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[1] The analysis of univariate or multivariate time series
provides crucial information to describe, understand,
and predict climatic variability. The discovery and im-
plementation of a number of novel methods for extract-
ing useful information from time series has recently
revitalized this classical field of study. Considerable
progress has also been made in interpreting the infor-
mation so obtained in terms of dynamical systems the-
ory. In this review we describe the connections between
time series analysis and nonlinear dynamics, discuss sig-
nal-to-noise enhancement, and present some of the
novel methods for spectral analysis. The various steps, as
well as the advantages and disadvantages of these meth-
ods, are illustrated by their application to an important

climatic time series, the Southern Oscillation Index. This
index captures major features of interannual climate vari-
ability and is used extensively in its prediction. Regional
and global sea surface temperature data sets are used to
illustrate multivariate spectral methods. Open questions
and further prospects conclude the review. INDEX TERMS: 1620
Climate dynamics (3309); 3220 Nonlinear dynamics; 4522 El Niño;
9820 Techniques applicable in three or more fields; KEYWORDS: cli-
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1. INTRODUCTION AND MOTIVATION

[2] A time series provides useful information about
the physical, biological, or socioeconomic system that
produced it. The purpose of time series analysis is to
determine some of the system’s key properties by quan-
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TABLE 1. Glossary of the Principal Symbolsa

Symbol Definition Method Section

Ak(t) kth principal component (PC) of {X(t)} SSA 2.2
Ak

b(t) kth local PC of {X(t)} at time b SSA 2.4
A(t), An continuous- and discrete-time envelope function MTM 3.4
Ak kth multichannel PC SSA 4.2
a dilation factor of �(x) 3 �(x/a) WLTs 2.4
a1 lag-one autoregression coefficient SSA 2.3
{aj} true regression coefficients with order M 1
{âj} estimates of aj with order M� MEM 3.3
B, B̂(f0) true and estimated amplitude of oscillation (at frequency f0) MTM 3.4
B, B� true and estimated dynamics matrix (with lag �) POP 4.1
b translation of �(x) 3 �(x � b) WLTs 2.4
bk(f) weighting function MTM 3.4
CR covariance of surrogate data for {X(t)} SSA 2.3
C(R) reduced covariance matrix SSA Appendix
C(�) lag-covariance matrix of {X(t)} with lag � POP 4.1
CX covariance of {X(t)} in the univariate case SSA 2.2
C̃X grand covariance matrix in the multivariate case SSA 4.2
D trajectory matrix of {X̃(t)} in the univariate case 2.2
D̃ trajectory matrix of {X̃l(t)} in the multivariate case SSA 4.2
d dimension of underlying attractor 2.1
d�(t) white noise vector in continuous time POP 4.1
Ek eigenvector matrix of C̃X or T̃X SSA 4.2
Fi right-hand sides of ODEs 2.1
F(f) F test ratio MTM 3.4
f frequency SSA 2.3
{fk} discrete sequence of frequencies BT 3.2
fN Nyquist frequency 2.3
fR Rayleigh frequency MTM 3.4
f0 fixed frequency of pure sinusoid MTM 3.4
G(�) Green’s function associated with B at lag � POP 4.1
{gj} smoothing weights for S� X(fk) BT 3.2
I interval for dilations a WLTs 2.4
i time index SSA 2.4
i imaginary unit BT 3.4
K number of tapers MTM 3.4
� a set of indices used in reconstruction SSA 2.2
L number of channels POP 4.1
M order of autoregression 1
M embedding dimension 2.1
M�t window width SSA 2.2
Mt normalization factor for R�(t) SSA 2.2
M� order of MEM MEM 3.3
N length of {X(n�t)} 1
N� length of {X̃(n�t)}, N� � N � M � 1 2.1
Ñ normalization factor for T̃X SSA 4.2
P(f) cumulative power spectrum 3.1
p integer bandwidth parameter MTM 3.4
Q lag-zero covariance matrix of d�(t) POP 4.1
R�(t) reconstructed component (RC) of {X(t)} for a set � SSA 2.2
R�

b (t) �th local RC of {X(t)} at time b SSA 2.4
Rk kth multichannel RC SSA 4.2
r lag-one autocorrelation SSA 2.3
S(f) power spectrum of AR(1) process SSA 2.3
S0 average of S(f) SSA 2.3
SX(f), ŜX(f) true and estimated periodogram BT 3.2
S̃X(f) correlogram BT 3.2
S� X(fk), S� X(f) direct and indirect estimate of SX(f) BT 3.2
SX(f), ŜX(f) true and estimated (by {âj}) power spectrum BT 3.2
Ŝk(f) estimated kth eigenspectrum MTM 3.4
Sr(f), Sw(f) high-resolution and adaptively weighted multitaper spectrum MTM 3.4
T̃X grand block matrix for covariances SSA 4.2
t continuous time (t � �) or discrete time (t � ��) 1
�t sampling rate 1
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tifying certain features of the time series. These proper-
ties can then help understand the system’s behavior and
predict its future.

[3] To illustrate the ideas and methods reviewed here,
we shall turn to one of the best known climatic time
series. This time series is made up of monthly values of
the Southern Oscillation Index (SOI). It will be intro-
duced in section 2.2 and is shown in Figure 2 there.

[4] At this point we merely note that physical pro-
cesses usually operate in continuous time. Most mea-
surements, though, are done and recorded in discrete
time. Thus the SOI time series, as well as most climatic
and other geophysical time series, are available in dis-
crete time.

1.1. Analysis in the Time Domain Versus the
Spectral Domain

[5] Two basic approaches to time series analysis are
associated with the time domain or the spectral domain.
We present them at first in the linear context in which
the physical sciences have operated for most of the last
two centuries. In this context the physical system can be
described by a linear ordinary differential equation

(ODE), or a system of such equations, subject to addi-
tive random forcing.

[6] It goes well beyond the scope of this review paper
to introduce the concepts of random variables, stochastic
processes, and stochastic differential equations. We re-
fer the interested reader to Feller [1968, 1971] for the
former two concepts and to Arnold [1974] and Schuss
[1980] for the latter. Many of the standard books on
classical spectral methods that are cited in sections 3.1
and 3.2 also contain good elementary introductions to
stochastic processes in discrete and, sometimes, contin-
uous time.

[7] We concentrate here on time series in discrete
time and consider therefore first the simple case of a
scalar, linear ordinary difference equation with random
forcing,

X	t � 1
 � �
j�1

M

aj X	t � M � j
 � ��	t
. (1)

Its constant coefficients aj determine the solutions X(t)
at discrete times t � 0, 1, � � � , n, � � � . In (1) the random
forcing �(t) is assumed to be white in time, i.e., uncor-

TABLE 1. (continued)

Symbol Definition Method Section

n�t discretely sampled time 1
Uk(f) discrete Fourier transform of wk(t) MTM 3.4
W sliding-window length of wavelet SSA 2.4
W�(a, b) wavelet transform of {X(t)} using b-translated and a-dilated �((t � b)/a) SSA 2.4
W�(k) lag window for S� X(f) with smoothing parameter � BT 3.2
Wm(k) Bartlett window for S� X(f) with window length m BT 3.2
wk(t) kth taper MTM 3.4
X̂(t) observed time series 1
Xn X(n�t) 1
X(p) pth-order differentiation of X(t) with respect to time t, dpX/dtp 1
{X(t)} univariate time series in t � � or t � �� 1
X̃(t) M-dimensional augmented vector of X(t) 2.1
X0 mean of {X(t)} SSA 2.3
XI(t) reconstructed X(t) WLTs 2.4
X̃(t), X̃(n�t) continuous- and discrete-time reconstructed signal MTM 3.4
{X(t)} multivariate time series in t � � or t � �� POP 4.1
{X̃l} multichannel augmented vector of {X̃(t)} SSA 4.2
Ŷk(f) discrete Fourier transform of {X(t)wk(t)} MTM 3.4
 time-scale ratio SSA 2.4
�(t) additive noise MTM 3.4
� explained contribution to variance MTM 3.4
�k, �X kth eigenvalue and eigenvalue matrix of CX SSA 2.2
�R projection of CR onto EX SSA 2.3
�k weight of kth taper MTM 3.4
� number of degrees of freedom of spectrum MTM 3.4
�(t) random forcing 1
�k, EX kth eigenvector and eigenvector matrix of CX SSA 2.2
�2 variance of random forcing 1
� characteristic delay time SSA 2.3
�X(k), �̂X(k) true and estimated lag k autocorrelation function of X(t) BT 3.2
�(x) mother wavelet of variable x WLTs 2.4
� unexplained contribution to variance MTM 3.4

aMethod and section number correspond to where the symbol appears first or is used differently from previous sections.
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related from t to t � 1, and Gaussian at each t, with
constant variance equal to unity. In the Yule [1927] and
Walker [1931] method for the time domain approach,
one computes the coefficients aj and the variance �2

from a realization of X having length N, {X(t)�1 � t �
N }.

[8] This method is discussed further in section 3.3
below, where (1) is treated as an autoregressive (AR)
process of order M, which we denote by AR(M). The
notation used in the present paper is summarized in
Table 1. The table lists the main symbols in alphabetical
order and indicates the section where each symbol is
introduced first. This facilitates the comparison between
the methods we review, since the literature of each
method tends to use its own notation.

[9] The spectral domain approach is motivated by the
observation that the most regular, and hence predict-
able, behavior of a time series is to be periodic. This
approach then proceeds to determine the periodic com-
ponents embedded in the time series by computing the
associated periods, amplitudes, and phases, in this order.

[10] The classical implementation of the spectral do-
main approach is based on the Bochner-Khinchin-Wie-
ner theorem [Box and Jenkins, 1970], which states that
the lag autocorrelation function of a time series and its
spectral density are Fourier transforms of each other.
Hannan’s [1960] introduction to this approach and its
implementation excels by its brevity and clarity; the
so-called Blackman-Tukey implementation is presented
in section 3.2 below. We shall use here both the more
mathematical term of spectral density and the term of
power spectrum, often encountered in the scientific and
engineering literature, according to whether the context
is more theoretical or more applied.

[11] The remainder of this review is organized as
follows. Section 2 deals mainly with signal-to-noise (S/N)
ratio enhancement and introduces singular spectrum
analysis (SSA) as an important and flexible tool for this
enhancement. Connections between SSA and empirical
orthogonal functions (EOFs) are outlined in Appendix
A. Statistical tests for the reliability of SSA results are
also discussed in this section, along with connections to
wavelet analysis.

[12] In section 3 we present, in succession, three
methods of spectral analysis: Fourier transform based,
maximum entropy, and multitaper. Both sections 2 and 3
use the SOI time series for the purposes of illustrating
the methods “in action.” In section 4 the multivariate
extensions of the maximum entropy method and of
single-channel SSA are introduced, and a few additional
applications are mentioned or illustrated. The review
concludes with a section on open questions, from the
point of view of both the methodology and its applica-
tions.

1.2. Time Series and Nonlinear Dynamics
[13] Before proceeding with the technical details, we

give in this section a quick perspective on the “nonlinear

revolution” in time series analysis. Irregularity in ob-
served time series had traditionally been attributed to
the above mentioned random “pumping” of a linear
system by infinitely many (independent) degrees of free-
dom (DOF). In the 1960s and 1970s the scientific com-
munity found out that much of this irregularity could be
generated by the nonlinear interaction of a few DOF
[Lorenz, 1963; Smale, 1967; Ruelle and Takens, 1971].
This realization of the possibility of deterministic aperi-
odicity or “chaos” [Gleick, 1987] created quite a stir.

[14] The purpose of this review is to describe briefly
some of the implications of this change in outlook for
time series analysis, with a special emphasis on climatic
time series. Many general aspects of nonlinear time
series analysis are reviewed by Drazin and King [1992],
Ott et al. [1994], and Abarbanel [1996]. We concentrate
here on those aspects that deal with regularities and
have proven most useful in studying climatic variability.

[15] A connection between deterministically chaotic
time series and the nonlinear dynamics generating them
was attempted fairly early in the young history of “chaos
theory.” The basic idea was to consider specifically a
scalar, or univariate, time series with apparently irregu-
lar behavior, generated by a deterministic or stochastic
system. This time series could be exploited, so the think-
ing went, in order to ascertain, first, whether the under-
lying system has a finite number of DOF. An upper
bound on this number would imply that the system is
deterministic, rather than stochastic, in nature. Next, we
might be able to verify that the observed irregularity
arises from the fractal nature of the deterministic sys-
tem’s invariant set, which would yield a fractional, rather
than integer, value of this set’s dimension. Finally, one
could maybe reconstruct the invariant set or even the
equations governing the dynamics from the data.

[16] This ambitious program [Packard et al., 1980;
Roux et al., 1980; Ruelle, 1981] relied essentially on the
method of delays, based in turn on the Whitney [1936]
embedding lemma and the Mañé [1981] and Takens
[1981] theorems. We first describe an easy connection
between a univariate and a multivariate time series.

[17] Let us assume that the univariate time series is
the solution of a scalar nonlinear ODE of order p,

X	 p
 � G	X	 p�1
, . . . , X
. (2)

This scalar higher-dimensional equation is equivalent to
the following system of first-order ODEs:

Ẋi � Fi	X1, . . . , Xj, . . . , Xp
, 1 � i, j � p; (3)

here Ẋ � dX/dt � X(1) and X( p) � dpX/dtp. It suffices
to write

X � X1, Ẋ1 � X2, . . . , Ẋp�1 � Xp, Ẋp � G	X1, . . . , Xp
,

(4)

so that F1 � X2, F2 � X3, � � � , Fp � G. In other words,
the successive derivatives of X(t) can be thought of as
the components of a vector X � (X1, � � � , Xp). The
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Euclidean space �p in which the vector X � X(t) evolves
is called the phase space of the first-order system (3).
The graph of this evolution in �p is called an orbit or a
trajectory of equation (3).

[18] Let us now change the point of view and consider
system (3) for arbitrary right-hand sides Fi(X), rather
than for the specific Fi given by (4). Such an ODE
system represents a fairly general description of a dif-
ferentiable dynamical system in continuous time [Ar-
nold, 1973, 1983]. We are interested at first in the case in
which only a single time series X̂(t) is known, where X̂ �
Xi for some fixed component i � i0 or X̂ is some
sufficiently smooth function of all the components Xi.
For the solutions of such a system to be irregular, i.e.,
other than (asymptotically) steady or periodic, three or
more DOF are necessary. Can one then go from (3) to
(2) just as easily as in the opposite direction? The
answer, in general is no; hence a slightly more sophisti-
cated procedure needs to be applied.

[19] This procedure is called the method of delays,
and it tries, in some sense, to imitate the Yule-Walker
inference of (1) from the time series {X(t)�t � 1, � � � ,
N }. First of all, one acknowledges that the data X(t) are
typically given at discrete times t � n�t only. Next, one
admits that it is hard to actually get the right-hand sides
Fi; instead, one attempts to reconstruct the invariant set
on which the solutions of (3) that satisfy certain con-
straints lie.

[20] In the case of conservative, Hamiltonian systems
[Lichtenberg and Lieberman, 1992], there are typically
unique solutions through every point in phase space.
The irregularity in the solutions’ behavior is associated
with the intricate structure of cantori [Wiggins, 1988],
complicated sets of folded tori characterized by a given
energy of the solutions lying on them. These cantori
have, in particular, finite and fractional dimension, being
self-similar fractals [Mandelbrot, 1982].

[21] Mathematically speaking, however, Hamiltonian
systems are structurally unstable [Smale, 1967] in the
function space of all differentiable dynamical systems.
Physically speaking, on the other hand, “open” systems,
in which energy is gained externally and dissipated in-
ternally, abound in nature. Therefore climatic time se-
ries, as well as most other time series from nature or the
laboratory, are more likely to be generated by forced
dissipative systems [Lorenz, 1963; Ghil and Childress,
1987, chapter 5]. The invariant sets associated with ir-
regularity here are “strange attractors” [Ruelle and Tak-
ens, 1971], toward which all solutions tend asymptoti-
cally; that is, long-term irregular behavior in such
systems is associated with these attractors. These objects
are also fractal, although rigorous proofs to this effect
have been much harder to give than in the case of
Hamiltonian cantori [Guckenheimer and Holmes, 1983;
Lasota and Mackey, 1994].

[22] Mañé [1981], Ruelle [1981], and Takens [1981]
had the idea, developed further by Sauer et al. [1991],
that a single observed time series X̂(t) (where X̂ � Xi0

or, more generally, X̂ � �(X1(t), � � � , Xp(t))) could be
used to reconstruct the attractor of a forced dissipative
system. The basis for this reconstruction idea is essen-
tially the fact that the solution that generates X(t) covers
the attractor densely; that is, as time increases, this
solution will pass arbitrarily close to any point on the
attractor. Time series observed in the natural environ-
ment, however, have finite length and sampling rate, as
well as significant measurement noise.

[23] The embedding idea has been applied therefore
most successfully to time series generated numerically or
by laboratory experiments in which sufficiently long se-
ries could be obtained and noise was controlled better
than in nature. Broomhead and King [1986a], for in-
stance, successfully applied SSA to the reconstruction of
the Lorenz [1963] attractor. As we shall see, for climate
and other geophysical time series, it might be possible to
attain a more modest goal: to describe merely a “skele-
ton” of the attractor that is formed by a few robust
periodic orbits.

[24] In the climate context, Lorenz [1969] had already
pointed out a major stumbling block for applying the
attractor reconstruction idea to large-scale atmospheric
motions. While using more classical statistical methods,
he showed that the recurrence time of sufficiently good
analogs for weather maps was of the order of hundreds
of years, at the spatial resolution of the observational
network then available for the Northern Hemisphere.

[25] The next best target for demonstrating from an
observed time series the deterministic cause of its irreg-
ularity was to show that the presumed system’s attractor
had a finite and fractional dimension. Various dimen-
sions, metric and topological, can be defined [Kaplan
and Yorke, 1979; Farmer et al., 1983]; among them, the
one that became the most popular, since easiest to
compute, was the correlation dimension [Grassberger
and Procaccia, 1983]. In several applications, its compu-
tation proved rather reliable and hence useful. Climatic
time series, however, tended again to be rather too short
and noisy for comfort (see, for instance, Ruelle [1990]
and Ghil et al. [1991] for a review of this controversial
topic).

[26] A more robust connection between classical spec-
tral analysis and nonlinear dynamics seems to be pro-
vided by the concept of “ghost limit cycles.” The road to
chaos [Eckmann, 1981] proceeds from stable equilibria,
or fixed points, through stable periodic solutions, or limit
cycles, and on through quasiperiodic solutions lying on
tori, to strange attractors. The fixed points and limit
cycles are road posts on this highway from the simple to
the complex. That is, even after having lost their stability
to successively more complex and realistic solutions,
these simple attractors still play a role in the observed
spatial patterns and the time series generated by the
system.

[27] A “ghost fixed point” is a fixed point that has
become unstable in one or a few directions in phase
space. Still, the system’s trajectories will linger near it for
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extended time intervals [Legras and Ghil, 1985]. Like-
wise, a ghost limit cycle is a closed orbit that has become
slightly unstable but is visited, again and again, by the
system’s trajectories [Kimoto and Ghil, 1993].

