian measure). This space may be thought of as the
collection of all possible weights that can be assigned to the
data samples when making a reconstruction, i.e., it is analo-
gous to the temporal space in SSA. Therefore, it is reasonable
to develop algorithms that seek to approximate suitably de-
fined maps from L2(M,µ) to the space of spatial patterns H.
Such maps, denoted here by A, have the advantage of be-
ing simultaneously linear and compatible with the nonlinear
manifold comprised by the data.

In this paper, we advocate that this approach, imple-
mented via algorithms developed in machine learning, can
reveal important aspects of complex, high-dimensional sig-
nals, which are not accessible to classical SSA. In this frame-
work, which we refer to as nonlinear Laplacian spectral analy-
sis (NLSA), an orthonormal basis for L2(M,µ) is constructed
through eigenfunctions of the Laplace-Beltrami operator on
M , computed efficiently via sparse graph-theoretic algorithms
[19, 20]. Projecting the data from embedding space H onto
these eigenfunctions then gives a matrix representation of A,
such that the optimal rank-K reconstruction with respect to
the Frobenius norm of maps from L2(M,µ) to H is given by
standard truncated SVD.

We discuss applications of this technique to two prob-
lems, each with its own challenges to data analysis. First,
we study the variability of the upper-ocean temperature in
the North Pacific sector of a comprehensive coupled climate
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model (NCAR’s CCSM3 model) [21, 22, 23]. Here, the dy-
namics take place in a phase space of very high dimension, is
strongly mixing, and exhibits variability over a broad range
of time scales, including seasonal, interannual, and decadal
time scales. Imposing no a priori assumptions (such as peri-
odicity in the statistics), NLSA recovers three distinct types
of temporal processes: (1) periodic processes, including an-
nual and semiannual cycles; (2) decadal-scale variability with
spatial patterns resembling the Pacific Decadal Oscillation
(PDO) [24]; (3) intermittent processes associated with the
Kuroshio current and variations in the strength of the subtrop-
ical and subpolar gyres. The latter carry little variance (and
are therefore not captured by SSA), yet their dynamical role
is expected to be significant. Moreover, we demonstrate the
dynamical significance of Galerkin bases constructed through
the spatial modes of NLSA in the context of a six-dimensional
chaotic low-order model of the atmosphere [25, 26, 18]. This
model exhibits strong intermittency and metastability, and
its attractor is highly inhomogeneous. Here, we test for the
quality of spatial patterns not by their explained variance, but
rather by their ability to reproduce chaotic regime behavior
in reduced dynamical models. It has been established, for in-
stance, that Galerkin projections onto the spatial modes of
SSA or optimal persistence patterns (OPPs) [4] fail to repro-
duce chaotic regime behavior [18]. In contrast, NLSA leads to
models of dimension as low as three featuring chaotic regimes.

Mathematical framework
Setting.We consider that we observe samples of a vector-
valued signal xt sampled uniformly with time step δt. Here, xt

is generated by a dynamical system operating in some phase
space, which may only be partially accessible to observations.
For instance, in the ocean application ahead, xt will be a
depth-averaged sea temperature field restricted in the North-
Pacific sector of CCSM3, i.e., observations of xt alone are not
sufficient to uniquely determine the state of the system in
phase space. Our objective is to produce a decomposition of
xt into spatial and temporal modes, taking explicitly into ac-
count the fact that the underlying trajectory of the dynamical
system lies on a nonlinear manifold M in phase space. A fur-
ther challenge, which will be highlighted in our atmospheric
application, is that sampling of M may be highly inhomoge-
neous. In this case, regions of M associated with metastable
regimes are sampled densely, but the dynamically important
transitions between the regimes are observed rarely.

The methodology developed here employs three basic
steps to address these issues: (1) Time-lagged embedding of
the input data to a high-dimensional Hilbert space H, to
ensure that geometrical neighborhoods in H correspond to
neighborhoods in phase space; (2) Construction of a regular-
ized linear map A taking a Hilbert space of scalar functions
on M representing temporal patterns to the spatial patterns
in H, in a manner compatible with the nonlinear geometry
of M ; (3) Singular value decomposition of A in a basis of
Laplacian eigenfunctions, evaluated via graph-theoretic algo-
rithms with modified Gaussian kernels to deal with sampling
inhomogeneity. Below we describe each step of the method in
some detail. Pseudocode summarizing the procedure is listed
in Algorithm S1.