[28] Consider the periodic solution shown in Figure
1a as embedded in Euclidean three-dimensional phase
space. It is neutrally stable in the direction tangent to
itself, while in the plane perpendicular to this tangent it
is asymptotically stable in one direction and unstable in
the other, as shown in the Poincaré section of Figure 1b.
In a multidimensional phase space it is plausible that the
directions of stability are numerous or even infinite in
number. The directions of instability, however, would
still be few in number, for parameter values not too far
from those at which the Hopf bifurcation that gave rise
to the limit cycle in the first place occurs. Hence solu-
tions of the full system would easily be attracted to this
barely unstable limit cycle, follow it closely for one or a
few turns, be ejected from its neighborhood, only to
return later, again and again.

[29] The analogous picture for a ghost fixed point was
illustrated in detail for an atmospheric model with 25
DOF by Legras and Ghil [1985; see also Ghil and Chil-
dress, 1987, Figures 6.12 and 6.18]. Thus the “ghosts” of
fixed points and limit cycles leave their imprint on the
system’s observed spatiotemporal behavior.

[30] The episodes during which the system trajectory
circles near a ghost limit cycle result in nearly periodic
segments of the time series and hence contribute to a
spectral peak with that period. This concept was illus-
trated using 40 years of an atmospheric multivariate time
series by Kimoto and Ghil [1993] for the so-called in-
traseasonal oscillations of the Northern Hemisphere
[see also Ghil and Mo, 1991a]. We shall show in the
subsequent sections of the present review, in particular

section 2.2, how this concept can be generalized to
associate multiple spectral peaks with a robust skeleton
of the attractor, as proposed by Vautard and Ghil [1989].

2. ENHANCING THE SIGNAL-TO-NOISE
(S/N) RATIO

2.1. Motivation for Singular Spectrum Analysis (SSA)
[31] SSA is designed to extract information from short

and noisy time series and thus provide insight into the
unknown or only partially known dynamics of the un-
derlying system that generated the series [Broomhead
and King, 1986a; Fraedrich, 1986; Vautard and Ghil,
1989]. We outline here the method for univariate time
series and generalize for multivariate ones in section 4.2.

[32] The analogies between SSA and spatial EOFs are
summarized in Appendix A, along with the basis of both
in the Karhunen-Loève theory of random fields and of
stationary random processes. Multichannel SSA (see
section 4.2) is numerically analogous to the extended
EOF (EEOF) algorithm of Weare and Nasstrom [1982].
The two different names arise from the origin of the
former in the dynamical systems analysis of univariate
time series, while the latter had its origins in the princi-
pal component analysis of meteorological fields. The two
approaches lead to different methods for the choice of
key parameters, such as the fixed or variable window
width, and hence to differences in the way of interpret-
ing results.

[33] The starting point of SSA is to embed a time
series {X(t)�t � 1, � � � , N } in a vector space of dimen-
sion M, i.e., to represent it as a trajectory in the phase
space of the hypothetical system that generated {X(t)}.
In concrete terms this is equivalent to representing the
behavior of the system by a succession of overlapping
“views” of the series through a sliding M-point window.

[34] Let us assume, for the moment, that X(t) is an
observable function X̂(t) of a noise-free system’s depen-
dent variables Xi(t), as defined in (4), and that the
function � that maps the p variables {Xi(t)�i � 1, � � � ,
p} into the single variable X(t) has certain properties
that make it generic in the dynamical systems sense of
Smale [1967]. Assume, moreover, that M � 2d � 1,
where d is the dimension of the underlying attractor on
which the system evolves, and that d is known and finite.
If so, then the representation of the system in the “delay
coordinates” described in (5) below will share key topo-
logical properties with a representation in any coordi-
nate system. This is a consequence of Whitney’s [1936]
embedding lemma and indicates the potential value of
SSA in the qualitative analysis of the dynamics of non-
linear systems [Broomhead and King, 1986a, 1986b;
Sauer et al., 1991]. The quantitative interpretation of
SSA results in terms of attractor dimensions is fraught
with difficulties, however, as pointed out by a number of
authors [Broomhead et al., 1987; Vautard and Ghil, 1989;
Palus̆ and Dvor̆ák, 1992].

Figure 1. Schematic diagram of a ghost limit cycle. Figure 1a
is a perspective sketch of the limit cycle (bold curve) in a
three-dimensional Euclidean space. Light solid curves indicate
two distinct trajectories that approach the limit cycle in a
direction in which it is stable and leave its neighborhood in an
unstable direction. Figure 1b is a sketch of the projection of
four representative trajectories (light curves) onto a Poincaré
section (i.e., a plane intersecting transversally the limit cycle) in
a neighborhood of the limit cycle. The figure’s mutually per-
pendicular directions (bold lines) of stability (inward pointing
arrows) and instability (outward pointing arrows) can form, in
general, an arbitrary angle with each other. The shape of such
a limit cycle need not be elliptic, as shown in the figure, except
near the Hopf bifurcation point where it arises. Reprinted
from Ghil and Yiou [1996] with permission of Springer-Verlag.
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[35] We therefore use SSA here mainly (1) for data-
adaptive signal-to-noise (S/N) enhancement and associ-
ated data compression and (2) to find the attractor’s
skeleton, given by its least unstable limit cycles (see
again Figure 1 above). The embedding procedure ap-
plied to do so constructs a sequence {X̃(t)} of M-
dimensional vectors from the original time series X, by
using lagged copies of the scalar data {X(t)�1 � t �
N },

X̃	t
 � 	X	t
, X	t � 1
, . . . , X	t � M � 1

; (5)

the vectors X̃(t) are indexed by t � 1, � � � , N�, where N�
� N � M � 1.

[36] SSA allows one to unravel the information em-
bedded in the delay-coordinate phase space by decom-
posing the sequence of augmented vectors thus obtained
into elementary patterns of behavior. It does so by
providing data-adaptive filters that help separate the
time series into components that are statistically inde-
pendent, at zero lag, in the augmented vector space of
interest. These components can be classified essentially
into trends, oscillatory patterns, and noise. As we shall
see, it is an important feature of SSA that the trends
need not be linear and that the oscillations can be
amplitude and phase modulated.

[37] SSA has been applied extensively to the study of
climate variability, as well as to other areas in the phys-
ical and life sciences. The climatic applications include
the analysis of paleoclimatic time series [Vautard and
Ghil, 1989; Yiou et al., 1994, 1995], interdecadal climate
variability [Ghil and Vautard, 1991; Allen and Smith,
1994; Plaut et al., 1995; Robertson and Mechoso, 1998], as
well as interannual [Rasmusson et al., 1990; Keppenne
and Ghil, 1992] and intraseasonal [Ghil and Mo, 1991a,
1991b] oscillations. SSA algorithms and their properties
have been investigated further by Penland et al. [1991],
Allen [1992], Vautard et al. [1992], and Yiou et al. [2000].
The SSA Toolkit first documented by Dettinger et al.
[1995a] was built, largely but not exclusively, around this
technique.

2.2. Decomposition and Reconstruction
[38] In this section we illustrate the fundamental SSA

formulae with the classical example of a climatic time
series, the Southern Oscillation Index (SOI). SOI is a
climatic index connected with the recurring El Niño
conditions in the tropical Pacific. It is defined usually as
the difference between the monthly means of the sea
level pressures at Tahiti and at Darwin (Australia). We
use this definition and the monthly data given in the
archive http://tao.atmos.washington.edu/pacs/additional_
analyses/soi.html.

[39] The SOI data in this archive are based on the
time series at each of the two stations being deseason-
alized and normalized [Ropelewski and Jones, 1987]. The
seasonal cycle is removed by subtracting the average of
the values for each calendar month over a reference

interval, in this case 1951–1980. The residues from this
operation, called monthly anomalies in the climatologi-
cal literature, are then normalized with respect to the
standard deviation computed over the same interval.

[40] The archived SOI data for 1866–1997 are from
the Climate Research Unit of the University of East
Anglia, and those for 1998–1999 are from the Climate
Prediction Center of the U.S. National Centers for En-
vironmental Prediction (NCEP). They are obtained by
taking the difference between the anomalies at Tahiti
and those at Darwin and dividing by the standard devi-
ation of this difference over the same 30-year reference
interval. The time interval we consider here goes from
January 1942 to June 1999, during which no observations
are missing at either station; this yields N � 690 raw
data points. Note that this raw SOI time series is cen-
tered and normalized over the reference interval 1951–
1980, but not over the entire interval of interest. We
show in Figure 2 the SOI obtained from this raw data
set. It actually has mean �0.0761 and standard deviation
equal to 1.0677. All subsequent figures, however, use a
version of the series that has been correctly centered
over the interval January 1942 to June 1999.

[41] SSA is based on calculating the principal direc-
tions of extension of the sequence of augmented vectors
{X̃(t)�t � 1, � � � , N�} in phase space. The M � M
covariance matrix CX can be estimated directly from the
data as a Toeplitz matrix with constant diagonals; that is,
its entries cij depend only on the lag �i � j� [cf. Vautard
and Ghil, 1989]:

cij �
1

N � �i � j� �
t�1

N��i�j�

X	t
 X	t � �i � j�
. (6)

The eigenelements {(�k, �k)�k � 1, � � � , M} of CX are
then obtained by solving

Figure 2. Variations of the Southern Oscillation Index (SOI)
between January 1942 and June 1999. Time on the abscissa is
in calendar years, and SOI on the ordinate is normalized by its
standard deviation.
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CX�k � �k�k. (7)

The eigenvalue �k equals the partial variance in the
direction �k, and the sum of the �k, i.e., the trace of CX,
gives the total variance of the original time series X(t).

[42] An equivalent formulation of (7), which will
prove useful further on, is given by forming the M � M
matrix EX that has the eigenvectors �k as its columns and
the diagonal matrix �X whose elements are the eigen-
values �k, in decreasing order:

EX
t CXEX � �X; (8)

here EX
t is the transpose of EX. Each eigenvalue �k gives

the degree of extension, and hence the variance, of the
time series in the direction of the orthogonal eigenvector
�k.

[43] A slightly different approach to computing the
eigenelements of CX was originally proposed by Broom-
head and King [1986a]. They constructed the N� � M
trajectory matrix D that has the N� augmented vectors
X̃(t) as its rows and used singular-value decomposition
(SVD) [see, for instance, Golub and Van Loan, 1996] of

CX �
1

N�
DtD (9)

to obtain the square roots of �k. The latter are called the
singular values of D and have given SSA its name.

[44] Allen and Smith [1996] and Ghil and Taricco
[1997] have discussed the similarities and differences
between the approaches of Broomhead and King [1986a]
and Vautard and Ghil [1989] in computing the eigenele-
ments associated in SSA with a given time series X(t).
Both the Toeplitz estimate (6) and the SVD estimate (9)
lead to a symmetric covariance matrix CX. In addition,
the eigenvectors �k of a Toeplitz matrix are necessarily
odd and even, like the sines and cosines of classical
Fourier analysis. The Toeplitz approach has the advan-
tage of better noise reduction when applied to short time
series, as compared with the SVD approach. This ad-
vantage comes at the price of a slightly larger bias when
the time series is strongly nonstationary over the interval
of observation 1 � t � N [Allen, 1992]. Such bias-
versus-variance trade-offs are common in estimation
problems.

[45] To obtain S/N separation, one plots the eigen-
value spectrum illustrated in Figure 3. In this plot an
initial plateau that contains most of the signal is sepa-
rated by a steep slope from the noise; the latter is
characterized by much lower values that form a flat floor
or a mild slope [Kumaresan and Tufts, 1980; Pike et al.,
1984; Vautard and Ghil, 1989].

[46] As the M � M matrix CX is symmetric, standard
algorithms [Press et al., 1988] will perform its spectral
decomposition efficiently, as long as M is not too large.
The choice of M is based on a trade-off between two
considerations: quantity of information extracted versus
the degree of statistical confidence in that information.

The former requires as wide a window as possible, i.e., a
large M, while the latter requires as many repetitions of
the features of interest as possible, i.e., as large a ratio
N/M as possible. The choice of M � 60 in Figure 3
allows us to capture periodicities as long as 5 years, since
�t � 1 month, and thus the dimensional window width is
M�t � 5 years; on the other hand, N/M � 11 is fairly
safe, and the diagonalization of CX for this moderate
value of M does not introduce large numerical errors
either.

[47] In Figure 3, there is a clear grouping of the first
five eigenvalues, followed by a very steep slope of three
additional eigenvalues. The latter are well separated
from the first five, as well as from the remaining 52
eigenvalues, which form the mildly sloping and flattening
out “tail” of the SSA spectrum.

[48] The S/N separation obtained by merely inspect-
ing the slope break in a “scree diagram” of eigenvalues
�k or singular values �k

1/ 2 versus k works well when the
intrinsic noise that perturbs the underlying deterministic
system and the extrinsic noise that affects the observa-
tions are both white, i.e., uncorrelated from one time
step to the next (see definition of �(t) in equation (1)).
This rudimentary separation works less well when either

Figure 3. Singular spectrum of the SOI time series. The
eigenvalues are plotted, as usual, in decreasing order. The
embedding dimension for Figures 3–7 is M � 60, which
represents a time window of 5 years. The error bars are based
on the default option of the singular spectrum analysis (SSA)
multitaper method (MTM) Toolkit (http://www.atmos.u-
cla.edu/tcd/ssa/). This option uses the ad hoc estimate of vari-
ance �k of an eigenvalue �k given by �k � (2/N̂)�k. The key
element of this estimate is the number N̂ of independent
degrees of freedom (DOF) in the time series. Vautard and Ghil
[1989], who first proposed this estimate in SSA, used N̂ � N,
which is very optimistic, while Ghil and Mo [1991a] used N̂ �
N/M, which is too conservative. The Toolkit’s current Version
4.0, following Unal and Ghil [1995], uses N̂ � N/��, where � is
the time series’ estimated decorrelation time (see equations
(15) and (16)) and � is an empirical constant, � � 1.5.
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noise is red, i.e., when it is given by an AR(1) process (see
section 3.3) or is otherwise correlated between time steps
[Vautard and Ghil, 1989]. The difficulties that arise with
correlated noise led Allen [1992] and Allen and Smith
[1994] to develop Monte Carlo SSA (see section 2.3).

[49] When the noise properties can be estimated re-
liably from the available data, the application of a so-
called “prewhitening operator” can significantly enhance
the signal separation capabilities of SSA [Allen and
Smith, 1997]. The idea is to preprocess the time series
itself or, equivalently but often more efficiently, the lag
covariance matrix CX, such that the noise becomes un-
correlated in this new representation. SSA is then per-
formed on the transformed data or covariance matrix
and the results are transformed back to the original
representation for inspection.

[50] By analogy with the meteorological literature, the
eigenvectors �k of the lag covariance matrix CX have
been called empirical orthogonal functions (EOFs) [see
Preisendorfer, 1988, and references therein] by Fraedrich
[1986] and by Vautard and Ghil [1989]. The EOFs cor-
responding to the first five eigenvalues are shown in
Figure 4. Note that the two EOFs in each one of the two
leading pairs, i.e., EOFs 1 and 2 (Figure 4a) as well as
EOFs 3 and 4 (Figure 4b), are in quadrature and that
each pair of EOFs corresponds in Figure 3 to a pair of
eigenvalues that are approximately equal and whose
error bars overlap. Vautard and Ghil [1989] argued that
subject to certain statistical significance tests discussed
further below, such pairs correspond to the nonlinear
counterpart of a sine-cosine pair in the standard Fourier
analysis of linear problems.

[51] In the terminology of section 1 here, such a pair
gives a handy representation of a ghost limit cycle. The
advantage over sines and cosines is that the EOFs

obtained from SSA are not necessarily harmonic func-
tions and, being data adaptive, can capture highly
anharmonic oscillation shapes. Indeed, relaxation os-
cillations [Van der Pol, 1940] and other types of non-
linear oscillations [Stoker, 1950], albeit purely peri-
odic, are usually not sinusoidal; that is, they are
anharmonic. Such nonlinear oscillations often require
therefore the use of many harmonics or subharmonics
of the fundamental period when carrying out classical
Fourier analysis, while a single pair of SSA eigen-
modes might suffice. Capturing the shape of an an-
harmonic oscillation, such as a seesaw or boxcar,
albeit slightly rounded or smoothed, is easiest when
the SSA window is exactly equal to the single period
being analyzed.

[52] Projecting the time series onto each EOF yields
the corresponding principal components (PCs) Ak:

Ak	t
 � �
j�1

M

X	t � j � 1
�k	 j
. (10)

Figure 5 shows the variations of the five leading PCs.
Again, the two PCs in each of the pairs (1, 2) and (3, 4)
are in quadrature, two by two (see Figures 5a and 5b).
They strongly suggest periodic variability at two different
periods, of about 4 and 2 years, respectively. Substantial
amplitude modulation at both periodicities is present,
too.

[53] The fifth PC, shown in Figure 5c, contains both a
long-term, highly nonlinear trend and an oscillatory
component. We shall discuss the trend of the SOI series
in connection with Figures 6b and 16a further below.

[54] We can reconstruct that part of a time series that

Figure 4. First five empirical orthogonal functions (EOFs) of
the SOI time series. The leading four EOFs are grouped into
two pairs, (1, 2) and (3, 4), in Figures 4a and 4b.

Figure 5. First five principal components (PCs) of the SOI
time series. Note phase quadrature in Figures 5a and 5b. The
maximal cross correlation in Figure 5a is reached when PC-2
leads PC-1 by 10 months and equals 0.89. In Figure 5b the
maximum cross correlation equals 0.71 and is obtained when
PC-4 leads PC-3 by 9 months.

40, 1 / REVIEWS OF GEOPHYSICS Ghil et al.: CLIMATIC TIME SERIES ANALYSIS ● 3-9



is associated with a single EOF or several by combining
the associated PCs:

R�	t
 �
1

Mt
�

k��

�
j�Lt

Ut

Ak	t � j � 1
�k	 j
; (11)

here � is the set of EOFs on which the reconstruction is
based. The values of the normalization factor Mt, as well as
of the lower and upper bound of summation Lt and Ut,
differ between the central part of the time series and its end
points [Ghil and Vautard, 1991; Vautard et al., 1992]:

	Mt, Lt, Ut
 �

�
�1

t , 1, t� , 1 � t � M � 1,

� 1
M , 1, M� , M � t � N�,

� 1
N � t � 1 , t � N � M, M� , N� � 1 � t � N.

(12)

[55] The reconstructed components (RCs) have the
property of capturing the phase of the time series in a
well-defined least squares sense, so that X(t) and R�(t)
can be superimposed on the same timescale, 1 � t � N.
This is an advantage of the RCs over the PCs, which
have length N � M and do not contain direct phase
information within the window width M.

[56] No information is lost in the reconstruction pro-
cess, since the sum of all individual RCs gives back the
original time series. Partial reconstruction is illustrated
in Figure 6 by summing the variability of PCs 1–4,
associated with the two leading pairs of eigenelements; it
is common to refer to such a reconstruction (equation
(11)), with � � {1, 2, 3, 4}, as RCs 1–4. The portion of
the SOI variability thus reconstructed contains 43% of
the total variance. It captures the quasi-oscillatory be-
havior isolated by these two leading pairs, with its two
distinct near-periodicities.

[57] It is clear that the partial SOI reconstruction
(bold curve in Figure 6a) is smooth and represents the
essential part of the interannual variability in the
monthly SOI data (thin curve). Each of the two pairs of
RCs, 1–2 and 3–4, can be thought of as retracing a ghost
limit cycle in the phase space of the tropical climate
system. These two limit cycles can then be said to form
the robust skeleton of the attractor. It is unlikely that a
time series of a few hundred points, like the SOI or other
typical climatic time series, will suffice to capture the
attractor’s fine structure [Vautard and Ghil, 1989].

[58] This robust skeleton, however, provides sufficient
information for most practical purposes. In particular,
warm events (El Niños) and cold ones (La Niñas) over
the eastern tropical Pacific are captured quite well, dur-
ing the 57.5 years of record, as minima and maxima of
the partially reconstructed SOI. We check this statement
by comparing the bold curve in Figure 6a with the
vertical arrows along the figure’s upper and lower ab-
scissae.

[59] These arrows correspond to strong (bold arrows)
or moderate (light arrows) El Niño–Southern Oscillation
(ENSO) events. The events are defined subjectively,
calendar quarter by calendar quarter, from reanalyzed
surface temperature data produced at NCEP and the
U.K. Met. Office for the years 1950–1999 (see http://
www.cpc.noaa.gov/products/analysis_monitoring/ensostuff/
ensoyears.html).

[60] Large positive peaks in the partial SOI recon-
struction, i.e., those that exceed one standard deviation,
match the strong La Niñas quite well (downward point-
ing arrows on the upper abscissa). The only exceptions
are the 1950 and 1971 cold events, which were of mod-
erate strength, and the weak 1996 La Niña.

[61] The same good match obtains between the large
negative peaks in the figure’s bold curve, i.e., those that
exceed one standard deviation, and the strong El Niños
(upward pointing arrows on the lower abscissa). The
only notable exception is the large peak in 1977–1978,
which was classified subjectively as a weak warm event.

Figure 6. Partial reconstructions of the SOI time series. Fig-
ure 6a is a reconstruction based on EOFs 1–4 (bold curve).
The raw SOI series is shown as the light curve. El Niños (warm
events) are shown as upward pointing arrows on the lower
abscissa, while La Niñas (cold events) are shown as downward
pointing arrows on the upper abscissa; the arrows are aligned
with the January closest to the event maximum. Figure 6b
shows the trend of reconstructed component (RC) number 5
(RC-5); see text for details.
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The 1957–1958 and 1991–1992 events appear as moder-
ate-size minima in the partial SOI reconstruction. They
are included in the NCEP list as strong El Niños for one
(January–March 1958) or two (January–June 1992) sea-
sons, but neither was strong during the second half of
the calendar year. Thus the only discrepancies among
the oscillatory part of the SOI, based on RCs 1– 4, and
the subjective NCEP classification are in the intensi-
ties (moderate versus strong, or vice versa) of a few
events.

[62] Earlier SSA results do support the present em-
phasis on the doubly periodic character of ENSO phe-
nomena. They include the analyses of Rasmusson et al.
[1990] for sea surface temperatures and near-surface
zonal winds in the tropical Indo-Pacific belt, those of
Keppenne and Ghil [1992] for a slightly different treat-
ment of the SOI, as well as those of Jiang et al. [1995a]
for sea surface temperatures and of Unal and Ghil [1995]
for sea level heights in the tropical Pacific. In all these
data sets and SSA analyses, a quasi-biennial and a lower-
frequency, quasi-quadrennial oscillatory pair were reli-
ably identified among the leading SSA eigenelements.

[63] Shown in Figure 6b is also a filtered version of
RC-5, which captures well the small but significant long-
term trend of the SOI time series in Figure 2. To
eliminate the oscillatory component apparent in PC-5
(Figure 5c), we applied SSA with the same 60-month
window to the full RC-5. The two leading eigenmodes
correspond to a pure trend, shown in Figure 6b, while
the second eigenpair corresponds to a quasi-biennial
oscillation (not shown). The SOI trend in Figure 6b
agrees, up to a point, with the one captured by the
multitaper reconstruction in section 3.4.2 (see Figure
16a there). Given the recent interest in the interdecadal
variability of ENSO, we postpone further discussion of
this result for the moment when its multitaper version is
also in hand.

[64] Reliable S/N separation and identification of os-
cillatory pairs is not always as easy as in the case of
interannual climate variability in the tropical Pacific.
Global surface-air temperatures, for instance, present a
considerably more difficult challenge for identifying in-
terannual and interdecadal oscillations. Elsner and Tso-
nis’s [1991] excessive reliance on eigenvalue rank order
as a criterion of significance in SSA has led to consider-
able confusion in this case [see Allen et al., 1992a, 1992b].

[65] Reliable identification of the true signal conveyed
by a short, noisy time series and of the oscillatory com-
ponents within this signal requires effective criteria for
statistical significance, which are treated in the next
section. Subject to these caveats, a clean signal, obtained
by partial reconstruction over the correct set of indices
�, provides very useful information on the underlying
system, which is often poorly or incompletely known.

[66] Such a signal can then be analyzed further, both
visually and by using other spectral analysis tools that are
described in section 3. The maximum entropy method
(MEM), which we describe in section 3.3, works partic-

ularly well on signals so enhanced by SSA [Penland et al.,
1991].

2.3. Monte Carlo SSA
[67] In the process of developing a methodology for

applying SSA to climatic time series, a number of heu-
ristic [Vautard and Ghil, 1989; Ghil and Mo, 1991a; Unal
and Ghil, 1995] or Monte Carlo [Ghil and Vautard, 1991;
Vautard et al., 1992] methods have been devised for S/N
separation or the reliable identification of oscillatory
pairs of eigenelements. They are all essentially attempts
to discriminate between the significant signal as a whole,
or individual pairs, and white noise, which has a flat
spectrum. A more stringent “null hypothesis” [Allen,
1992] is that of red noise, since most climatic and other
geophysical time series tend to have larger power at
lower frequencies [Hasselmann, 1976; Mitchell, 1976;
Ghil and Childress, 1987].

[68] For definiteness, we shall use here the term red
noise exclusively in its narrow sense, of an AR(1) process
given by (1) with M � 1 and 0 � a1 � 1, as required by
weak or wide-sense stationarity (see Appendix A for an
exact definition). Other stochastic processes that have a
continuous spectral density S( f ) which decreases mono-
tonically with frequency f will be called “warm colored.”

[69] The power spectrum S( f ) of the AR(1) process
is given by [e.g., Chatfield, 1984]

S	 f 
 � S0

1 � r2

1 � 2r cos 	2�f/fN
 � r2 . (13)

Here 0 � S0 � � is the average value of the power
spectrum, related to the white-noise variance �2 in (1) by

S0 �
�2

1 � r2 , (14)

while r is the lag-one autocorrelation, r � a1, and the
Nyquist frequency fN � 1/(2�t) is the highest frequency
that can be resolved for the sampling rate �t. Note that
in (1) and (5) we have used �t � 1 for simplicity and
without loss of generality, since �t can always be rede-
fined as the time unit. It is useful at this point to recall,
for clarity’s sake, that it is not necessary to do so. The
characteristic decay timescale � of the AR(1) noise can
be estimated by

� � �
�t

log r . (15)

[70] In general, straightforward tests can be devised to
compare a given time series with an idealized noise
process: The continuous spectrum of such a process is
known to have a particular shape, and if a particular
feature of the data spectrum lies well above this theo-
retical noise spectrum, it is often considered to be sta-
tistically “significant.” A single realization of a noise
process can, however, have a spectrum that differs
greatly from the theoretical one, even when the number
of data points is large. It is only the (suitably weighted)
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average of such sample spectra over many realizations
that will tend to the theoretical spectrum of the ideal
noise process. Indeed, the Fourier transform of a single
realization of a red-noise process can yield arbitrarily
high peaks at arbitrarily low frequencies; such peaks
could be attributed, quite erroneously, to periodic com-
ponents.

[71] More stringent tests have to be used therefore to
establish whether a time series can be distinguished from
red noise or not. Allen [1992] devised such a test that
compares the statistics of simulated red-noise time series
with those of a given climatic time series. The principle
of this test is implicit in some of Broomhead and King’s
[1986a] ideas. The application of SSA in combination
with this particular Monte Carlo test against red noise
has become known as “Monte Carlo SSA” (MC-SSA)
[see Allen and Smith, 1994, 1996].

[72] MC-SSA can be used, more generally, to estab-
lish whether a given time series can be distinguished
from other well-defined processes. We only present
here, for the sake of brevity and clarity, the original test
against an AR(1) process. Allen [1992] proposes, in fact,
to estimate the mean X0 of the process at the same time
as the other parameters. We therefore rewrite (1) here
for the particular case at hand as

X	t
 � a1�X	t � 1
 � X0� � ��	t
 � X0; (16)

here, as in (1), �(t) is a Gaussian-distributed white-noise
process with zero mean and unit variance.

[73] When testing against the process (16), the first
step in MC-SSA is to estimate the mean X0 and the
coefficients a1 and � from the time series X(t) by using
a maximum likelihood criterion. Allen and Smith [1996]
provide low-bias estimators that are asymptotically un-
biased in the limit of large N and close to unbiased for
series whose length N is at least an order of magnitude
longer than the decorrelation time � � �1/log r. Co-
chrane and Orcutt [1949] have shown that when � is not
very small relative to N, the use of a crude estimate for
the mean X0, i.e., “centering” the time series first, can
lead to severe biases in the subsequent estimation of a1.
This is not the case for the SOI time series used here, as
� �� N for it. Hence we have used an SOI time series,
based on the data in Figure 2, that has been centered.

[74] On the basis of estimated values X̂0, â1, and �̂ of
these parameters, an ensemble of simulated red-noise
data is generated and, for each realization, a covariance
matrix CR is computed. In the nonlinear dynamics liter-
ature, such simulated realizations of a noise process are
often called surrogate data [Drazin and King, 1992; Ott et
al., 1994].

[75] The covariance matrices of the surrogate data are
then projected onto the eigenvector basis EX of the
original data by using (8) for their SVD,

�R � EX
t CREX. (17)

[76] Since (17) is not the SVD of the particular real-
ization CR, the matrix �R is not necessarily diagonal, as

it is in (8). Instead, �R measures the resemblance of a
given surrogate set with the original data set of interest.
The degree of resemblance can be quantified by com-
puting the statistics of the diagonal elements of �R. The
statistical distribution of these elements, determined
from the ensemble of Monte Carlo simulations, gives
confidence intervals outside which a time series can be
considered to be significantly different from a random
realization of the process (16). For instance, if an eig-
envalue �k lies outside a 90% noise percentile, then the
red-noise null hypothesis for the associated EOF (and
PC) can be rejected with this level of confidence. Oth-
erwise, that particular SSA component of the time series
cannot be considered as significantly different from red
noise. Additional problems posed by the multiplicity of
SSA eigenvalues and other finer points are also dis-
cussed by Allen [1992] and Allen and Smith [1996].

[77] As the next step in the analysis of our SOI time
series, we apply an MC-SSA noise test to it. In order to
enhance the readability of the diagrams for the SSA
spectra in the presence of MC-SSA error bars, we asso-
ciate a dominant frequency with each EOF detected by
SSA, as suggested by Vautard et al. [1992], and plot in
Figure 7 the eigenvalues (diamonds) versus frequency,
following Allen and Smith [1996].

[78] Such a plot is often easier to interpret, with
respect to the MC-SSA error bars, than plotting versus
the eigenvalue’s rank k as in Figure 3. Care needs to be
exercised, however, since the dominant-frequency esti-
mate may be ambiguous or uncertain, due to the possi-
ble anharmonicity of the EOFs, especially for low fre-

Figure 7. Monte Carlo singular spectrum of the SOI time
series. The diamonds indicate projections of the noise eigen-
vectors onto the data correlation matrix (see equation (17));
the lower and upper ticks on the error bars indicate the 5th and
95th noise percentiles. For each EOF, a characteristic fre-
quency was estimated by maximizing its correlation with a
sinusoid; therefore the frequency at which each diamond is
plotted is just an average estimate. The frequencies in this
figure and subsequent ones are given in cycles per month.
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quencies. This is patently the case for the fifth mode in
Figures 3–5. This mode appears at zero frequency in
Figure 7, while we know very well that it has a quasi-
biennial oscillatory component besides its capturing the
SOI’s nonlinear trend.

[79] The error bars shown in Figure 7 for each EOF
represent 90% of the range of variance found in the
state-space direction defined by that EOF in an ensem-
ble of 1000 red-noise realizations; that is, it denotes the
interval between the 5th and 95th percentile. Hence
eigenvalues lying outside this interval are relatively un-
likely (at the 10% level) to be due merely to the red-
noise process (equation (16)) against which they are
being tested.

[80] The high values in Figure 7 exhibit a significant
quasi-biennial oscillation and an oscillatory component
with a period of about 50 months. The low values near 1
cycle yr�1 are due to the fact that the seasonal cycle has
been removed prior to the analysis, and the consequent
suppression of power near annual-cycle periods has not
been taken into account in the noise parameter estima-
tion. Allen and Smith [1996] recommend that as far as
possible, seasonal cycles should not be removed prior to
the analysis, but that their presence should be taken into
account explicitly in the parameter estimation [see also
Jiang et al., 1995a; Unal and Ghil, 1995]. This recommen-
dation has to be weighted against two related consider-
ations. First, the reliable identification of a given peri-
odicity becomes harder as the number of periodicities to
be estimated increases, and second, the seasonal cycle
and its physical causes are fairly well known and under-
stood.

[81] The MC-SSA algorithm described above can be
adapted to eliminate known periodic components and
test the residual against noise. This adaptation can pro-
vide better insight into the dynamics captured by the
data. Indeed, known periodicities, like orbital forcing on
the Quaternary timescale or seasonal forcing on the
intraseasonal-to-interannual one, often generate much
of the variance at the lower frequencies manifest in a
time series and alter the rest of the spectrum. Allen
[1992] and Allen and Smith [1996] describe this refine-
ment of MC-SSA which consists of restricting the pro-
jections given by (17) to the EOFs that do not account
for known periodic behavior.

[82] Monte Carlo simulation is a robust, flexible, and
nonparametric approach to assessing the significance of
individual eigenmodes in SSA. Since it can be computa-
tionally intensive, Allen and Smith [1996] suggest a much
faster, albeit parametric alternative. In an appendix they
also clarify the relationship between confidence intervals
from MC-SSA and earlier heuristic approaches [e.g.,
Vautard and Ghil, 1989; Ghil and Mo, 1991a; Unal and
Ghil, 1995].

[83] MC-SSA provides, furthermore, the means of
evaluating the significance of frequency separation be-
tween apparently distinct spectral peaks, without appeal-
ing to the application of additional spectral methods.

The associated “bandwidth” is 1/M and is discussed
further in a multichannel context in section 4.2. Given the
fact that the assignment of frequency to an eigenpair is not
entirely unique (see discussion of the zero-frequency com-
ponent in Figure 7), we still recommend the application of
other spectral methods for the detailed study of spectral
content, in addition to SSA and MC-SSA.

2.4. Multiscale SSA and Wavelet Analysis
[84] Wavelet analysis has become a basic tool for the

study of intermittent, complex, and self-similar signals,
because it works as a mathematical microscope that can
focus on a specific part of the signal to extract local
structures and singularities [Strang, 1989; Meyer, 1992,
1993; Daubechies, 1992]. In climate dynamics [Meyers et
al., 1993; Weng and Lau, 1994; Torrence and Compo,
1998], and geophysics [Kumar and Foufoula-Georgiou,
1997], wavelets have been used mostly to follow changes
in frequency of one or more periodic signals. While SSA
follows amplitude and phase modulation of a signal
easily (see section 2.2, as well as Plaut and Vautard
[1994] and Moron et al. [1998]), a narrow band of fre-
quencies that vary in time, from one line in the band to
another (see section 3.1), is captured typically by a single
pair of SSA eigenmodes.

[85] A wavelet transform requires the choice of an
analyzing function or “mother wavelet” � that has gen-
eral admissibility properties [Meyer, 1992; Daubechies,
1992], as well as the more specific property of time and
frequency localization; that is, � and its Fourier trans-
form �� must decay rapidly outside a given interval.
Functions � based on a Gaussian, �( x) � exp (�x2),
first proposed in this context by Gabor [1946], possess
the localization property even though they do not satisfy
the admissibility condition that their integral over the
real line � vanish [Delprat et al., 1992].

[86] A �-wavelet transform W� in continuous time
and frequency is simply a projection of a signal X(t), ��
� t � �, onto b-translated and a-dilated versions of �:

W�	a, b
 �
1

�a 	
��

�

X	t
� � t � b
a � dt. (18)

If most of � is concentrated in the interval [�1, 1], say
(up to a rescaling), then (18) is clearly an analysis of X in
the interval [b � a, b � a]. Using the successive
derivatives �(n) of a given mother wavelet � in (18) is
equivalent (up to a normalization factor) to a � analysis
of the successive derivatives of the time series X; this is
easy to see through an integration by parts.

[87] The original signal, or a filtered version of it, can
be reconstructed from the family of wavelet transforms.
Hence for scale values a in an interval I, a reconstructed
version XI of the signal X(t) is

XI	t
 � A� 	
a�I

	
b���

�

W�	a, b
�� t � b
a � dadb

a2 ; (19)
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A� is a normalization factor which only depends on the
mother wavelet �. This formulation is essentially a band-
pass filter of X through I; if I is the positive real line, I �
��, then XI(t) � X(t). Note that the Gaussian �( x) �
exp (�x2/ 2) itself cannot be used in the reconstruction
formula (19), because it does not satisfy ���

� �( x) dx �
0, although its first derivative does. The forward trans-
form of (18), however, is well defined, and the Gaussian
can be used as an analyzing tool [Arneodo et al., 1993;
Yiou et al., 2000].

[88] A large number of wavelet bases have been in-
troduced to satisfy the conflicting requirements of com-
pleteness, localization in both time and frequency, and
orthogonality or, for nonorthogonal bases, limited re-
dundancy. To provide an optimal multiscale decompo-
sition of a given signal, an automatic time-varying ad-
justment of the mother wavelet’s shape may be
desirable. This could replace the current practice of
searching through extensive “libraries” of mother wave-
lets (e.g., http://www.mathsoft.com/wavelets.html). To
provide such a data-adaptive variation in basis with time,
Yiou et al. [2000] have introduced multiscale SSA.

[89] Systematic comparisons between SSA, the wave-
let transform, and other spectral analysis methods have
been carried out by Yiou et al. [1996] and in Table 1 of
Ghil and Taricco [1997]. Further analogies between cer-
tain mathematical features of SSA and wavelet analysis
were mentioned by Yiou [1994]. Table 2 here summa-
rizes the most useful mathematical parallels between the
two time series analysis methods.

[90] In SSA the largest scale at which the signal X is
analyzed in (10) is approximately N�t, the length of the
time series, and the largest period is the window width
M�t. As a consequence, the EOFs �k contain information
from the whole time series, as in the Fourier transform.

[91] In order to define a local SSA, the SSA method-
ology was extended by using a time-frequency analysis
within a running time window whose size W is propor-
tional to the order M of the covariance matrix. Varying
M, and thus W in proportion, a multiscale representa-
tion of the data is obtained. A local SSA is performed by
sliding windows of length W � N�t, centered on times
b � W/ 2, � � � , N�t � W/ 2, along the time series. This
method is useful when the local variability, assumed to

be the sum of a trend, statistically significant variability,
and noise, changes in time.