Time-lagged embedding.A consequence of incomplete obser-
vations is that distances between points in data space may
be small, even if these points lie far apart in phase space.
This is likely to adversely affect the dynamical significance of
the modes identified by any algorithm (including SSA) that

analyses the data based on their geometrical relationships.
Time-lagged embedding is a familiar technique of alleviating
this issue developed in the qualitative theory of dynamical
systems [27, 13, 14, 15]. Under generic conditions, the im-
age of xt in embedding space H under the delayed-coordinate
mapping, xt 7→ Xt = (xt, xt−δt, . . . , xt−(q−1) δt) lies in a man-
ifold which is in one-to-one correspondence with M , provided
that the dimension of H is sufficiently large. Thus, given a
sufficiently-long embedding window ∆t = (q − 1) δt, we ob-
tain a representation of the data set such that geometrical
neighborhoods in embedding space encode similar dynamical
features. Augmenting the dimensionality of ambient space is
also useful in applications involving non-autonomous dynam-
ical systems, including systems with time-periodic statistics
[28]. After data analysis has been completed, a collection of

elements X̃t ∈ H may be projected to physical space by writ-
ing X̃t = (x̂t,0, x̂t,δt , . . . , x̂t,(q−1) δt), and taking the average
[29],

x̃t =
∑

x̂t′,τ/q, s.t. t′ − τ = t. [1]

Riemannian formulation.Recall that SSA is essentially an
SVD decomposition,

Xt =
∑
k

ukσkvk(t), uk ∈ H, σk > 0, vk ∈ L2(T ), [2]

of the signal into bi-orthonormal “topos” (spatial) and
“chronos” (temporal) modes, uk and vk [10]. In the above, T
denotes the set of times at which observations are made, and
L2(T ) is the Hilbert space of square-integrable scalar func-
tions on that set. That is, the signal is interpreted as a linear
map X : L2(T ) 7→ H from the topos to the chronos spaces,
given by

y = X(f) =

∫
dtXtf(t), with f ∈ L2(T ). [3]

The uk and vk are eigenfunctions of the spatial and temporal
covariance operators,

L(y)(~r) = XX∗(y)(~r) =

∫
d~r′ C(~r, ~r′)y(~r′), [4a]

R(f)(t) = X∗X(f)(t) =

∫
dt′ ρ(Xt, Xt′)f(t

′), [4b]

respectively, where ~r denotes position in the spatial domain
(taking embedding into account), X∗ is the adjoint of X,
and C and ρ are the spatial and temporal two-point func-
tions in embedding space, ρ(Xt, Xt′) =

∫
d~rXt(~r)Xt′(~r) and

C(~r, ~r′) =
∫
dtXt(~r)Xt(~r

′), respectively. In particular, the
temporal patterns vk(t) correspond to time-dependent projec-
tion coefficients along the directions of highest signal variance
in H. It is well-known, however, that this type of projection
is likely to yield poor representation of the data if M is not
flat (linear) [19, 30, 31]. NLSA addresses this shortcoming
through a generalization of [3] to explicitly account for the
nonlinear geometrical structure of M .

For simplicity in notation and exposition, we first consider
the case where M is a differentiable, compact manifold with
no boundary, equipped (through its embedding in H) with a
smooth metric tensor g, Riemannian density (volume) µ =

(det g)1/2, and Laplace-Beltrami operator ∆f = − div grad f
[32]. These conditions guarantee the well-posedness of the
eigenvalue problem

∆φk = λkφk,

∫
dµ(Xt)φi(Xt)φj(Xt) = δij , [5]

with 0 = λ0 < λ1 ≤ λ2 ≤ · · · , giving rise to an orthonormal
basis {φ0, φ1, . . .} for the Hilbert space L2(M,µ) of square-
integrable functions on M with measure µ. Even though M
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may actually be neither differentiable, nor compact, in prac-
tice we will always be dealing with graph-theoretic, coarse-
grained approximations of M constructed through finite ob-
servation samples, where the discrete analog of [5] holds [33],
irrespective of the properties of M in the limit of infinite sam-
ples. Rigorous theory providing links between the discrete
and continuous cases has been developed using heat kernels
[34, 20, 35, 36].

With this machinery in place, the key modification of
NLSA relative to SSA is to replace the chronos space L2(T )
with the l-dimensional subspace of L2(M,µ) spanned by the
leading l Laplace-Beltrami eigenfunctions in [5], viz., Vl =
span{φ0, φ1, . . . , φl}. Thus, the temporal modes in NLSA are
generated by a natural set of basis functions on the nonlinear
data set, with length scale (“resolution”) on M controlled by
the parameter l. As we discuss in more detail below, l plays a
regularization role, to prevent overfitting when sampling of M
is not dense. Next, by direct analogy with [3], we introduce a
family of linear maps Al : Vl 7→ H, providing the link between
the chronos and topos spaces of NLSA:

y = Al(f) =

∫
dµ(Xt) f(Xt)Xt [6]

The strategy put forward in this paper is to recover the
salient spatio-temporal modes associated with nonlinear sig-
nals through spectral decompositions of A, as follows.

Let {φ0, . . . φl} be the orthonormal basis of Vl from [5],
and {e1, e2, . . .} an orthonormal basis of H. The matrix ele-
ments of A with this choice of bases are

Al
ij = 〈A(φj), ei〉 =

∫
dµ(Xt)φj(Xt)X

i
t , [7]

where 〈·, ·〉 is the inner product of H, and Xi
t = 〈Xt, ei〉. This

leads to a spectral decomposition of Al,

Al
ij =

r∑
k=1

uikσkvjk, r = rankAl ≤ min{l,dimH}, [8]

where uik and vjk are matrix elements of unitary operators on
H and Vl, respectively, and σk > 0 are singular values. The
decomposition of the signal Xt in terms of the chronos and
topos modes of Al, analogous to [2], is then Xl

t =
∑r

k=1 X̃
k
t ,

with X̃k
t = ukσkvk(t) and

uk =
dimH∑
i=1

eiuik, vk(t) =
l∑

j=1

vjkφj(Xt). [9]

It is a standard result that Ãl
ij =

∑K
k=1 uikσkvjk with K < r

is the rank-K linear map from Vl to H minimizing the Frobe-
nius norm of the residual, ‖Al − Ãl‖2F =

∑
i,j(A

l
ij − Ãl

ij)
2.

Moreover, by completeness, Xl
t converges to the input signal

Xt as l → ∞ (or l = s for finite number of samples s).
To gain insight on the properties of these modes, as well

as their relation to the corresponding modes from SSA, it
is instructive to study the action of the spatial and tempo-
ral covariance operators, L = AlAl∗ and R = Al∗Al, on
spatial and temporal patterns, y(~r) ∈ H and f(Xt) ∈ Vl,
respectively. The latter can be expressed as convolution
operations, L(y)(~r) =

∫
d~r′ L(~r, ~r′)y(~r′) and R(f)(Xt) =∫

dµ(X̃)R(Xt, X̃)f(X̃), with kernels given by

L(~r, ~r′) =

∫
dµ(Xt) dµ(X̃)Kl(Xt, X̃)Xt(~r)X̃(~r′), [10a]

R(Xt, X
′

t) =

∫
dµ(X̃)Kl(Xt, X̃)ρ(X̃,Xt), [10b]

and Kl(Xt, X̃) =
∑l

k=1 φk(Xt)φk(X̃). In particular, take

the limit l → ∞, where Kl(Xt, X̃) = δ(Xt − X̃) becomes
a Dirac δ-function by completeness, we have L(~r, ~r′) →∫
dµ(Xt)Xt(~r)Xt(~r

′) and R(Xt, Xt′) → ρ(Xt, X
′

t).
Consider now the corresponding kernels in SSA from [4].

If the Riemannian measure µ is uniform, and the system tra-
jectory covers M densely over the observation time interval
T (two very strong assumptions), it is possible to replace the
integral over time in [4b] with an integral over M . Therefore,
in this idealized case, the results from SSA and NLSA coin-
cide. In typical applications, however, neither the Rieman-
nian measure µ is uniform, nor the coverage of M is dense.
In NLSA, the latter deficiency is alleviated by truncating Vl

to a finite dimensional subspace of L2(M,µ). That is, given
a finite number of observations, the results of NLSA up to
some upper value of l should be close to the corresponding
results obtained in the infinite-sample limit (at the same l),
and still reflect the coarse-grained nonlinear geometric prop-
erties of M . Moreover, non-uniformity of µ, which for finite
data sets depends both on the geometrical properties of the
embedding M 7→ H and the dynamics on M , is handled nat-
urally by graph-theoretic algorithms. This will turn out to
play a key role in the atmospheric application discussed be-
low, where sampling of the attractor is highly inhomogeneous.