[92] A priori, the two scales W and M can vary inde-
pendently, as long as W is larger than M�t, W/(M�t) �
 � 1, and  is large enough [Vautard et al., 1992]. In the
wavelet transform, however, the number of oscillations
of the mother wavelet is fixed and independent of the
scale (width) of the analyzing wavelet. In this spirit, Yiou
et al. [2000] fixed the ratio W/M � �t and relied
therewith on the oscillation property of the EOFs to
provide a fixed number of zeroes for the data-adaptive
“wavelet” �k of each local SSA analysis. They used  �
3 in most of their calculations, as well as only the one or
two leading EOFs, �1 and/or �2, on each W interval. This
provides an analysis at a fixed scale W (see Table 2).
Sampling a set of W values that follow a geometrical
sequence, for instance, in powers of 2 or 3, provides a
multiscale analysis very similar to the wavelet transform.

[93] For a given position b and fixed W, we thus
obtain local EOFs that are the direct analogs of analyz-
ing wavelet functions. The number of EOF oscillations
increases roughly with order, and the zeroes of �k�1
separate those of �k; this emulates an important prop-
erty of successive analyzing wavelets. The first EOF thus
corresponds approximately to an analyzing wavelet func-
tion with a single extremum and no zero inside the
window, for instance, the Gaussian or the “Mexican
hat”; such a basic wavelet is denoted by � � �(0) in Table
2. The second EOF has a single zero and is reminiscent
of the first derivative of the Gaussian, denoted by �(1) in
Table 2, and so on. Vautard and Ghil [1989] demon-
strated this oscillation property of the EOFs for red
noise in continuous time, and Allen [1992] did so for the
same type of noise process in discrete time. Appendix B
of Yiou et al. [2000] provides a more general proof that
is based on the concept of total positivity for lag-covari-
ance matrices.

[94] For each b and each EOF �k, it is possible to
obtain local PCs Ak and RCs Rk (see equations (10) and
(11)). The kth PC at time b is

Ak
b	t
 � �

j�1

M

X	t � j � 1
�k
b	 j
, (20)

TABLE 2. Analogy Between SSA and Wavelet Analysisa

Method SSA Wavelet Transform

Analyzing function EOF �k mother wavelet �
Basic facts �k eigenvectors of CX � chosen a priori
Decomposition ¥t��1

M X(t � t�)�k(t�) � X(t)�((t � b)/a)
dt

Scale W � M�t a
Epoch t b
Average and trend �1 �(0)

Derivative �2 �(1)

aSee text for notation.
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and the corresponding RC is

Rk
b	t
 �

1
Mt

�
j�1

M

Ak
b	t � j
�k

b	 j
, (21)

with b � W/ 2 � t � b � W/ 2. The crucial difference
between this local version and global SSA is that the
RCs are obtained here from local lag-covariance matri-
ces. As b varies from W/ 2 to N�t � W/ 2, this implies
that the RCs will be truncated near the edges of the time
series.

[95] We thus see that the local SSA method provides
simultaneous “wavelet transforms” of the data by a set of
analyzing wavelet functions, corresponding to the M
different EOFs of the lag-covariance matrix. When W �
M�t is small, local SSA provides a small-scale analysis
of the signal with a few distinct analyzing functions, i.e.,
a small subset of EOFs indexed by k. This is reasonable,
as there are not many possible structures at scales that
approach the sampling timescale. On the other hand, at
large scales, local SSA can also provide the simultaneous
analysis by many different analyzing mother wavelet
functions, {�k�1 � k � M}, and thus reflect the large
complexity of the structures that is possible over the
entire time series.

[96] The most important property of this local SSA
analysis is that the analyzing functions are data adaptive.
In other words, the shape of these analyzing functions is
not imposed a priori, like in a wavelet analysis, but
explicitly depends on the time series itself. For instance,
an oscillatory behavior could be followed in a given time
series by white or colored noise and then by determin-
istically intermittent behavior. These changes in behav-
ior could indicate regime transitions that the system
which generates the signal underwent while under ob-
servation. If so, an analyzing wavelet which is adapted to
each section of the signal will definitely help follow such
regime transitions in time.

[97] Yiou et al. [2000] performed multiscale SSA on
the monthly SOI data for the years 1933–1996 (see
section 2.2). The parameters were  � 3 and geometric
scale increments of 2. They computed, moreover, an
“instantaneous” frequency by least squares fitting a sine
wave to each local EOF of interest, as done in Monte
Carlo SSA for the global EOFs. The instantaneous fre-
quency can also be obtained from a complex wavelet
transform [Delprat et al., 1992; Farge, 1992], by using
information on the phase of the transform.

[98] The analysis of Yiou and colleagues did not re-
veal any evidence of self-similarity or fractality in the
SOI. Instead, they find a preferred scale of variability
between 3 and 5 years (not shown), which corresponds
to ENSO’s low-frequency mode (see section 2.2 and
citations therein). The first two local EOFs are consis-
tently paired and in phase quadrature, which shows that
the nonlinear oscillation associated with this mode is
robust and persists throughout the 60-odd years being
examined.

[99] The computation of the instantaneous frequency
in multiscale SSA allows one to detect an abrupt fre-
quency shift of ENSO’s low-frequency mode near 1960
(Figure 8). The characteristic periodicity goes from 57
months (between 1943 and 1961) to 39 months (between
1963 and 1980). A decrease in period in the early 1960s
was observed already by Moron et al. [1998] in tropical
Pacific sea surface temperatures, by using multichannel
(global) SSA, and by Wang and Wang [1996] in a sea
level pressure record at Darwin, using wavelet methods.
Mann and Park [1996b, Figure 9] also observed a “pinch
out” in the amplitude of the quasi-biennial oscillation in
the 1960s.

[100] Moron et al. [1998] noticed, on the one hand, a
change in the low-frequency mode’s periodicity in the
early 1960s by using multichannel SSA (see section 4.2)
with different window widths (72 � M � 168 months) on
sea surface temperature fields for 1901–1994 (their Fig-
ure 2 and Table 4). On the other hand, these authors
found that the trend of the sea surface temperatures in
the tropical Pacific exhibited an increase from 1950 on
(their Figure 4). They related this surface trend to a
change in the parameters, such as the thermocline depth
along the equator, of the coupled ocean-atmosphere
oscillator responsible for ENSO [Ghil et al., 1991; Neelin
et al., 1994, 1998].

[101] The frequency of a linear oscillator always
changes smoothly as a function of the coefficients in the
linear ODE that governs it. That is typically the case for
nonlinear oscillators that depend on a single parameter
as well [Stoker, 1950]. Two notable exceptions involve
period doubling [Feigenbaum, 1978; Eckmann, 1981] and

Figure 8. Instantaneous SOI frequencies, based on the two
leading EOFs of multiscale SSA. These frequencies were com-
puted independently for local EOFs 1 (solid curve) and 2
(dashed curve). The results agree well with each other and
demonstrate a sharp jump in frequency between 1961 and
1962. Reprinted from Yiou et al. [2000] with permission of
Elsevier Science.
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the Devil’s staircase [Feigenbaum et al., 1982; Bak, 1986].
In both these routes to chaos, frequencies change
abruptly as one parameter, in the former, or two, in the
latter [Schuster, 1988], change gradually.

[102] Moron et al. [1998] hypothesized therefore that
as one of the parameters of the ENSO oscillator crosses a
threshold value in the early 1960s, the period of the sea-
sonally forced climatic oscillator jumps from one step of
the Devil’s staircase to another. This would confirm an
important aspect of recent theoretical work on ENSO’s
oscillatory regularity, as well as on the irregular occur-
rences of major warm and cold events [Chang et al.,
1994; Jin et al., 1994, 1996; Tziperman et al., 1994].

[103] Yiou et al. [2000] compared the results in Figure
8 with those of Moron et al. [1998], using multichannel
SSA (see section 4.2), and those of Wang and Wang
[1996]. The latter authors used both the standard wave-
let transform with a Morlet mother wavelet and Mallat
and Zhang’s [1993] waveform transform to analyze the
Darwin sea level pressures for 1872–1995. The frequency
jump in Figure 8 is much sharper than when using either
global SSA or wavelet-type methods (not shown here). It
is also sharper than the changes in SOI variability de-
scribed by Torrence and Compo [1998], who used both
Morlet and Mexican-hat basis functions for their analy-
sis. Multiscale SSA can thus provide sharper regime
transitions in the evolution of a nonlinear system than
either global SSA or a wavelet analysis that uses a fixed
set of basis functions.

3. SPECTRAL ANALYSIS METHODS

3.1. Generalities and Definitions
[104] Both deterministic [Eckmann and Ruelle, 1985]

and stochastic [Hannan, 1960] processes can, in princi-
ple, be characterized by a function of frequency f (in-
stead of time t). This function S( f ) is called the power
spectrum in the engineering literature or the spectral
density in the mathematical one (see section 1.1 for our
use of the terms). Thus a very irregular motion possesses
a smooth and continuous spectrum, which indicates that
all frequencies in a given band are excited by such a
process. On the other hand, a purely periodic or quasi-
periodic process is described by a single line or a (finite)
number of lines in the frequency domain. Between these
two extremes, nonlinear deterministic but “chaotic” pro-
cesses can have spectral peaks superimposed on a con-
tinuous and wiggly background [Ghil and Childress,
1987, section 12.6; Ghil and Jiang, 1998].

[105] In theory, for a spectral density S( f ) to exist and
be well defined, the dynamics generating the time series
has to be ergodic and allow the definition of an invariant
measure, with respect to which the first and second
moments of the generating process are computed as an
ensemble average. The reason for the spectral theory of
linear random processes being more familiar is simply
that the construction of such an invariant measure is

easier for such processes [Hannan, 1960; Priestley,
1981a]. In practice, the distinction between determinis-
tically chaotic and truly random processes via spectral
analysis can be as tricky as the attempted distinctions
based on the dimension of the invariant set (see section
1.2 and citations therein). In both cases, the difficulty is
due to the shortness and noisiness of climatic time series.

[106] Given the existence and invariance of an appro-
priate measure, the rigorous definition of the process’s
lag-correlation function involves a Lebesgue integral
over that measure. On the spectral side of the Wiener-
Khinchin equality (see equations (24) and (25) in the
next section), one then has to use a Stieltjes integral,
rather than the more familiar Riemann integral, with
respect to the usual measure on � to compute the
cumulative power P( f ) of the process over all frequen-
cies between �� and the given frequency f [e.g., Han-
nan, 1960]. The spectrum is continuous at all points f
where the left and right limits of this integral are equal,
i.e., P( f�) � P( f�). At such points, S( f ) � dP/df.
Where this is not the case, an upward jump in P( f )
occurs, i.e., P( f�) � P( f�) � p( f ), where p( f ) � 0.
Such a discontinuity in P( f ) corresponds, loosely speak-
ing, to a Dirac � function in the “spectral density.” The
line spectrum is the sum of these � functions that con-
tributes to S( f ), along with the previously described
continuous spectrum [e.g., Priestley, 1981a].

[107] In practice, spectral analysis methods attempt to
estimate either the continuous part of the spectrum or
the “lines” or both. The lines are often estimated from
discrete and noisy data as more or less sharp “peaks.”
The estimation and dynamical interpretation of the lat-
ter, when present, are often more robust and easier to
understand than the nature of the processes that might
generate the broadband background, whether determin-
istic or stochastic.

[108] The numerical computation of the power spec-
trum of a random process is an ill-posed inverse problem
[Jenkins and Watts, 1968; Thomson, 1982]. For example,
a straightforward calculation of the discrete Fourier
transform of a random time series, which has a contin-
uous spectral density, will provide a spectral estimate
whose variance is equal to the estimate itself [Jenkins
and Watts, 1968; Box and Jenkins, 1970]. In the remain-
der of this section we outline three techniques to reduce
this variance that are commonly used for the spectral
analysis of climatic time series and point out their re-
spective properties, advantages, and failings.

[109] Each of the three techniques outlined in sections
3.2–3.4 below (Blackman-Tukey, maximum entropy, and
multitaper) can provide confidence intervals for the es-
timates it produces. Still, these “error bars” are based on
certain assumptions about the process generating the
time series that is being analyzed. These assumptions are
rarely, if ever, met in practice by the physical processes
one wishes to examine. Therefore we highly recommend
applying several independent techniques to a given time
series before drawing any conclusion about its spectrum.
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3.2. Classical Spectral Estimates
[110] A generic problem of time series analysis is the

finiteness of the time interval on which the series is
known. Estimating the spectrum of {X(t)�t � 1, � � � ,
N } by a discrete Fourier transform yields its perio-
dogram, which is the Fourier transform squared. Doing
so corresponds to convolving the true spectrum with the
spectrum of a boxcar function; this induces power leak-
age, due to the lobes of the Fourier transform of the
boxcar. The resulting systematic distortion of the spec-
trum adds to the problem of the variance of the spectral
estimate.

3.2.1. The Periodogram and the Correlogram
[111] The so-called periodogram estimate ŜX( f ) of

S( f ) is given by

ŜX	 f 
 �
�t
N 
 �

t�1

N

X	t
e�2�ift�t
 2

; (22)

the use of i � ��1 in this section should not be
confused with the time index i used in section 2. The
estimate ŜX( f ) is itself a random-valued function. Its
mean leads to the correct SX as the length N�t of the
sample series tends to infinity, but the standard devia-
tion in this limit N 3 � is as large as the mean SX( f )
being estimated [Hannan, 1960]. An estimate for which
the variance does not tend to zero as the sample size
tends to infinity is called statistically inconsistent. More-
over, for any finite N, the sample periodogram ŜX is a
biased estimate of SX; that is, its mean over distinct
realizations of the same process does not equal SX in
general.

[112] Blackman and Tukey [1958] gave an alternative
method to estimate the power spectrum of a given time
series {X(t)�t � 1, � � � , N }. Their method helps reduce
the estimate’s variance and bias and attenuate the leak-
age effects of the periodogram [Chatfield, 1984]. The
method’s starting point is the so-called Wiener-Khinchin
or Bochner-Khinchin-Wiener theorem, which states that
the spectral density SX is equal to the Fourier transform
of the autocovariance function �X [Jenkins and Watts,
1968] (see also sections 1.1 and 3.1):

�X	k
 � � X	t � k
 X	t
!, (23)

where � is the expectation operator.
[113] Hence the power spectrum SX( f ) of X(t) can be

estimated by the Fourier transform S̃X( f ) of an estimate
�̂X of the true �X, called the correlogram:

S̃X	 f 
 � �
k��	N�1


N�1

�̂X	k
e�2�ifk. (24)

This estimate is also biased and inconsistent, as it stands.
Many methods have been devised to reduce the bias,
variance, and leakage in the direct estimate (equation

(22)) or the indirect estimate (equation (24)). A succinct
summary is provided by Ghil and Taricco [1997], and
details are given in a number of textbooks and reference
books [Chatfield, 1984; Kay, 1988].

[114] A simple way to reduce the bias and variance is
to average the estimate over nonoverlapping bins in the
frequency domain, in order to smooth the periodogram:

S� X	 fk
 � �
j��M

M

g jŜX	 fk�j
, (25)

where { fk�k � 1, � � � , Nf} is a discrete set of frequen-
cies, with Nf � N, and { gj} is a set of 2M � 1
smoothing weights, with M � N/ 2. With well-chosen
weights, the estimate S� X becomes consistent, i.e., its
variance converges to 0 as M and N tend to infinity
[Chatfield, 1984; Percival and Walden, 1993]. In (25) the
choice of M is dictated by a trade-off between frequency
resolution (the larger M the better) and the estimated
variance, which is proportional to M/N (hence the
smaller M the better) [Kay, 1988] (see also the discussion
of window width for SSA in section 2.2). Therefore a
rule of thumb is to take M no larger than N/5 or N/10,
to avoid spurious results from high-variance estimates.

[115] The counterpart of this approach in the indirect
estimation procedure is to use a lag window
{W�(k)�k � �(N � 1), � � � , N � 1}, with a smooth-
ing parameter �. An example of such a window is given
in (28) below (see section 3.2.2). The power spectrum
estimate then becomes

S� X	 f 
 � �
k��	N�1


N�1

W�	k
�̂X	k
e�2�ifk. (26)

With a careful choice of the shape of the window
{W�(k)} for fixed � and of the parameter value �, the
estimate S� X enjoys the same statistical properties as S� X

in (25), i.e., consistency and lower bias. It turns out that
the two procedures are formally equivalent and that a
lag window {W�(k)} can be deduced from weights { gj}
in (25), and vice versa [Percival and Walden, 1993].
Computationally, it is more efficient to calculate (23)
and (26) than (22) and (25). Hence the indirect or
correlogram method, associated with the names of
Blackman and Tukey [1958], is most often the algorithm
of choice.

[116] The windows traditionally have a compact sup-
port of length m � N, so that (26) becomes, with � �
m,

S̃X	 f 
 � �
k��	m�1


m�1

Wm	k
�̂X	k
e�2�ifk; (27)

m is called the truncation point or window width in this
standard formula. Such lag windows are heuristically
chosen as modified cosine functions, cubic functions, or
tent functions [Chatfield, 1984]. Classical Blackman-
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Tukey estimation deals largely with the choice of win-
dow shape, often called “window carpentry,” and of the
window width m, often called “opening and closing” the
window.

3.2.2. Bias and Variance Reduction
[117] We illustrate the variance reduction properties

of the lag-window estimate in Figure 9 with a Bartlett
window of varying width m. The Bartlett window is
simply

Wm	k
 � 1 �
�k�
m , (28)

with k � 1, � � � , m. The smoothed estimate (bold curve)
clearly has a much smaller variance than the raw perio-
dogram estimate (light curve). Confidence levels relative
to a pure red noise, or AR(1) process, which has a
spectral slope that behaves like [1 � (2�f )2]�1 (see
equation (13)), can be calculated for each window shape
[Jenkins and Watts, 1968], but the spectral resolution is
generally poor if the number N of data points, and hence
m, is low.

[118] It turns out that the Blackman-Tukey, or win-
dowed correlogram, method is quite efficient for esti-
mating the continuous part of the spectrum, but is less
useful for the detection of components of the signal that
are purely sinusoidal or nearly so. The reason for this is
twofold: the low resolution of this method and the fact
that its estimated error bars are still essentially propor-
tional to the estimated mean S̃X( f ) at each frequency f.
We shall see in section 3.4 how to choose, according to
the multitaper method (MTM), a set of optimal tapers
that maximize the resolution. Moreover, MTM also al-
lows the formulation of statistical significance tests that
are independent, in principle, of the amplitude of the
sinusoidal component that is being estimated.

[119] Vautard and Ghil [1989] showed the (data-adap-
tive) band-pass filtering effects of reconstructed compo-
nents (RCs). In Figure 10 we illustrate the filtering
properties of SSA on the SOI time series by removing
the trend and “noise” components with SSA and com-
puting the smoothed correlogram of the residual time
series. This filter enhances the components with periodi-
cities around 3.5 years and 5.6 months. These approxi-
mate periodicities will be confirmed and refined using
the maximum entropy method (MEM) and MTM in the
next two sections. Even with this SSA prefiltering,
though, the lag-windowed correlogram is not able to
distinguish a quasi-biennial from a quasi-quadrennial
peak, as the MEM and MTM are able to do.

3.3. Maximum Entropy Method (MEM)
[120] This method is based on approximating the time

series under study by a linear AR process (equation (1))
of order M, AR(M). It thus performs best when esti-
mating line frequencies for a time series that is actually
generated by such a process. Details are given by Burg
[1967] and Childers [1978].