Evaluating spatio-temporal patterns of finite data sets. In
order to implement the spectral decomposition [8] in prac-
tical applications involving finite data sets, we proceed by
first using graph-theoretic algorithms to evaluate the Lapla-
cian eigenfunction basis for Vl, then performing SVD of the
matrix of operator components from [7]. Given a data set
consisting of s samples, G = {Xδt, X2 δt, . . . , Xs δt} ⊂ M ,
graph-theoretic algorithms [19, 20] seek to construct a Markov
process on G with transition probability matrix P , such that,
for large-enough s and small-enough i, the right eigenvec-
tors φ

i
of P approximate the corresponding Laplace-Beltrami

eigenfunctions φi in [5]; i.e., Pφ
i
= (1 − λi)φ

i
, with φ

i
=

(φi1, . . . , φis)
T and φij ≈ φi(Xjδt). These eigenvectors sat-

isfy an orthonormality condition which is the discrete analog
to [5],

∑s
k=1 µkφikφjk = δij , with µk given by the invari-

ant measure (leading left eigenvector) of P ; namely, ~µ = ~µP ,
where ~µ = (µ1, . . . , µs), µi > 0, and

∑s
µ=1 µi = 1.

In the present work, we evaluate P using the diffusion
map (DM) algorithm of Coifman and Lafon [20], with a simple
but important modification in the calculation of the Gaussian
weight matrix. Specifically, we assign to each sample Xiδt a
local velocity in embedding space, ξi = ‖Xi δt − X(i−1) δt‖,
and evaluate the Gaussian weights Wij = exp(−‖Xi δt −

Xj δt‖
2/ǫ(ξiξj)

1/2), where ‖·‖ denotes, the norm of H. This
approach was motivated by the clustering algorithm developed
in [37], with the difference that in the latter paper ǫi is evalu-
ated using spatial nearest neighbors, rather than the temporal
nearest neighbors employed here. In the standard implemen-
tation of DM, ǫ must be sufficiently small in order for the dif-
fusion process represented by P to be sensitive only to local
neighborhoods around each data point. Here, the normaliza-
tion by ξi enforces geometrical localization even for ǫ = O(1).
The remaining standard steps needed to compute P given W
are displayed in Algorithm S2. The scalability of this class
of algorithms to large problem sizes has been widely demon-
strated in the machine learning and data mining literature.
In particular, as a result of Gaussian decay of the weights, the
W matrix used in implementations is made sparse, e.g., by
truncating W to the largest b nonzero elements per row with
b/s ≪ 1, significantly reducing the cost of the eigenvalue prob-
lem for φ

i
. The least-favorable scaling involves the pairwise
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distance calculation between the data samples in embedding
space, which scales like s2 dim(H) if done in brute force (which
is the method employed here). Despite the quadratic scaling
with s, the linear scaling with dim(H) is of key importance,
as it guarantees that NLSA does not suffer from a “curse of
dimension” as do neural-network-based methods [38].

North Pacific data from a coupled climate model
We first study the variability in the North Pacific sector of
CCSM3; specifically, variability of the mean upper 300 m
sea temperature field in the 700-year equilibrated integra-
tion used in [22, 23] in work on the initial-value and forced-
response predictability in that model. Here, our objective is
to diagnose the prominent modes of variability in a compre-
hensive climate model. In this analysis, the xt observable
is the mean upper 300 m temperature field sampled every
month at n = 534 gridpoints (native ocean grid mapped to
the model’s T42 atmosphere) in the region 20◦N–65◦N and
120◦E–110◦W. Below, we work with an embedding window
∆t = 2 years; i.e., the dimension of embedding space is
dim(H) = n × 24 = 12,816. After embedding, xt 7→ Xt, we
are left with s = 700× 12− 24 = 8376 samples for data anal-
ysis. Here, we present results obtained using the parameter
values l = 23, ǫ = 2, and b = 1000. Figures 1 and 2 display
representative singular values and temporal patterns of the
Al operator in [8], respectively, and snapshots of the tem-
perature anomaly fields x̃k

t (evaluated by applying [1] to the

spatio-temporal patterns X̃k
t from [9]) are shown in Figure 3

and Movie S1. We find that the spatio-temporal patterns fall
into three distinct families of periodic, low-frequency, and in-
termittent modes, described below. We tested for robustness
of these results in a series of calculations with l ∈ [20, 100],
ǫ ∈ [1, 10] and b ∈ [100, 2000]. Note that time-lagged em-
bedding is essential to the separability of the spatio-temporal
patterns into qualitatively-distinct processes; their character
is mixed if no embedding is performed. Also, ∆t is not di-
rectly related to the lowest frequencies captured by the tem-
poral patterns vk(t), but must be long-enough to incorporate
information about major sources of non-Markovianity in the
data—here the annual cycle of solar forcing. We have tested
our results for robustness using several ∆t ∈ [2, 10] years.

Periodic modes. Modes in this family come in doubly-
degenerate pairs, and have the structure of sinusoidal waves
with phase difference π/2 and frequency equal to integer mul-
tiples of 1/year. The leading periodic modes, {v1, v2} [Fig-
ure 2(a)], represent the seasonal cycle in the data. In the
spatial domain [Figure 3(a), Movie S1(c)], these modes gener-
ate an annual oscillation of the temperature anomaly, whose
amplitude is largest (∼ 1◦C) in the western part of the basin
(130◦E–160◦E) and for latitudes in the range 30◦N–45◦N. The
semiannual modes [Figure 3(c), Movie S1(e)] exhibit signifi-
cant amplitude in the western part of the domain, but also
along the West Coast of North America; the latter is consis-
tent with semiannual variability of the upper ocean associated
with the California current [39].

Low-frequency modes. These modes are characterized
by high spectral power over interannual to interdecadal
timescales. Featuring strongly suppressed power over annual
or shorter time scales, they represent the low-frequency vari-
ability of the upper ocean, which has been well-studied in the
North Pacific sector of CCSM3 [21, 22]. The leading mode in
this family [v3; see Figure 2(b)], gives rise to a typical PDO
pattern [Figure 3(b), Movie S1(d)], where the most prominent
basin-scale structure is a horseshoe-like temperature anomaly
pattern developing eastward along the Kuroshio extension, to-

gether with an anomaly of the opposite sign along the west
coast of North America. The higher modes in this family
gradually develop smaller spatial features and spectral content
over shorter time scales than v3, but have no spectral peaks on
annual or shorter timescales. As illustrated in Movie S1(b),
these modes also arise in classical SSA.

Intermittent modes. A major result of this analysis, which
highlights the importance of taking explicitly into account the
nonlinear geometrical structure of complex spatio-temporal
data sets, is the existence of intermittent patterns of vari-
ability in the North Pacific sector of CCSM3, which are not
accessible through SSA. As illustrated in Figure 2(c), the key
feature of modes of this family is temporal intermittency, aris-
ing out of oscillations at annual or higher frequency, which are
modulated by relatively sharp envelopes with a temporal ex-
tent in the 2–10-year regime. Like their periodic counterparts,
the intermittent modes form nearly degenerate pairs, and their
base frequency of oscillation is an integer multiple of 1/year.
The resulting Fourier spectrum is dominated by a peak cen-
tered at at the base frequency, exhibiting some skewness to-
wards lower frequencies. In the physical domain, these modes
describe processes with relatively fine spatial structure, which
are activated during the intermittent bursts, and become qui-
escent when the amplitude of the envelopes is small. The most
physically-recognizable aspect of these processes is enhanced
transport along the Kuroshio extension region, shown for the
leading-two intermittent modes {v9, v10} in Figure 3(d) and
Movie S1(f). This process features sustained eastward propa-
gation of small-scale, ∼ 0.2 ◦C temperature anomalies during
the intermittent bursts. The intermittent modes higher in the
spectrum also encode rich spatiotemporal patterns, including
retrograde (westward) propagating anomalies, and gyre-like
patterns resembling the subpolar and subtropical gyres.