[121] Given a time series {X(t)�t � 1, � � � , N } that is
assumed to be generated by a wide-sense stationary
process with zero mean and variance �2, M� � 1 esti-
mated autocovariance coefficients {�̂X( j)�j � 0, � � � ,
M�} are computed from it:

�̂X	 j
 �
1

N � 1 � j �
t�1

N�j

X	t
 X	t � j
. (29)

Figure 9. Classical spectral estimates of the SOI time series,
from a raw correlogram (light curve) and lag-window estimate
(bold curve), with a Bartlett window of width m � 40.

Figure 10. Blackman-Tukey correlogram estimate of the
SSA-filtered SOI’s spectral density. The embedding dimension
for SSA is M � 60, and RCs 1–4 and 10–11 were chosen as
most significant. A Bartlett window of width m � 30 was used
for the spectral estimate of the prefiltered SOI. The error bars
are based on a chi-square test and reach from the 2.5% to the
97.5% quantile.
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In the absence of prior knowledge about the process that
generates the time series X(t), M� is arbitrary and has to
be optimized. The purpose of evaluating (29) is to de-
termine the spectral density ŜX that is associated with
the most random, or least predictable, process that has
the same autocovariance coefficients �̂. In terms of
information theory [Shannon, 1949], this corresponds to
the concept of maximal entropy, hence the name of the
method.

[122] In practice, one obtains estimates {âj�j �
0, � � � , M�} of the regression coefficients aj�j � 0, � � � ,
M} from the time series X(t) by assuming that the latter
is generated by an AR(M) process and that its order M
equals M�. The autocorrelation coefficients �̂X( j) are
computed according to (29) and used to form the same
Toeplitz matrix CX as in SSA [Vautard and Ghil, 1989;
Penland et al., 1991; Vautard et al., 1992]. This matrix is
then inverted using standard numerical schemes [Press et
al., 1988] to yield the estimated {âj}. The spectral den-
sity SX of the true AR process with coefficients {aj�j �
0 � � � , M} is given by

SX	 f 
 �
a0


1 � �
j�1

M

aje2�ijf
 2 , (30)

where a0 � �2 is the variance of the residual noise � in
(1). Therefore the knowledge of the coefficients {âj�j �
0, � � � , M�}, determined from the time series X(t), also
yields an estimate ŜX of the power spectrum.

[123] An example of MEM estimates is given for the
SOI time series in Figure 11, using a number of lags M�
� 10, 20, and 40. It is clear that the number of peaks

increases with M�. Two distinct interannual peaks ap-
pear only for M� � 40. This separation between a
quasi-biennial and a low-frequency peak is accompa-
nied, unfortunately, by many spurious peaks at higher
frequencies.

[124] In general, if the time series is not stationary or
otherwise not well approximated by an AR process (e.g.,
if it is generated by nonlinear dynamics), it is necessary
to exercise great care in applying MEM. In such cases,
cross testing with the application of other techniques is
especially important.

[125] As the number of peaks in a MEM spectrum
increases with M�, regardless of the spectral content of
the time series, an upper bound for M� is generally taken
as N/ 2. Heuristic criteria have been devised to refine the
choice of a reasonable M� [Haykin and Kessler, 1983;
Benoist, 1986], based on minimizing the residual of a
least squares fit between the AR approximation and the
original time series [Akaike, 1969, 1974; Haykin and
Kessler, 1983]. Such “information-content” criteria, how-
ever, often tend to either underestimate [Benoist, 1986]
or overestimate [Penland et al., 1991] the order of re-
gression of a time series, depending on its intrinsic
characteristics.

[126] The effects of the S/N enhancement performed
by SSA decomposition (see section 2) on MEM analysis
are illustrated in Figure 12, where the noise components
identified by SSA were filtered out prior to MEM anal-
ysis. In this example, the power spectrum is much
smoother than in Figure 11. The regression order M� �
20 suffices to separate a quasi-biennial peak at about 2.4
years from a quasi-quadrennial peak at roughly 4.8
years, while no spurious peaks appear at high frequen-
cies. By contrast, Blackman-Tukey spectra of the same
time series (see Figure 10 and Rasmusson et al. [1990])

Figure 11. Spectral estimates of the SOI time series by the
maximum entropy method (MEM). The autocorrelation or-
ders are M� � 10, 20, and 40 (light, bold, and dashed curves,
respectively). The Akaike information content (AIC) criterion
[Haykin and Kessler, 1983] predicts an order of M� " 10, which
is obviously too low.

Figure 12. MEM analysis of the SOI time series after SSA
prefiltering. The autoregression order used is M� � 20. The
SSA window width is M � 60, and RCs 1–4 and 10–11 were
chosen, as in Figure 10.
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fail to separate these two peaks with sufficient statistical
confidence.

[127] The subannual peak at 5.6 months, which is
associated with the EOFs 10–11, is also much sharper
here than in Figure 10. It can be distinguished therefore
reliably from the known semiannual peak of tropical
variability; in fact, the latter had been removed from the
time series along with the seasonal cycle. A coupled-
mode solution with spatial features that resemble an
oceanic Kelvin wave and a period close to 6 months has
been obtained in a hybrid ocean-atmosphere model with
no seasonal cycle by Neelin [1990]. It provides a plausible
physical mechanism for our 5.6-month peak.

3.4. Multitaper Method (MTM)
[128] This method provides useful tools for the spec-

tral estimation [Thomson, 1982; Percival and Walden,
1993] and signal reconstruction [e.g., Park, 1992] of a
time series whose spectrum may contain both broadband
and line components. Like the classical periodogram
and correlogram methods of section 3.2, MTM is non-
parametric, since it does not use an a priori, parameter-
dependent model of the process that generated the time
series under analysis, like MEM does. MTM reduces the
variance of spectral estimates by using a small set of
tapers [Thomson, 1982; Percival and Walden, 1993]
rather than the unique data taper or spectral window
used by the classical methods. The data are premulti-
plied by orthogonal tapers constructed to minimize the
spectral leakage due to the finite length of the time
series, and a set of independent estimates of the power
spectrum is computed.

[129] The optimal tapers or “eigentapers” belong to a
family of functions known as discrete prolate spheroidal
sequences (DPSS). They are defined as the eigenvectors
of a suitable Rayleigh-Ritz minimization problem and
were extensively studied by Slepian [1978]. More pre-
cisely, the tapers are the discrete set of eigenfunctions
that solve the variational problem of minimizing leakage
outside of a frequency band with half bandwidth equal to
pfR, where fR � 1/(N�t) is the Rayleigh frequency, �t
is the sampling interval, and p is a suitably chosen
integer. Because the windowing functions or eigentapers
are the specific solution to an appropriate variational
problem, this method is less heuristic than traditional
nonparametric techniques (see section 3.2 as well as Box
and Jenkins [1970] and Jenkins and Watts [1968]). Aver-
aging over the (small) ensemble of spectra obtained by
this procedure yields a better and more stable estimate,
i.e., one with lower variance, than do single-taper meth-
ods [Thomson, 1990a].

[130] Detailed algorithms for the calculation of the
eigentapers are readily available [Thomson, 1982; Per-
cival and Walden, 1993]. In practice, only the first 2p �
1 tapers provide usefully small spectral leakage [Slepian,
1978; Thomson, 1982; Park et al., 1987]. Thus the num-
ber K of tapers used should be less than 2p � 1 in any
application of MTM.

[131] The choice of the bandwidth 2pfR and number
of tapers K thus represents the classical trade-off be-
tween spectral resolution and the stability or variance
reduction properties of the spectral estimate [Thomson,
1982]. The case p � 1 and K � 1 is simply the single-
tapered discrete Fourier transform (DFT) of Blackman
and Tukey [1958]. For instrumental climate records, with
a typical length of a few hundred points, the choice p �
2 and K � 3 offers a good compromise between the
required frequency resolution for resolving distinct cli-
mate signals (e.g., ENSO and decadal-scale variability)
and the benefit of multiple spectral degrees of freedom,
i.e., of reduced variance [e.g., Mann and Park, 1993].
Longer data sets permit the use of a greater number K of
tapers while maintaining a desired frequency resolution.
The optimal choice of p and K depends, in general, on
the length and other properties of the time series under
study.

[132] We show in Figure 13 the K � 3 leakage-
resistant Slepian tapers for bandwidth parameter p � 2.
In this example, the effective half bandwidth is 2fR for
the spectral estimate centered at any particular fre-
quency f0. This half bandwidth is a measure of spectral
resolution and equals, in the present case, twice that of
an unsmoothed DFT. Thus a spectral estimate at the
5-year periodicity of f � 0.2 cycle/yr for a time series
with N � 690 months (57.5 years) averages the raw
periodogram over the frequency interval between f "
0.165 and f " 0.235 cycle/yr. The variance of the
spectral estimate at f0 is decreased, on the other hand,
threefold by averaging the three independent eigenspec-
tra. This variance versus resolution trade-off is clearly

Figure 13. The first K � 3 eigentapers for the case p � 2,
computed for the length N � 690 of the SOI time series in
Figure 2. Note that the third eigentaper or discrete prolate
spheroidal sequence (DPSS) is the least leakage resistant since
its values near the boundaries t � 0 and t � N�t of the
sampling interval are no longer negligible, like those of the first
two DPSSs. The eigentapers shown have been normalized to
unit power.
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superior to conventional periodogram smoothing. The
process of MTM spectral estimation is described in
greater detail in section 3.4.1.

[133] Because of the improvements in its spectral es-
timation properties over the classical methods of section
3.2, the MTM method has been widely applied to prob-
lems in geophysical signal analysis, including analyses of
instrumental data on the atmosphere and oceans [Kuo et
al., 1990; Ghil and Vautard, 1991; Mann and Park, 1993,
1994, 1996a, 1996b; Lall and Mann, 1995; Mann et al.,
1995b; Thomson, 1995], paleoclimate proxy data [Chap-
pellaz et al., 1990; Thomson, 1990a, 1990b; Berger et al.,
1991; Mann et al., 1995a; Mann and Lees, 1996; Mom-
mersteeg et al., 1995; Park and Maasch, 1993; Yiou et al.,
1991, 1994, 1995, 1997], geochemical tracer data [Koch
and Mann, 1996], and seismological data [Park et al.,
1987; Lees, 1995]. Time-frequency “evolutive” analyses
based on moving-window adaptations of MTM have also
been applied to paleoclimatic records and model simu-
lations [Yiou et al., 1991; Birchfield and Ghil, 1993; Mann
et al., 1995a; Mann and Park, 1996b].

3.4.1. Spectral Estimation
[134] MTM can provide estimates of both the line

components and the continuous background of the spec-
trum. Once the tapers wk(t) are computed for a chosen
frequency bandwidth, the total power spectrum SX can
be estimated by averaging the individual spectra given by
each tapered version of the data set. We call Ŝk( f ) �
�Yk( f )�2 the kth eigenspectrum estimate, where Yk is the
discrete Fourier transform (DFT) of {X(t)wk(t)�t �
1, � � � , N }. The high-resolution multitaper spectrum is
a weighted sum of the K eigenspectra,

Sr	 f 
 �

�
k�1

K

�k�Yk	 f 
�2

�
k�1

K

�k

; (31)

for the choice of weights �k and other details, see
Percival and Walden [1993].

[135] This spectral estimate’s frequency resolution is
#pfR, which means that line components will actually be
detected as peaks or bumps of width 2pfR. The situation
is thus similar, in principle, to that for the classical
spectral estimate of section 3.2, except that the peaks
can be identified with a higher resolution and greater
confidence in MTM. For a white-noise process, or even
one that has a locally flat spectrum near the line of
interest, the high-resolution spectrum is chi-square dis-
tributed with 2K degrees of freedom [Thomson, 1982].

[136] The relative weights on the contributions from
each of the K eigenspectra can be adjusted further to
obtain a more leakage-resistant spectral estimate,
termed the adaptively weighted multitaper spectrum,

Sw	 f 
 �

�
k�1

K

bk
2	 f 
�k�Yk	 f 
�2

�
k�1

K

bk
2	 f 
�k

. (32)

The weighting functions bk( f ) further guard against
broadband leakage for a “warm-colored” process (see
section 2.3) that is locally white, i.e., that has a fairly flat
spectrum in the frequency range of interest. The adap-
tive spectrum estimate has an effective number of de-
grees of freedom � that generally departs only slightly
from the nominal value 2K of the high-resolution mul-
titaper spectrum [Thomson, 1982].

[137] The purpose of harmonic analysis is to deter-
mine the line components in the spectrum that corre-
spond to a purely periodic or multiply periodic signal in
terms of their frequency, amplitude, and phase. The
Fourier transform of a clean periodic signal in continu-
ous time and of infinite length yields a Dirac function at
the frequency of the signal, namely, a line (or peak of
zero width) with infinite magnitude. As described in
section 3.1, it is the jump in the cumulative power at that
frequency that is proportional to the periodic signal’s
amplitude squared.

[138] A spectral estimate based on the methods dis-
cussed so far gives indirect information on such a signal’s
amplitude at all frequencies. For a periodic signal sam-
pled at discrete times over a finite time interval, the area
under the peak centered at its true frequency is propor-
tional to the signal’s amplitude squared, while the peak’s
width is, roughly speaking, inversely proportional to the
length N of the time series. The area under the peak is
nearly constant as N changes, since the peak’s height is
proportional to N.

[139] Harmonic analysis attempts to determine di-
rectly the (finite) amplitude of a (pure) line in the
spectrum of a time series of finite length. We explain
next how this is done within MTM. MacDonald [1989]
described pure line estimation using the maximum like-
lihood approach for single-window periodogram estima-
tors [Schuster, 1898; Whittle, 1952]. Foias et al. [1988]
proved rigorous mathematical results on maximum like-
lihood estimation of sinusoids in noise of arbitrary color.
The drawback of these single-window results is that they
work well only when the S/N ratio is fairly high. Thus
SSA prefiltering, which enhances the S/N ratio, may help
“classical” pure line estimation, as suggested by the
results presented in sections 3.2 and 3.3 for standard
peak detection. The MTM approach described below,
on the other hand, can also ascertain the presence of
pure sinusoids in a fairly high noise background.

[140] Assume the time series X(t) is the sum of a
sinusoid of frequency f0 and amplitude B, plus a “noise”
�(t) which is the sum of other sinusoids and white noise.
One can then write
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X	t
 � Be2�if0t � �	t
. (33)

If {wk(t)�k � 0, � � � , K � 1} are the first K eigentapers
and Uk( f ) is the DFT of wk, a least squares fit in the
frequency domain yields an estimate B̂ of the amplitude
B:

B̂	 f0
 �

�
k�1

K

U*k	0
Yk	 f0


�
k�1

K

�Uk	0
�2

, (34)

where the asterisk denotes complex conjugation.
[141] A statistical confidence interval for B̂ can be

given by a Fisher-Snedecor test of F test [Kendall and
Stuart, 1977]. This test is based roughly on the ratio of
the variance captured by the filtered portion of the time
series X(t), using K eigentapers, to the residual variance.
By expanding the variance of the model, one finds that it
is the sum of two terms,

� � �B̂	 f0
�2 �
k�1

K

�Uk	0
�2 (35)

� � �
k�1

K

�Yk	 f0
 � B̂	 f0
Uk	0
�2, (36)

that are the “explained” and “unexplained” contribu-
tions, respectively, to the variance.

[142] The random variable F( f ) of the unknown fre-
quency f is defined by

F	 f 
 � 	K � 1

�

�
. (37)

If the time series X(t) were a pure white-noise realiza-
tion, F would obey a Fisher-Snedecor law with 2 and
2K � 2 degrees of freedom. One can interpret its
numerical value for given data by assuming that B � 0,
i.e., that X(t) is white, and trying to reject the white-
noise null hypothesis. In practice, the spectrum need
only be “locally white” in the sense that the K eigenspec-
tra which describe the local characteristics of the spec-
trum should be distributed as they would be for white
noise [Thomson, 1982].

[143] This harmonic analysis application of MTM is
able to detect low-amplitude harmonic oscillations in a
relatively short time series with a high degree of statis-
tical significance or to reject a large amplitude if it failed
the F test, because the F value F( f ) does not depend, to
first order, on the magnitude of B̂( f ). This feature is an
important advantage of MTM over the classical methods
of section 3.2, in which the error bars scale with the
amplitude of a peak [e.g., Jenkins and Watts, 1968].

[144] The key assumption in this harmonic analysis
approach, however, is that the time series is produced by

a process that consists of a finite superposition of sepa-
rate, purely periodic, fixed-amplitude components and
white or, at least, locally white noise. If not, a continuous
spectrum, in the case of a colored noise or a chaotic
system, will be broken down into spurious lines with
arbitrary frequencies and possibly high F values. In
essence, the above procedure assumes that the signal is
represented by lines in the spectrum corresponding to
phase-coherent harmonic oscillations, while the noise is
represented by the continuous component of the spec-
trum.

[145] In geophysical applications, signals are most of-
ten associated with narrowband variability that is not
strictly harmonic, i.e., sinusoidal, or even purely peri-
odic. Truly harmonic signals are, in fact, rarely detected
in climatic and most other geophysical time series [Ghil
and Childress, 1987; Park, 1992]. This is often because
the period, amplitude, and phase of a limit cycle like that
illustrated in Figure 1 are typically each a function of
slowly changing parameters. Such signals are well cap-
tured by the SSA’s pairs of eigenelements (see section
2.2). To analyze the precise spectral content of an SSA
oscillatory pair, however, requires the application of
additional spectral estimation tools (see sections 3.2 and
3.3).

[146] The complex nature of geophysical signals and
noise outlined in the preceding paragraph has motivated
Mann and Lees [1996] to modify the conventional MTM
approach to line estimation. Their algorithm combines
the harmonic signal detection procedure described
above with a criterion for detecting significant narrow-
band, “quasi-oscillatory” signals which may exhibit
phase and amplitude modulation as well as intermit-
tently oscillatory behavior. It thus provides for the de-
tection of both harmonic and narrowband signals while
making use of a robust estimate of the background
noise.

[147] Mann and Lees [1996] retain the pure line test of
the traditional MTM procedure, as given by (34)–(37).
All peaks, however, whether purely harmonic or narrow-
band, are tested for significance relative to the null
hypothesis of a red-noise background. The spectral den-
sity of this background noise is assumed to be given by
(13)–(15), and the parameters S0 and r, the noise pro-
cess’s variance and its lag-one autocorrelation, are esti-
mated empirically from the data.

[148] Discrimination against a red-noise background
is particularly important in climate studies, where the
system under investigation always contains longer time-
scales than those of immediate interest. This leads to
greater power at lower frequencies and greater likeli-
hood of prominent peaks in the spectrum there, even in
the absence of any signals [e.g., Hasselmann, 1976;
Mitchell, 1976]. Thomson [1990a] and Thomson and
Chave [1990] have developed therefore quadratic in-
verse spectrum estimates aimed more particularly at the
shape and properties of continuous spectra and cross
spectra.
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[149] Mann and Lees [1996] provide a robust estimate
of the spectral background (equation (13)) by minimiz-
ing, as a function of r, the misfit between an analytical
AR(1) red-noise spectrum and the adaptively weighted
multitaper spectrum convolved with a median smoother.
The median smoothing operation insures that the glo-
bally estimated noise background is insensitive to “out-
liers.” These outliers may be due to peaks associated
with significant signals or to spurious ones. The median
smoother guards against inflated estimates of noise vari-
ance and noise autocorrelation; the latter arise in a
conventional Box-Jenkins approach due to the contam-
ination of noise parameters by contributions from the
signal, for example, from a significant trend or oscilla-
tory component of the series. A median smoothing width
of �f � min ( fN/4, 2pfR) is a good compromise be-
tween describing the full variation of the background
spectrum over the Nyquist interval, on the one hand, and
insensitivity to narrow spectral features, on the other.

[150] Significance levels for harmonic or narrowband
spectral features relative to the estimated noise back-
ground can be determined from the appropriate quan-
tiles of the chi-square distribution, by assuming that the
spectrum is distributed with � � 2K degrees of freedom
[Mann and Lees, 1996]. A reshaped spectrum is deter-
mined in which the contributions from harmonic signals
are removed [Thomson, 1982], based on their passing a
significance threshold for the F test on the variance
ratio, as described above. In this way, noise background,
harmonic, and narrowband signals are isolated in two
steps. The harmonic peak detection procedure provides
information as to whether the signals are best approxi-
mated as harmonic or narrowband, i.e., as phase-coher-
ent sinusoidal oscillations or as amplitude-and-phase–
modulated, and possibly intermittent, oscillations. In
either case, they must be found to be significant relative
to a specified noise hypothesis, such as that of red noise
(equation (13)) used above.

[151] To illustrate the revised MTM procedure of
Mann and Lees [1996], we apply the approach to the SOI
series discussed earlier. Consistent with the SSA-MEM
results of section 3.3 (see Figure 12), the MTM analysis
in Figure 14 recognizes two highly significant interan-
nual peaks, one centered at f � 0.18 cycle/yr (roughly a
5.5-year period) and another centered at f � 0.41
cycle/yr (roughly a 2.5-year period).

[152] These two signals are significant well above the
99% level: For p � 2 and N � 690 monthly samples,
there are about seven statistically independent band-
widths in the spectral estimate within the subannual
band ( f � 0.5 cycle/yr); hence not even one interannual
or lower-frequency peak is expected to arise by pure
chance at the 99% level. A low-frequency variation that
cannot be distinguished from a trend for the given data
set is also isolated as significant at the 99% level relative
to the estimated red-noise background.

[153] We associate the two interannual peaks with the
low-frequency and quasi-biennial ENSO signals, respec-

tively, although a slight discrepancy exists with respect to
the SSA-MEM results in Figure 12. The difference be-
tween the 2.5-year period here and the 2.4 years in
Figure 12 is negligible. That between 5.5 years here and
4.8 years there is probably due to the relative shortness
of the record and the width of the peak, both here and
in Figure 12. SSA-MEM emphasizes the middle of the
peak, while MTM selects a harmonic feature that might
lie close to one of the peak’s sides.

[154] It is interesting to note that the AR(1) model
does not provide a good description of the noise back-
ground in a neighborhood of the spectrum surrounding
f � 1.0 cycle/yr (see also Figure 7 and its discussion in
section 2.3). This discrepancy could be due, at least in
part, to the prior removal of the seasonal cycle (see also
Thomson [1995] and section 2.3). Away from f � 1.0
cycle/yr the robustly estimated red-noise spectrum pro-
vides a good visual fit to the data set’s spectral back-
ground. Mann and Lees’s [1996] noise background esti-
mation procedure thus appears to be fairly insensitive to
the anomalous behavior of the spectrum near the annual
cycle.

[155] Higher-frequency peaks between f � 0.3 cycle/
month and f � 0.5 cycle/month (periods of 2–3 months)
may be associated with intraseasonal oscillations in the
tropical atmosphere but raise some concerns through
their large number and relatively poor match with results
obtained using other atmospheric data sets. The esti-
mate of the noise background in this intraseasonal band
is probably lowered unduly by the attempt to fit a single

Figure 14. Adaptively weighted MTM spectrum of the SOI
time series. The estimated red-noise background and associ-
ated 90%, 95%, and 99% significance levels are shown by the
four smooth curves, in this order, from the lowest to the
highest curve in the figure. Three signals with interannual and
lower frequencies (the trend and ENSO’s low-frequency and
quasi-biennial signals) are significant at the 99% level. Several
higher-frequency peaks appear also to be significant; see text
for a more detailed assessment of their significance. The band-
width parameter is p � 2, and K � 3 tapers were used.
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red-noise spectrum to both this band and the interan-
nual one. Gilman et al. [1963] already had recognized
that multiple decorrelation timescales may characterize
certain atmospheric and climate phenomena. Thus one
might be better off in a case like this, when applying
MTM, to use a more complex null hypothesis for signif-
icance testing. Such a hypothesis of a fairly general
colored-noise background is available in the SSA-MTM
Toolkit (http://www.atmos.ucla.edu/tcd/ssa), where it is
described as “locally white.” This composite noise
model, however, has less of a physical justification than
the straightforward red noise of (13)–(16) and raises
questions of parsimony in estimating its parameters.

[156] To better understand the distinction between the
inferences from the conventional MTM procedure of
Thomson [1982] and the revised procedure of Mann and
Lees [1996], we compare the results of the two in Figure
15. The F test criterion for harmonic signals in Figure
15a yields seven peaks at the 99% confidence level and
27 peaks at the 95% confidence level. Many of these
peaks are associated with very weak power in the spec-
trum. Note that the harmonic peak test has the higher
Rayleigh frequency resolution #fR, and not the broader
bandwidth #pfR of the adaptive multitaper spectral es-
timate (equation (32)). In a series of N � 690 data
points we would expect about seven and 35 peaks at the
99% and 95% confidence levels, respectively, from

chance alone. This does not differ significantly from the
F test results for the time series in Figure 2. The har-
monic analysis approach alone therefore does not dis-
tinguish any significant features from random noise in
our SOI data.

[157] The results of this approach are nonetheless
useful in the reshaping procedure used by Mann and
Lees [1996]. Figure 15b also shows the reshaped (solid
curve) and adaptively weighted (dashed curve) multi-
taper spectrum along with the significance levels relative
to the robustly estimated red-noise background. The
dashed peaks satisfy the harmonic detection test at the
90% level and are also significant relative to red noise at
the same level. There are eight such peaks, including
both a lower-frequency and a quasi-biennial ENSO
peak. The inference in this case is that the two distinct
ENSO-band signals are both significant well above the
99% level against red noise; furthermore, each of these
two narrowband signals is likely to contain a harmonic,
phase-coherent oscillation with a 90% level of confi-
dence. If a 99% threshold were required in the F test for
the reshaping procedure, neither of these two peaks
would pass the harmonic test. Nonetheless, they are still
highly significant narrowband features of the spectrum.
The true ENSO signal is almost certainly associated with
amplitude, phase, and frequency modulation over time
(see Jiang et al. [1995a] and Figures 6 and 8); such
features are not appropriately modeled in the harmonic
signal test alone.

3.4.2. Signal Reconstruction
[158] Once significant peaks have been isolated in the

spectrum, relative to the specified null hypothesis, the
associated signals can be reconstructed in the time do-
main using the information from the multitaper decom-
position. These reconstructions of oscillatory signals are
analogous to the SSA reconstructed components (RCs)
described in section 2.2, except that information from a
frequency domain decomposition, rather than a lag do-
main decomposition, is used to reconstruct the partial
signal of interest. As in the lag domain case of SSA, the
reconstruction becomes more delicate near the end
points of the time interval over which the data are
provided.

[159] The reconstructed signal that corresponds to a
peak centered at frequency f0 is written in continuous
time as

X̃	t
 � � A	t
e�2�if0t! (38)

or, for the discrete-time case at hand,

X̃	n�t
 � � Ane�2�if0n�t!. (39)

We determine the envelope function A(t) from a time
domain inversion of the spectral domain information
contained in the K complex eigenspectra [Park, 1992;
Park and Maasch, 1993; Mann and Park, 1994, 1996b],
while � is the real part of the Fourier term in braces.

Figure 15. Comparison between MTM spectra obtained by
harmonic analysis test and adaptively weighted estimation
against red-noise background. Shown are (a) harmonic signal
(variance ratio) F test with median, 90%, 95%, and 99%
significance levels indicated and (b) reshaped versus unre-
shaped adaptively weighted MTM spectrum based on p � 2
and K � 3, and a 90% F test significance criterion for
reshaping. The dashed line in Figure 15b represents the dis-
crepancy between reshaped spectrum (solid curve) and the
unreshaped one; it thus provides a measure of the portion of
the MTM spectrum associated with harmonic features. Signif-
icance levels for the reshaped spectrum are as in Figure 14.
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The envelope A(t) has K complex degrees of freedom,
and allows for phase and amplitude variations in the
time reconstruction of the signal centered at frequency
f0. It thus represents a considerable refinement of the
classical, single-taper complex demodulation method
[Bloomfield, 1976; Hasan, 1983].

[160] The discrete time sequence describing the com-
plex envelope An is determined from a discrete inverse
problem that uses the complex amplitudes of each of the
K eigenspectra and appropriate boundary conditions
[Park, 1992; Park and Maasch, 1993]. The three lowest-
order boundary constraints in this inversion involve min-
imizing the envelope An itself or its slope near the end
points, or maximizing its smoothness there. Supplemen-
tary information regarding the signal (see the discussion
by Park [1992]) might favor any one of these three
choices that involve the sequence An and its first or second
divided differences. The amplitude of the seasonal cycle in
surface temperature, for example, is nearly constant in
time, and a minimum-slope constraint is thus most appro-
priate [see Mann and Park, 1996b]. In the absence of such
a priori information, one can obtain a nearly optimal re-
construction through seeking the weighted linear combina-
tion of these three constraints that minimizes the mean-
square difference between the reconstructed signal and the
raw data series [Mann and Park, 1996b].

[161] In Figure 16 we show the reconstruction, based
on the latter recipe, of the SOI that corresponds to the
three interannual signals that are significant at the 99%
level in Figure 14: the trend, low-frequency, and quasi-
biennial components. The two oscillatory signals each
exhibit roughly one (nondimensional, normalized) unit
of peak-to-peak variation. The amplitude modulations
of both oscillatory components, low-frequency (Figure

16b) and quasi-biennial (Figure 16c), are similar, with
minimal amplitude in the early 1960s (compare with
Figure 8 and its discussion in section 2.4).

[162] The long-term trend in the SOI (Figure 16a),
while weak, still exhibits a peak-to-peak variation of
about 0.5 units or one half of the amplitude of the two
oscillatory signals. The oscillatory components of SOI
are well known to be anticorrelated with sea surface
temperatures in the eastern tropical Pacific. The trend in
Figure 16a also seems to be anticorrelated with the
temperature trend for the equatorial Pacific shown in
Figure 4b of Moron et al. [1998], although the number of
degrees of freedom in these two trends does not allow us
to establish the statistical significance of this anticorre-
lation. The filtered RC-5 in Figure 6b shares the overall
features of the reconstructed trend in Figure 16a, al-
though it also displays some interdecadal variability not
present in the latter.

[163] In Figure 17 we plot the partial reconstruction of
SOI (bold curve) obtained by summing the trend and
two oscillatory components shown separately in Figure
16. This reconstruction captures 28% of the total vari-
ance in the raw monthly data (light curve) versus the 43%
captured by RCs 1–4 in Figure 6a. The overall match with
strong and moderate El Niños and La Niñas is also fairly
good, although somewhat less compelling than in section
2.2. The MTM trend in Figure 16a, on the other hand,
seems to provide a cleaner picture of the SOI’s nonoscil-
latory evolution over the latter half of the twentieth century
than the SSA trend in Figure 6b. Both SSA and MTM
reconstructions therefore have much to contribute to our
description and understanding of climate variability.

4. MULTIVARIATE METHODS

[164] So far, we have discussed the spectral analysis of
a single, scalar time series. In many geophysical applica-

Figure 16. Multitaper reconstruction of the significant inter-
annual components corresponding to (a) the trend, (b) the
low-frequency band, and (c) the quasi-biennial band of ENSO.
A minimum-misfit boundary condition was employed in the
reconstructions, as described in the text. The parameters p �
2 and K � 3 were used in Figures 14 and 15.

Figure 17. Sum of the three MTM reconstructed compo-
nents (bold curve), along with the raw SOI series (light curve).
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tions, and to a lesser extent in astrophysics and space
physics, one is presented with a sequence of maps or
other samples of a vector-valued process. The L com-
ponents at each discrete time may be values of a field at
points of a regular or irregular grid, in one, two, or three
space dimensions, or values of the field’s projections
onto certain (spatial) basis functions imposed by the
geometry of the domain. It is useful to think of the
values of such a component at successive times as a
(scalar) time series, and it is common to refer to each of
these time series as a channel. The methods discussed in
this section are thus referred to sometimes as multichan-
nel. It is also common in the statistical literature to refer
to a scalar time series as univariate and to a vector time
series as multivariate.

[165] Most of the univariate methods of sections 2 and
3 (SSA, wavelets, MEM, and MTM) have been extended
to multivariate time series. The computation of cross
correlations and cross spectra by classical methods is
presented by Hannan [1970] and Priestley [1981b],
among others. Mann and Park [1999] provide an up-to-
date review of multivariate MTM methods and their
applications. There exists extensive literature on apply-
ing wavelets to the evolution of turbulent flow fields
[Farge, 1992] and related multivariate problems [Tor-
rence and Compo, 1998]. For the sake of brevity, we shall
restrict ourselves therefore to a succinct presentation of
multivariate MEM and SSA.

4.1. Principal Oscillation Patterns (POPs)
[166] In principle, one can extend MEM to multivar-

iate time series via the inverse modeling of vector-valued
AR processes [Ooms, 1988]. In practice, if both the
number L of channels and the order M of the AR model
are high, the issues of computational and statistical
stability of the LM coefficients involved become rapidly
prohibitive. Thus it is only vector-valued AR(1) pro-
cesses that have been widely applied to geophysical
problems under the name of principal oscillation pat-
terns (POPs) [Hasselmann, 1988; Von Storch et al., 1988]
or empirical normal modes (ENMs) [Penland, 1989;
Penland and Ghil, 1993].

[167] Penland [1996] provides an excellent review of
vector-valued stochastic processes X(t) in continuous
time and of their connection to discrete-time AR pro-
cesses. Her review is well illustrated by the application of
the basic concepts to the spectral analysis and AR pre-
diction of sea surface temperatures in the tropical Pa-
cific. The details of the methodology are well beyond the
scope of this brief review, but the basic idea is to use the
data in order to estimate two matrices, B and Q, in the
model

dX � BXdt � d�	t
. (40)

Here B is the (constant) dynamics matrix and Q is the
lag-zero covariance of the vector white-noise process
d�(t), considered here in continuous time.

[168] For the subtleties of time-continuous stochastic
processes we refer to Penland [1996, and references
therein]; �(t) is a continuous, nowhere differentiable
Wiener process. For the present purposes, it suffices to
recall that by the wide-sense stationarity assumption (see
Appendix A), B has to be stable, i.e., its eigenmodes
have to decay in time. The latter property is the coun-
terpart, in the present vector-matrix context, of the re-
quirement that a1 � 0 for the scalar AR(1) process of
(1) and (16).

[169] The two matrices B and Q are related by a
fluctuation-dissipation relation [Leith, 1975]:

BC	0
 � C	0
Bt � Q � 0, (41)

where C(�) � �{X(t � �)Xt(t)} is the lag-covariance
matrix of the process X(t) being modeled and �t is the
transpose of a vector or matrix. One proceeds to esti-
mate the Green’s function G(�) � exp (B�) at a given lag
�0 from the sample of C(�) by

G	�0
 � C	�0
C�1	0
. (42)

Diagonalizing G(�0) allows one to obtain B � B�0
, via its

eigenvalues and (left and right) eigenvectors.
[170] If (40) is the correct model for the process X(t),

then the matrix B� obtained for a certain � � �0 should
be, in fact, independent of � [Penland and Ghil, 1993].
The ENM approach [Penland, 1989] differs from the
original POP approach [Hasselmann, 1988] by (1) build-
ing on the theory of continuous-time stochastic pro-
cesses and (2) considering the whole spectrum of B,
rather than preselected (pairs of) eigenvalues only.

[171] There are various reasons for which G(�), and
hence B�, might be substantially different from one value
of � to another. These include problems and trade-offs in
the choice of �, as well as nonlinearity, instability, or
nonstationarity of the true process being sampled. The
vector AR(1) method, whether in its POP or ENM form,
works best when the spectrum is dominated by a single
peak [see Von Storch et al., 1988; Penland, 1996, and
references therein], which results in a well-separated
pair of POPs or ENMs. The “tau test” of recomputing
the eigendecomposition of G(�) and therewith of B� for
various � values is particularly useful in determining the
stability of the results, since error bars are, like for
single-channel MEM and even more so, fairly difficult to
come by.

[172] Recently, Egger [1999] has extended the POP
approach to higher-order vector AR processes. He calls
such a vector AR(M) process a MOP model. MOPs can
capture, in principle, a multiplicity of oscillating patterns
that elude POPs. Still, they encounter difficulties when
the underlying system that produces the signal is non-
linear, as is the case with POPs.

4.2. Multichannel SSA (M-SSA)
[173] Multichannel SSA, often abbreviated as M-SSA,

is a natural extension of SSA to a time series of vectors
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or maps, such as time-varying temperature or pressure
distributions over the globe. The use of M-SSA for such
multivariate time series was proposed theoretically, in
the context of nonlinear dynamics, by Broomhead and
King [1986b]. SSA can be applied, as explained in sec-
tions 1.2 and 2.1, in the context of systems of ODEs and
the reconstruction of (the skeleton of) their attractor.

[174] M-SSA is a generalization of this approach to
systems of partial differential equations and the study of
the spatiotemporal structures that characterize the be-
havior of solutions on their attractor [Constantin et al.,
1989; Temam, 1997]. It has been applied to intraseasonal
variability of large-scale atmospheric fields by Kimoto et
al. [1991], Keppenne and Ghil [1993], and Plaut and
Vautard [1994], as well as to ENSO; for the latter, both
observed data [Jiang et al., 1995a; Unal and Ghil, 1995]
and coupled general circulation model (GCM) simula-
tions [Robertson et al., 1995a, 1995b] were used.

[175] In the meteorological literature, extended EOF
(EEOF) analysis is often assumed to be synonymous
with M-SSA [Von Storch and Zwiers, 1999]. The two
methods are both extensions of classical principal com-
ponent analysis (PCA) [Preisendorfer, 1988] but they
differ in emphasis: EEOF analysis [Barnett and Hassel-
mann, 1979; Weare and Nasstrom, 1982; Lau and Chan,
1985] typically utilizes a number L of spatial channels
much greater than the number M of temporal lags, thus
limiting the temporal and spectral information. In M-
SSA, on the other hand, on the basis of the single-
channel experience reviewed in sections 2 and 3.3, one
usually chooses L � M (see also Appendix A). Often
M-SSA is applied to a few leading PCA components of
the spatial data, with M chosen large enough to extract
detailed temporal and spectral information from the
multivariate time series.

[176] Let {Xl(t)�l � 1, � � � , L; t � 1, � � � , N } be an
L-channel time series with N data points given at equally
spaced intervals n�t. We assume that each channel l of
the vector X(n�t) is centered and stationary in the weak
sense.