A chaotic intermittent low-order atmosphere model
The spatial modes uk from [2] arising in SSA are optimal
from the point of view of capturing the maximal covariance
in H using the smallest number of modes. However, this does
not necessarily imply that the dynamical significance of these
modes is correspondingly high. For instance, the SSA-based
models of the Kuramoto-Sivashinsky (KS) equation by Aubry
et al. [17] capture 99.99995% of the variance using only the
leading six modes, but projecting the KS equation onto the
subspace spanned by those modes fails to reproduce the right
dynamics. Similar issues were encountered by Crommelin and
Majda [18] in a study of a six-mode chaotic low-order model
for the atmosphere [25, 26]. Those authors explored a suite of
reduced-modeling approaches, among which only spatial pat-
terns derived through principal interacting patterns (PIPs)
[40, 5] were able to reproduce chaotic regime transitions.
PIPs, however, make use of significant information about the
dynamical system generating the observed data. Yet, spatial
modes derived via purely data-driven methods, including SSA
and OPPs, were found in [18] to exhibit weak dynamical sig-
nificance. In particular, Galerkin-truncated models onto those
bases typically decayed to fixed points, or locked on orbits of
unrealistically high temporal regularity [18]. Here, we demon-
strate that the spatial patterns from [8], evaluated through
NLSA using the same input data as SSA or OPPs, are able
to reproduce chaotic regime transitions.

Specifically, setting xt = (x1, . . . , x6) ∈ R
6, we consider a

deterministic dynamical system of the form ẋt = F (xt), with
the governing equations and parameter values given in [18],
and reproduced in Table S1 for convenience. Here, the xi’s
are low-order Fourier expansion coefficients of the streamfunc-
tion in the barotropic vorticity equation for the atmosphere,
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and non-dimensional time corresponds to one day. Physically,
this model describes chaotic transitions between zonal and
blocked regimes of the atmospheric streamfunction, caused
by large-scale topography (e.g., continental mountain ranges)
and barotropic instability [26]. For our purposes, the modes
that most-closely represent these transitions are x1 and x4.
The latter correspond to purely zonal wind (East-West), with
no variation in the meridional direction, forced by a zonal at-
mospheric jet profile as observed in the real atmosphere; see
Figures 4(a) and 5(a) for representative time series.

The goal of dimensional reduction is to produce a set of
orthonormal spatial patterns for Galerkin projection, uk ∈ R

6

with k ≤ K < 6, such that the reduced model projected
onto these patterns, żt = UTF (Uzt) with zt ∈ R

K , exhibits
chaotic transitions between zonal and blocked states. Note
that by the orthogonality property, UTU = I, a solution zt
generates a trajectory xt = Uzt in the phase space of the
full model. Here, we constructed Galerkin bases using NLSA
with a training time series xt of length 106 days, sampled
daily. Note that because the full phase space of the model
is accessible, no embedding was performed in these calcula-
tions, i.e., dim(H) = 6. We ran NLSA (Algorithm S1) using
ǫ = 1 throughout, and representative values of b ∈ [30, 500]
and l ∈ [3, 20]. In each case, we carried out the decomposition
in [8] and formed 6×K projection matrices U = [ui1, . . . , uiK ]
for K = 3, 4, or 5. We tested the resulting reduced models
over long, 106-day integrations with initial conditions chosen
randomly from the training data.

With moderate experimentation in the choice of b and l,
it was possible to construct reduced models featuring chaotic
regime transitions for all K ∈ {3, 4, 5}; examples of these
models are illustrated in Figures 4 and 5 and Movie S2. Qual-
itatively, the fidelity of these models increases with K; e.g.,
the K = 5 model reproduces excursions towards large (x1, x4)
values, i.e., away from the regions of high joint probability
p(x1, x4) [26], though with some bias. Note that the objective
here is not to reproduce the trajectory of the full model in a
pointwise sense; that would be futile (and of little use) given
the system’s chaotic dynamics. The fact that models with di-
mension as low as K = 3 feature chaotic transitions between
zonal and blocked regimes strongly supports the dynamical
significance of NLSA modes.