[177] The generalization of SSA to a multivariate time
series requires the construction of a “grand” block ma-
trix T̃X for the covariances that has the form

T̃X � �
T1,1 T1,2 . . . T1,L

T2,1 T2,2 . .
. . . . .
. . . . T l,l� .
. . . . .
. . . TL�1,L

TL,1 . . . TL,L�1 TL,L

� . (43)

Each block Tl,l� is a matrix that contains estimates of the
lag covariance between channels l and l�. Extending the
approach of Vautard and Ghil [1989] (see section 2.2),
Plaut and Vautard [1994] proposed to obtain a “least
biased” estimator by using, for each lag m (m � 0, � � � ,
M � 1), the longest-possible segment of each channel.

Thus the entries ( j, j�) of each block Tl,l� can be written
as

	Tl,l�
 j, j� �
1
Ñ �

n�max	1,1�j�j�


min	N,N�j�j�


Xl	t
 Xl�	t � j � j�
, (44)

where Ñ is a factor that depends on the range of sum-
mation, to wit,

Ñ � min 	N, N � j � j�
 � max 	1, 1 � j � j�
 � 1

(45)

(compare equation (6)).
[178] Note that unlike in the single-channel case, here

Tl,l� is Toeplitz but not symmetric. Its main diagonal
contains the Vautard and Ghil [1989] estimate of the
lag-zero covariance of channels l and l�. The diagonals
in the lower left triangle of Tl,l� contain the lag-m co-
variance of channels l and l�, with l� leading l, while the
diagonals in the upper right triangle contain the covari-
ances with l leading l�. Equation (44) ensures that Tl�,l �
(Tl,l�)

t so that T̃X is symmetric, but it is not Toeplitz.
Note that the original formula of Plaut and Vautard
[1994, equation (2.5)] does not, in fact, yield a symmetric
matrix. More generally, we only expect to obtain a grand
matrix T̃X that is both symmetric and of Toeplitz form
provided the spatial field being analyzed is statistically
homogeneous; that is, provided its statistics are invariant
with respect to arbitrary translations and rotations.

[179] An alternative approach [Broomhead and King,
1986a, 1986b; Allen and Robertson, 1996] to computing
the lagged cross covariances is to form the multichannel
trajectory matrix X̃ by first augmenting each channel
{Xl(t)�t � 1, � � � , N }, 1 � l � L, of X with M lagged
copies of itself,

X̃l � �
Xl	1
 Xl	2
 . . Xl	M

Xl	2
 Xl	3
 . . Xl	M � 1


. . . . .
Xl	N� � 1
 . . . Xl	N � 1


Xl	N�
 Xl	N� � 1
 . . Xl	N

� , (46)

1 � l � L,

and then forming the full augmented trajectory matrix:

D̃ � 	X̃1, X̃2, . . . , X̃L
. (47)

[180] These two steps generalize (5) and (9). The
grand lag-covariance matrix C̃X that is analogous to CX

in (9) is given by

C̃X �
1

N�
X̃tX̃ � �

C1,1 C1,2 . . . C1,L

. C2,2 . . . .

. . . . .

. . . C l,l� .

. . . . .
CL,1 CL,2 . . . CL,L

� , (48)

where N� is given in Table 1. The blocks of C̃X are given
by
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C l,l� �
1

N�
X̃ l

tX̃ l� (49)

with entries

	Cl,l�
j, j� � C̃IJ �
1

N� �
t�1

N�

Xl	t � j � 1
Xl�	t � j� � 1
, (50)

where I � j � M(l � 1) and J � j� � M(l� � 1) [Allen
and Robertson, 1996]. Here Cl,l� is neither Toeplitz nor
symmetric, but again Cl�,l � (Cl,l�)

t and hence C̃X is
symmetric.

[181] Each block Cl�,l contains, like Tl,l� in (43), an
estimate of the lag covariances of the two channels l and
l�. The difference between the Toeplitz method of Vau-
tard and Ghil [1989] and the trajectory matrix method of
Broomhead and King [1986a, 1986b] in estimating the
lag-covariance matrix, when applied to M-SSA, consists
of calculating (43) and (44) versus (48)–(50). The To-
eplitz method extracts, according to the fixed lag m that
is being considered at the moment, the two longest
matching segments from the two channels l and l�; the
matching is determined by the requirement that for each
entry in the designated trailing channel, there exist an
entry in the designated leading channel that is m time
steps “ahead.” It then uses the same estimated lag co-
variance for all entries along the appropriate diagonal in
the block and thus yields a Toeplitz-form submatrix.

[182] The trajectory matrix method gradually slides,
regardless of m, the same N�-long windows over the two
channels. To compute the first entry in the diagonal that
contains the lag-m covariances, the two matching win-
dows are situated so that one starts at the first time point
of the trailing channel and at the (m � 1)st point of the
leading channel. Both windows are then slid forward by
one point in time to produce the second entry. This
results in slightly different values, from entry to entry,
until the last point of the leading channel is covered and
the (M � m)th entry of the diagonal, which is the last
one, is calculated. This latter method thus retains de-
tailed information on the variation of the lag-covariance
estimates from one pair of segments of the channels l
and l� to another, while the Toeplitz method produces a
single, and smoother, global estimate for each lag m.

[183] Diagonalizing the LM � LM matrix C̃X or T̃X

yields LM eigenvectors {Ek�1 � k � LM} that are not
necessarily distinct. The extent to which the eigenpairs
(�k, Ek) obtained by diagonalizing C̃X equal those ob-
tained from T̃X is a good indication of the robustness of
the M-SSA results. Each eigenvector Ek is composed of
L consecutive M-long segments, with its elements de-
noted by El

k( j). The associated space-time PCs Ak are
single-channel time series that are computed by project-
ing X̃ onto the EOFs:

Ak	t
 � �
j�1

M �
l�1

L

Xl	t � j � 1
 El
k	 j
, (51)

where t varies from 1 to N�. This is the multichannel
counterpart of (10).

[184] For a given set of indices �, RCs are obtained by
convolving the corresponding PCs with the EOFs. Thus
the kth RC at time t for channel l is given by

Rl
k	t
 �

1
Mt

�
j�Lt

Ut

Ak	t � j � 1
 El
k	 j
. (52)

As in (11), the normalization factor Mt equals M, except
near the ends of the time series, and the sum of all the
RCs recovers the original time series [Plaut and Vautard,
1994], as it does in the single-channel case. The factor
Mt, as well as the lower and upper bounds of summation,
Lt and Ut, are given by the same equation, equation
(12), as in the single-channel case.

[185] As an example, we apply M-SSA to the near-
global data set of monthly sea surface temperatures from
the Global Sea Ice and Sea Surface Temperature
(GISST) data set [Rayner et al., 1995] for 1950–1994,
from 30$S to 60$N, on a 4$-latitude by 5$-longitude grid.
The mean seasonal cycle was subtracted at the outset,
and the data were prefiltered with standard PCA [Pre-
isendorfer, 1988] to retain the 10 leading spatial PCs that
describe 55.2% of the variance. This favors the associa-
tion of larger decorrelation times with larger spatial
scales, as expected for climatic [Fraedrich and Boettger,
1978] and other geophysical fields, and the channels are
uncorrelated at zero lag. We use therewith L � 10
channels and N � 540 months; no other filtering or
detrending was applied. The SST anomalies of this data
set were averaged over the Niño-3 area in the eastern
tropical Pacific (5$S–5$N, 90$–150$W), and the evolution
of these averaged anomalies is shown in Figure 18 (light

Figure 18. SST anomalies averaged over the Niño-3 region.
Light solid line indicates Global Sea Ice and Sea Surface
Temperature (GISST) data; bold curves are RCs 2–3 for M �
60 (solid) and N� � 60 (short dashed), as well as RCs 3–4 for
M � N� � 270 (long dashed).
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solid curve).
[186] For comparison with previous ENSO studies we

choose M � 60 months, i.e., a 5-year M window. To
demonstrate the usage of N� windows versus M windows
(see Appendix A, especially equation (A1) and Figure
A1, for the definition of “complementary windows”), we
also set M � 480, which yields an N� window of 5 years,
and M � 270, which yields the M and the N� windows
both equal to N/ 2.

[187] We use here the lag-covariance matrices C̃X that
are based on the trajectory matrix approach of Broom-
head and King [1986a, 1986b] for ease of comparison. In
all three cases, ML � N�, so that it is more efficient to
diagonalize the reduced (N� � N�) covariance matrix
with elements given by (A1), rather than the (ML �
ML) matrix whose elements are given by (48).

[188] The leading oscillatory pair over the entire do-
main has a quasi-quadrennial period for all three values
of M, as illustrated by the spatial average of the respec-
tive RCs over the Niño-3 region (Figure 18). The two
reconstructions for M � 60 (bold solid curve) and N� �

60 (short-dashed curve) isolate a very similar frequency-
modulated mode, with a slightly longer period before 1965
(see Figure 8 and discussion there). The quasi-quadrennial
pair (modes 2 and 3 in these two cases), however, only
accounts for 20.0% variance with M � 60 against 30.8%
for N� � 60. This difference arises because the reduced
covariance matrix has rank 60 in the latter case, which
maximizes data compression, compared with rank ML �
600 for M � 60. The smaller one of M and N� deter-
mines the approximate spectral resolution 1/N� or 1/M.
Choosing M � N� � 270 yields the maximum spectral
resolution but captures less variance for the oscillatory
pair of interest: only 12.1% variance for the quasi-quad-
riennial pair, formed in this case by modes 3 and 4.

[189] Figure 19 shows the spatiotemporal evolution of
the quasi-quadrennial mode (RCs 2–3) for N� � 60,
using the phase-compositing procedure of Plaut and
Vautard [1994]. The maps (not shown) are almost indis-
tinguishable for M � 60 (same pair) and M � N� � 270
(RCs 3–4). The succession of panels in Figure 19 illus-
trates the progression of the oscillation, keyed to the

Figure 19. Phase composites for the low-frequency El Niño–Southern Oscillation (ENSO) cycle, as given by
RCs 2–3 with N� � 60. The cycle is divided into eight segments of 45$ each, using the first spatial PC as an
index. Contour interval is 0.1$C.
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phase index constructed by using the leading spatial PC
of RCs 2–3 [Moron et al., 1998].

[190] The maps are dominated by the classic El Niño
signature over the tropical Pacific, together with the
well-known “horseshoe” pattern over the extratropical
Pacific [see Chao et al., 2000, and references therein].
Amplitudes elsewhere are weak: In the northwestern
Indian Ocean, though, there is some suggestion of a
warming during El Niño and cooling during La Niña
events that lags the eastern equatorial Pacific by 1/8
cycle (%6 months). Over the tropical Atlantic, there is
also a small warming concurrent with the peak phase of
El Niño and cooling simultaneously with La Niña.

[191] As in the single-channel case, a test of statistical
significance is needed to avoid spurious oscillations that
are spatially smooth looking and might arise from M-
SSA of finitely sampled noise processes. The comple-
mentary N�-window approach of (A1) (see Appendix A)
allows the univariate SSA Monte Carlo test of Allen
[1992; see also Allen and Smith, 1996] to be extended to
M-SSA in a straightforward manner, provided ML �
N�, so that the reduced covariance matrix is completely
determined and has full rank. As shown in our example
above, N� can always be chosen sufficiently small, so that
the complementary window N� used in (A1) determines
the spectral resolution.

[192] Details of this essentially univariate test are
given by Allen and Robertson [1996]. The usefulness of
the test depends in an essential way on the channels
being uncorrelated at zero lag or very nearly so. In the
example at hand, the decorrelation condition holds ex-
actly, since we use the PCs of spatial EOF analysis.
When using time series from grid points that are suffi-
ciently far from each other for decorrelation to be near
perfect, the test can still be useful.

[193] In this test the data series together with a large
ensemble of red-noise surrogates are projected onto the
eigenmodes of the reduced covariance matrix of either
the data or the noise. The statistical significance of the
projections is estimated as in the single-channel test
described in section 2.3. The noise surrogates are con-
structed to consist of univariate AR(1) segments, one
per channel, that match the data in autocovariance at lag
0 and lag 1, channel by channel. The reason an essen-
tially univariate test can be applied is because the eigen-
modes do not depend on cross-channel lag covariance,
provided N� is interpreted as the spectral window used
in (A1). Since the test is biased if we project onto the
data eigenmodes, we project onto the eigenmodes pro-
vided by the covariance matrix of the AR(1) noise.

[194] Figure 20 shows the result of the test applied for
M � N� � 270, the maximum effective resolution. In
Figure 20 the projections are plotted against the domi-
nant frequencies associated with each noise eigenvector.
Since the latter are near sinusoidal in this case, the
resulting spectrum is closely related to a traditional
Fourier power spectrum. Both the quasi-quadrennial
and the quasi-biennial modes pass the test at the 95%

level. They are well separated in frequency by about
1/(20 months), which far exceeds the spectral resolution
of 1/M � 1/N� � 1/(270 months) " 1/(22 years). The
two modes are thus significantly distinct from each other
spectrally, in agreement with the univariate SOI results
of Figures 12 and 14, using MEM and MTM, respec-
tively.

5. SUMMARY AND PERSPECTIVES

5.1. Summary
[195] We have reviewed a number of recent develop-

ments in the spectral analysis of climatic and other
geophysical time series. Basic ideas and their connec-
tions to dynamical systems theory were emphasized. The
methods arising from these ideas and their numerical
implementation were outlined and illustrated.

[196] The key features of the methods discussed in this
review are summarized in Table 3 (see also Table 1 of
Ghil and Taricco [1997]). We have tried to provide
up-to-date information on the most refined and robust
statistical significance tests available for each one of the
three methods that were discussed in depth: SSA, MEM,
and MTM. Still, this group of authors feels that none of
these methods by itself can provide entirely reliable

Figure 20. Monte Carlo significance test for interannual os-
cillations in the GISST data. The first 10 spatial PCs are
projected onto AR(1) basis vectors with M � 270. Error bars
show the 95% confidence interval constructed from an AR(1)
surrogate data ensemble of 1000. In comparing with Figure 7,
note that the distribution of the points along the abscissa here
is uniform, since the attribution of the dominant frequency for
AR(1) basis vectors is simple [Vautard and Ghil, 1989; Allen,
1992].
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results, since every statistical test is based on certain
probabilistic assumptions about the nature of the phys-
ical process that generates the time series of interest.
Such mathematical assumptions are rarely, if ever, met
in practice.

[197] To establish higher and higher confidence in a
spectral result, such as the existence of an oscillatory
mode, a number of steps can be taken. First, the mode’s
manifestation is verified for a given data set by the best
battery of tests available for a particular spectral
method. Second, additional methods are brought to
bear, along with their significance tests, on the given
time series. This process was illustrated by the SOI time
series in the present review. Vautard et al. [1992] and
Yiou et al. [1996] provided similar illustrations for a
number of synthetic time series, as well as for the Inter-
governmental Panel on Climate Change (IPCC) time
series of global surface-air temperatures [IPCC, 1990]
and for the proxy record of deuterium isotopic ratio
[Jouzel et al., 1993] that reflects local air temperatures at
Vostok station in the Antarctica.

[198] The application of the different univariate meth-
ods described here and of their respective batteries of
significance tests to a given time series is facilitated by
the SSA-MTM Toolkit, which was originally developed
by Dettinger et al. [1995a]. The Toolkit has evolved as
freeware over the last 7 years to become more effective,
reliable, and versatile. Its latest version is available at
http://www.atmos.ucla.edu/tcd/ssa.

[199] The third step on the road to genuine confidence
in a given oscillatory mode is to obtain additional time
series that might exhibit the mode of interest, if indeed
it is present. For ENSO, this includes, besides SOI, the
Niño-3 sea surface temperatures shown in Figure 18, as
well as the additional data sets discussed in connection
with Figure 6 in section 2.2 here (see also Rasmusson et
al. [1990], Keppenne and Ghil [1992], Jiang et al. [1995a],
and Unal and Ghil [1995] for instrumental data and
Mann and Park [1999, and references therein] for proxy
records). The existence of two oscillatory climate modes
with interannual periodicities, one quasi-biennial, the
other with a period of 4–6 years, while not present in
every record and for every method, has been established
with great confidence. These two modes are thus defi-
nitely part of the skeleton of the attractor for climate
dynamics on interannual timescales.

[200] The fourth and most difficult step on the road of
confidence building is that of providing a convincing
physical explanation of an oscillation, once we have full
statistical confirmation for its existence. This step con-
sists of building and validating a hierarchy of models for
the oscillation of interest [see Ghil, 1994; Ghil and
Robertson, 2000]. The modeling step is distinct from and
thus fairly independent of the statistical analysis steps
discussed up to this point. It can be carried out before,
after, or in parallel with the other three steps.

[201] Model validation requires specifically the theo-
retical prediction of an oscillatory feature not yet ob-

TABLE 3. Comparison Table of Spectral Methods

Method Parametric Lines
Continuous
Spectrum Modulation Error Bars Remarks

BT (section 3.2) no low resolution variance
reduction

partiallya confidence
intervalsb

simple

MEM/AR (section 3.3) yes high AR
orderc

low AR
order

yesd confidence
intervals

SSA prefiltering helps

POP and ENM (section
4.1)

yes in space and
timee

no no robustness via
� test

inverse-model dynamics:
linear and stable

MTM (section 3.4) no harmonic
analysis

variance
reduction

amplitude and
phase;
frequency via
ESAf

F testg;
confidence
intervalsh

cost of DPSS
computation

SSA (sections 2 and 4.2) no low resolution yesi amplitude and
phase; some
frequency shifts

heuristic error
bars; Monte
Carlo
confidence
intervalsh

detects nonlinear
oscillations

Wavelets (section 2.4) no variable
resolutionj

� � � amplitude and
phase and
frequency

� � � nonstationary signals,
local in time and
frequency

aOnly one degree of freedom in envelope, via complex demodulation.
bConfidence intervals are obtained with respect to AR(0) and AR(1) null hypotheses.
cHigh AR orders can produce very good resolution but spurious peaks too.
dUnderlying AR model can describe modulated oscillation.
ePOP is used to detect spatiotemporal patterns on an AR(1) background.
fEvolutive spectral analysis.
gF test for harmonic analysis has a high resolution but produces spurious peaks when the spectrum is continuous.
hConfidence intervals are obtained from the null hypothesis of AR(0) or AR(1) noise.
iApproximated by the near-constant slopes in the spectral “scree diagram.”
jThe choice of the wavelet basis is delicate and involves a trade-off between time resolution and scale resolution.
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tained by time series analysis. The prediction might
involve a spatial feature not yet diagnosed from existing
observations or as-yet-unobserved spectral features: har-
monics, subharmonics, or combination tones. The sub-
sequent detection in new data sets of such a theoretically
predicted spatial or spectral feature, while never defin-
itive, tends to greatly bolster the case for the proposed
model. It thus reinforces more than anything else the
confidence in the existence and importance of the mode
under discussion.

[202] We turn therewith to the implications that the
discovery by spectral methods of oscillatory behavior can
have for the deeper understanding of climatic variability
and for its real-time prediction.

5.2. Implications for Understanding
[203] We have introduced in section 1 the concept of

a ghost limit cycle (Figure 1) as the underpinning for the
dynamic usefulness of a spectral peak. In a number of
instances, from intraseasonal oscillations [Ghil et al.,
1991] through paleoclimatic variability [Ghil, 1994], the
robust identification of an oscillatory mode in observa-
tions or proxy records has gone hand in hand with the
description of a Hopf bifurcation in a single model or a
full hierarchy of models [Ghil and Robertson, 2000]. Such
a bifurcation gives rise, via an oscillatory instability and
its nonlinear saturation, to a stable limit cycle. This limit
cycle is destabilized in turn, as the forcing on the system
increases or the constraints on it (such as viscous or eddy
dissipation) decrease; it thus becomes a “ghost limit
cycle.” The process of successive bifurcations engenders
additional ghost limit cycles and thus leads to multiply
periodic, and eventually irregular, behavior [Guckenhei-
mer and Holmes, 1983; Ghil and Childress, 1987; Schus-
ter, 1988].