A further important point concerns the behavior of the
discrete Riemannian measure ~µ. As illustrated in Figure 5(c),
when plotted as a function of time, the weights µi exhibit
a bursting behavior, with spikes corresponding to transitions
between regimes. Thus, the algorithm assigns high weight
to transitory events in the operator components in [6], which
compensates for the fact they are observed only rarely. Heuris-
tically, µi corresponds to the volume in M occupied by the
sample Xt at time t = i δt, which tends to be large for states
visited infrequently by the system. In contrast, the corre-
sponding time integral [4b] in classical SSA, carries uniform
temporal weights, and the influence of the short-time tran-

sitions in the resulting spatial patterns is suppressed. The
non-uniform Riemannian weighting thus enhances the capa-
bility of NLSA of capturing rare events, which frequently turn
out to be crucial in reproducing the right dynamics [17, 18].

Concluding remarks
Combining techniques from machine learning and the qualita-
tive theory of dynamical systems, we have presented a method
for time series analysis, referred to as NLSA, which explic-
itly accounts for the nonlinear geometrical structure of data
sets generated by complex dynamical systems. Like classi-
cal SSA, NLSA utilizes time-lagged embedding and SVD to
produce a spatio-temporal decomposition of a signal gener-
ated by partial observations of high-dimensional dynamical
systems. However, the linear operator used here in the SVD
step differs crucially from SSA in that its domain of defini-
tion is the Hilbert space of square-integrable functions on the
nonlinear manifold M comprised by the data (in a suitable
coarse-grained graph representation). These functions, anal-
ogous to the chronos modes in SSA [10], are tailored to the
geometry of M through its Riemannian measure µ.

Applying this scheme to the upper-ocean temperature in
the North Pacific sector of a comprehensive climate model,
we found a family of intermittent processes which are not cap-
tured by SSA. These processes describe eastward-propagating,
small-scale temperature anomalies in the Kuroshio current,
as well as retrograde-propagating structures at high latitudes
and in the subtropics. These modes carry little variance of
the raw signal, and display burst-like behavior characteristic
of strongly nonlinear dynamics [17]. The remaining identified
modes include the familiar PDO pattern of decadal variability,
as well as annual and semiannual periodic processes.

Besides demonstrating NLSA’s skill in capturing qualitatively-
distinct spatio-temporal patterns, we have examined its util-
ity in building high-quality bases for model reduction through
Galerkin projection. As a particularly challenging example,
involving strong intermittency and inhomogeneous sampling
of the attractor, we considered a six-mode low-order model
for the atmosphere featuring chaotic transitions between zonal
and blocked regimes [26]. While other data-driven approaches
fail to reproduce chaotic regime behavior [18], Galerkin modes
based on NLSA led to reduced models of dimension as low as
3 featuring the salient aspects of regime behavior of the full
model. More generally, NLSA is well-poised to capture short-
time transitions and rare events via non-uniform weighting
of the data through the Riemannian volume. This feature
is encouraging for potential future research on NLSA-based
empirical models for prediction in large-scale models, such as
coupled climate models.
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Fig. 1. Singular values σi (normalized so that σ1 = 1) evaluated through NLSA and SSA

for the CCSM3 ocean data, indicating the periodic, low-frequency, and intermittent modes.
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Fig. 2. Temporal patterns vk(t) from [9 ], corresponding to the singular values in Figure 1,

plotted in the temporal and frequency domains. (a) Annual periodic mode, v1; (b) Leading

low-frequency (PDO) mode, v3; (c) Leading intermittent (Kuroshio) mode, v9.

Fig. 3. Spatio-temporal patterns
∑

k x̃k
t of the upper 300 m temperature anomaly field

(annual mean subtracted at each gridpoint, color-coded in ◦C) evaluated using [9 ] and [1 ]
for August of year 39 of Figure 2, using (a) the annual modes, k ∈ {1, 2}; (b) the first

low-frequency mode, k = 3, describing the PDO; (c) the semiannual modes, k ∈ {6, 7}; (d)
the leading two-fold degenerate set of intermittent modes, k ∈ {9, 10}, describing variability

of the Kuroshio current. The dynamic evolution is much more revealing; see Movie S1.
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ble S1), showing approximate locations of the zonal and blocked states; (b–d) reduced models

constructed by projection onto the NLSA modes uk from [9 ]. See also Movie S2.
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model. (c) the Riemannian measure µ of the reduced model.
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