[204] In the present paper we used seasonal-to-inter-
annual climate variability as the Ariadne’s thread to help
guide the interested reader through the labyrinth of
methodological exposition. As mentioned in sections
2.2, 3.3, and 4.2, the data-adaptive S/N enhancement
obtained by applying SSA to univariate and multivariate
climatic time series covering this variability led to the
robust identification of separate 4/1- and 4/2-year peaks.
An additional, 4/3-year peak [Robertson et al., 1995b;
Ghil and Robertson, 2000] completes a set of three sub-
harmonics of the seasonal cycle that characterize the
Devil’s staircase mechanism of interaction between the
ENSO’s intrinsic, self-sustained oscillation in the cou-
pled ocean-atmosphere system and the seasonal forcing.
This mechanism involves partial phase locking between
the two oscillations and has been studied in detail in
simple and intermediate ENSO models [Chang et al.,
1994; Jin et al., 1994; Tziperman et al., 1994; Saunders and
Ghil, 2001], in which the period of the intrinsic ENSO
cycle varies between 2 and 3 years, depending on models
and parameters.

[205] The separation of two or three peaks (quasi-
quadrennial, quasi-biennial, and sometimes but not al-

ways, 16–17 months) and the spatiotemporal variability
associated with them have been ascertained in various
data sets [Rasmusson et al., 1990; Jiang et al., 1995a], as
well as in coupled general circulation models [Robertson
et al., 1995a, 1995b; Ghil and Robertson, 2000]. The
Devil’s staircase thus provides the most plausible expla-
nation so far for the warm events peaking typically in
boreal winter, as well as for the irregularity of the El
Niños’ spacing from one warm event to the next (see also
discussion at the end of section 2.4 and further below).

[206] A similar dialog between spectral studies of in-
terdecadal variability and dynamical studies of oscilla-
tory model behavior is taking shape. Interdecadal modes
of variability at 10–11, 14–15, and 25–27 years were
initially identified, by combining the application of var-
ious spectral methods described in sections 2 and 3, to
wit, SSA, MEM, and MTM, in both global [Ghil and
Vautard, 1991; Vautard et al., 1992] and regional [Plaut et
al., 1995] time series. Allen and Smith [1994, 1996] and
Mann and Lees [1996] examined further the level of
significance of those spectral features against a red-noise
background. Allen and Smith [1994] described the spatial
patterns associated with the variability at 10–11 and
25–27 years by using a method related to M-SSA.

[207] The spectral peak at 14–15 years was confirmed
by SSA of coral reef proxy records from the tropical
South Pacific by Quinn et al. [1993]. Mann and Park
[1994] described this mode’s spatial pattern on a global
scale by using MTM-related multichannel methods ap-
plied to instrumental temperature data [see also Mann
and Park, 1999]. Variability in the South Atlantic basin
with a near periodicity of 14–16 years has been de-
scribed by Venegas et al. [1997] and Robertson and
Mechoso [2000].

[208] On the other hand, a plethora of oscillatory
mechanisms is emerging in two-dimensional [Quon and
Ghil, 1995], as well as in fully three-dimensional [Weaver
et al., 1993; Chen and Ghil, 1995; Rahmstorf, 1995],
models of the ocean’s thermohaline circulation (see
summary table, with further references, given by Ghil
[1994]). Coupled ocean-atmosphere models are also
producing decadal and interdecadal oscillations that
seem to resemble the purely oceanic ones [Delworth et
al., 1993; Chen and Ghil, 1996] or differ from them in
substantial ways [Latif and Barnett, 1994; Robertson,
1996].

[209] As in the case of ENSO variability, a full hier-
archy of models will probably be needed to clarify the
connections between the (dimly) observed and the (im-
perfectly) modeled oscillations on the decadal and in-
terdecadal timescales. A particularly interesting set of
questions deals with the 14–15 year oscillation and its
pattern and physical causes. The details of its spatiotem-
poral evolution in the North Atlantic have been de-
scribed by Moron et al. [1998], and their implications for
prediction have been outlined by Sutton and Allen
[1997]. These details seem to point to the intrinsic vari-
ability of the North Atlantic’s wind-driven circulation as
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a likely source [Jiang et al., 1995c; Speich et al., 1995;
Dijkstra and Molemaker, 1999]. Chao et al. [2000], on the
other hand, have described a 15–20 year oscillation
encompassing the entire Pacific basin’s sea surface tem-
peratures and roughly symmetric about the equator. Its
approximate subharmonic, with a period of 31–35 years,
appears in coral records of both �18O and �13C [Quinn et
al., 1993; Boiseau et al., 1999], as well as in 2300 years of
tree ring records from Tasmania [Cook et al., 1995].

[210] Are the three oscillations, in the North Atlantic,
South Atlantic, and Pacific, phase-locked, as suggested
by Mann and Park [1994]? If so, do they have a common
origin that is purely oceanic, or is it due to coupled
ocean-atmosphere processes? If not, what are their sep-
arate origins?

[211] An important aspect of nonlinear oscillations in
a complex system with multiple timescales, like the cli-
mate system, is their modulation in amplitude, phase,
and frequency (see Table 3). We showed that SSA can
follow well, via reconstructed components (RCs), varia-
tions in signal amplitude and phase that are associated
with a fairly broad spectral peak [Ghil and Mo, 1991a;
Plaut and Vautard, 1994; Dettinger and Ghil, 1998].
MTM-based harmonic analysis can be adapted, by using
a sliding window, to follow the slow shift in time of a
sharp line’s frequency [Yiou et al., 1991; Birchfield and
Ghil, 1993]. Wavelet analysis provides an even more
natural way of following quasi-adiabatic, gradual
changes in the natural frequency of a climatic oscillator
[Meyers et al., 1993; Yiou et al., 1995]. Suitable signifi-
cance criteria for wavelet analysis results [Flandrin,
1999] need to be adapted further to the problems of
following slow changes in frequency, as well as in ampli-
tude and phase, of climate oscillations.

[212] We showed that multiscale SSA, which can be
viewed as a data-adaptive form of wavelet analysis, is a
novel and useful tool for the reliable identification of
sharp, relatively sudden changes in frequency [Yiou et
al., 2000]. Its results, when applied to SOI, support
further the Devil’s staircase theory of ENSO, by high-
lighting the sudden jump in the low-frequency oscilla-
tion’s periodicity in the early 1960s (see also the discus-
sion of secular warming in the tropical Pacific and its
effects on the evolution of ENSO variability over the
twentieth century by Park and Mann [2000]).

5.3. Implications for Prediction
[213] In the previous section we discussed the need for

validating physical models of a spectrally detected oscil-
latory mode by formulating and verifying theoretical
predictions of the oscillation’s features, spatial or tem-
poral, that have not yet been observed. There is, in
climate dynamics and other geosciences, another type of
prediction that can greatly help increase confidence in
the description and explanation of the various time
series generated by a given process, namely, the fore-
casting of the process’s future evolution in time. In fact,
this is also one of the main purposes of time series

analysis [Wiener, 1949; Box and Jenkins, 1970; Priestley,
1981b; Ghil, 1997].

[214] The combination of SSA with MEM provides an
immediate application of the spectral methods discussed
herein to prediction. The key idea, illustrated in section
3.3, is that each significant RC obtained from an SSA
analysis is a narrowband time series. It can therefore be
predicted fairly robustly by computing a low-order
AR(M) process that fits this RC over the time interval
available, up to the present epoch. The separate RC
predictions can then be combined to form a partial
reconstruction of the entire time series’ future evolution
[Keppenne and Ghil, 1992; Vautard et al., 1992].

[215] The decision about which RCs to use for this
SSA-MEM prediction is based on a trade-off between
the amount of variance one hopes to predict and the
reliability of the prediction. The former consideration
suggests using all significant components (see discussion
in sections 2.2 and 2.3), the latter suggests restricting
oneself to the oscillatory ones [Plaut et al., 1995; Ghil
and Jiang, 1998]. The accuracy of the prediction de-
pends, in either case, on the extent to which the available
data from the past do determine the regular, i.e., peri-
odic and multiply periodic, behavior of the time series.
Instrumental temperature data over the last few centu-
ries do not seem, for instance, to determine sufficiently
well the behavior of global [Ghil and Vautard, 1991] or
local [Plaut et al., 1995] temperatures to permit a reliable
climate forecast on the decadal timescale by this SSA-
MEM method [Ghil, 1997].

[216] On the seasonal-to-interannual timescale, it ap-
pears that the doubly periodic variability associated with
the low-frequency and quasi-biennial ENSO modes is
sufficiently large and regular to help prediction substan-
tially. We saw in section 2.2 that these two modes cap-
ture 43% of the variance in the SOI time series and that
their constructive interference accounts essentially for
all strong and moderate El Niños and La Niñas (see
Figure 6). Table 4 shows that the SSA-MEM method
performs as well as, or better than, two other statistical
methods and three dynamical models, including a fully
coupled GCM. This does not mean that dynamical
ENSO models ought to be abandoned. It does mean,
though, that they have to meet higher standards of
forecast skill than beating the classical benchmark of
“damped persistence,” i.e., persistence gradually regressing
to climatology.

[217] More important, the relatively high accuracy of
the SSA-MEM forecast supports the essential role
played by the two oscillatory modes, low-frequency and
quasi-biennial, in ENSO variability. It emphasizes there-
with the necessity for dynamical models to simulate the
correct period, amplitude, and phase of these two
modes. Once a physical model does that, it can proceed
to capture other aspects of ENSO dynamics, which are
probably crucial in predicting the magnitude of extreme
events, like the 1997–1998 El Niño, or the extratropical
aspects of seasonal-to-interannual climate variability.
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[218] To conclude, spectral methods of time series
analysis and prediction are intimately connected with
the nonlinear dynamics of climate. Advances in the
methodology have benefited from the deeper insights
into the study of time series that dynamical systems
theory provides. These advances are contributing in turn
to a better understanding and prediction of climate
phenomena and processes.

APPENDIX A: SSA, SPATIAL EOF’S, AND THE
KARHUNEN-LOÈVE THEOREMS

A1. Spatial and Temporal EOFs
[219] Table A1 outlines the formal analogy between

SSA and the principal component analysis (PCA) of
variability in spatial fields. The key idea in both cases is
to identify the main patterns of this variability, in de-
creasing order of the associated variance. This idea is
carried out by diagonalizing the appropriate covariance
or correlation matrix, as shown in Table A1.

[220] The eigenvectors of this matrix are called empir-
ical orthogonal functions (EOFs) in the meteorological
literature. We refer to Preisendorfer [1988] for the long
history of the meteorological and oceanographic appli-
cations and for references to the early work of I. Holm-
ström, J. E. Kutzbach, E. N. Lorenz, and W. D. Sellers.
In the fluid mechanics literature the whole analysis of
turbulent fields by the principal component approach
has become known as proper orthogonal decomposition
(POD). An excellent discussion and many more refer-
ences are given in chapter 3 of Holmes et al. [1996].

[221] The rigorous mathematical foundation for the
spectral representation of random fields is analogous to
that of orthonormal bases for the solutions of the clas-
sical equations of mathematical physics [Courant and
Hilbert, 1953, 1962]. In the case of random fields that
possess finite first- and second-order moments, the
counterpart of the linear partial differential operator
being diagonalized is the two-point covariance operator.
The appropriate theorems have been proven in the
1940s by Kosambi [1943], Loève [1945], and Karhunen

TABLE 4. Comparison of 6-Month-Lead Skill of ENSO Forecast Models [After Ghil and Jiang, 1998]a

Dynamical Statistical

Zebiak and Cane
[1987]

Barnett et al.
[1993]

Ji et al.
[1994]

Barnston and
Ropelewski

[1992]
Van den Dool

[1994]
Jiang et al.

[1995b]

Model physical: simple
coupled

hybrid: physical
ocean model
coupled to a
statistical
atmosphere

physical:
coupled
ocean-
atmosphere
GCM

statistical:
canonical
correlation
analysis

empirical: constructed
analogs

statistical: SSA
and MEM

Predicted SST
region, for

Niño-3 central Pacific Niño-3.4 Niño-3.4 Niño-3.4 Niño-3

5$N–5$S 90$–150$W 140$–180$W 120$–170$W 120$–170$W 120$–170$W 90$–150$W
Period of record 1970–1993 1966–1993 1984–1993 1956–1993 1956–1993 1984–1993
Skill (1982–1993)

Corrb 0.62 0.65 0.69 0.66 0.66 0.74
RMSEc 0.95 0.97 0.83 0.89 0.89 0.50
SDd 1.08 1.10 1.00 1.11 1.11 1.00
aThe first three models are dynamical, while the last three are statistical. Columns 2–5 are based on information from Barnston et al. [1994];

see further description of models and validation methodology in their paper and by Ghil and Jiang [1998]. SSA-MEM forecasts (rightmost
column) have continued to be equally skillful in real-time forecasting since their early prediction of the 1997–1998 El Niño [Saunders et al., 1997].

bCorrelation.
cRoot-mean-square error.
dStandard deviation.

TABLE A1. Analogy Between Karhunen-Loève Decomposition in Space (Traditional or Spatial EOFs) and Time
(Temporal EOFs)

Spatial EOFs SSA

�(x, t) � ¥ Ak(t)�k(x) X(t � s) � ¥ Ak(t)�k(s)
x-space s-lag

C�(x, y) � �{�(x, &)�(y, &)} � 1/T �0
T �(x, t)�(y, t) dta CX(s) � �{X(( ), &)X(s, &)} � 1/T �0

T X(t)X(t � s)
dta

C��k(x) � �k�k(x)b CX�k(s) � �k�k(s)b

aThe expectation operator � represents averaging over a theoretical ensemble of realizations denoted by &. This is approximated by an
average over epochs t. See text for the rest of the notation.

bThe covariance operators C� and CX are approximated in practice by the corresponding matrices C� and CX.
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[1946]. Mathematically rigorous results in the time do-
main, rather than the spatial domain, assume that the
univariate stochastic process is weakly stationary or sta-
tionary in the wide sense [see Hannan, 1960; Ghil and
Taricco, 1997; Mallat, 1998]. Wide-sense stationarity re-
quires the process to have the same finite mean and
finite variance at each time t and a lag-autocorrelation
function that is finite for all lags and depends only on
lag.

[222] The covariance matrices obtained when dis-
cretizing the spatially continuous random fields or time-
continuous processes of Karhunen-Loève theory are of-
ten quite large. Because of their symmetry, the singular
value decomposition (SVD) of these matrices is espe-
cially simple [Golub and Van Loan, 1996, section 2.5],
and hence it is the method of choice for their diagonal-
ization. SVD is, in fact, one of the most widely used
algorithms in the whole of numerical linear algebra.

[223] It seems that Colebrook [1978] was the first one
to observe in the oceanographic literature that the eig-
envectors of the lag-correlation matrix are data-adaptive
band-pass filters in the time domain. He used this ob-
servation to improve the spectral analysis of zooplank-
ton records in the North Atlantic, grouped either by
species or by area into “spatial” eigenvectors. Vautard
and Ghil [1989] noticed the special role played by pairs
of nearly equal eigenvalues that are associated with
temporal EOFs in phase quadrature, as well as their
connection to an efficient representation of anharmonic
limit cycles.

[224] Barnett and Hasselmann [1979] proposed the use
of spatial EOFs that incorporate a given number of lags
for the prediction of atmospheric and oceanic fields in
the tropical Pacific. Weare and Nasstrom [1982] coined
the term extended EOF (EEOF) analysis for their use of
PCA to study variability in a sliding time window of
meteorological and oceanographic fields. Lau and Chan
[1985] applied this analysis to outgoing longwave radia-
tion data over the Indian and tropical Pacific oceans.

[225] All these EEOF applications used a small and
fixed number of lags: two in the case of Lau and Chan
[1985], three for Weare and Nasstrom [1982], and 10 or
12 for Barnett and Hasselmann’s [1979] work. This re-
striction was essential because of these authors’ retain-
ing the full extent of the spatial information provided.

[226] Kimoto et al. [1991] and Plaut and Vautard
[1994], on the other hand, were fully aware of the need
to use variable windows in univariate SSA to ensure the
statistical significance of the results, while capturing the
main periods of interest. To permit the use of large and
variable lag windows in multichannel SSA (M-SSA),
they recommended prior compression of the spatial in-
formation. This compression can be carried out either by
spatial averaging [Dettinger et al., 1995b; Jiang et al.,
1995a] or by prefiltering that uses spatial EOF analysis
[Plaut and Vautard, 1994; Moron et al., 1998].

[227] EEOF analysis and M-SSA are thus both exten-
sions of the classical Karhunen-Loève approach to the

analysis of random fields and stationary processes. They
both analyze, in one fell swoop, spatiotemporal variabil-
ity of climatic fields, and both use, more often than not,
the classical SVD algorithm of numerical linear algebra.
EEOF analysis has its roots in and stays closer to spatial
EOF analysis. M-SSA has its roots in univariate SSA and
has been developing a battery of statistical significance
tests for spatiotemporal variability inspired by those
incorporated in the SSA-MTM Toolkit [Plaut and Vau-
tard, 1994; Allen and Robertson, 1996].

A2. Complementary Windows for M-SSA
[228] Both univariate SSA and conventional PCA

analysis are special cases of EEOF or M-SSA analysis: In
SSA the number L of channels equals 1, while in PCA
the number M of lags is 1. Following Allen and Robertson
[1996], both algorithms can be understood in practice in
terms of a “window.” These windows are illustrated
schematically in Figure A1.

[229] Standard PCA slides a flat and narrow window,
of length 1 and width L, over the data set’s N fields, each
of which contains L data points. PCA thus identifies the
spatial patterns, i.e., the EOFs, which account for a high
proportion of the variance in the N views of the data set
thus obtained. Equivalently, PCA can be described as
sliding a long and narrow, N � 1 window across the L
input channels and identifying high-variance temporal
patterns, i.e., the PCs, in the corresponding L views. In
Figure A1 the former view of things corresponds to
sliding the 1 � L window parallel to the x axis along the
t axis. In the latter view one slides an N � 1 window that
starts out by lying along the t axis parallel to the x axis.
In both cases, M � 1.

[230] These two different window interpretations
carry over into M-SSA. In the first case one proceeds
from spatial PCA to EEOFs. To do so, we extend our
1 � L window by M lags to form an M � L window that
lies in the horizontal ( x, s) plane of Figure A1. By
moving this window along the t axis, we search for
spatiotemporal patterns, i.e., the EEOFs, that maximize
the variance in the N� � N � M � 1 overlapping views
of the time series thus obtained. The EEOFs are the
eigenvectors of the LM � LM lag-covariance matrix
given by (48)–(50).

Figure A1. Comparison between PCA, SSA, and EEOFs or
M-SSA. The axes are spatial coordinate (or spatial PC label) x,
time t, and lag s; discrete values of these variables are labeled
by l, n, and j, respectively (courtesy of K.-C. Mo).
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[231] The second conceptual route leads from single-
channel SSA to M-SSA. To follow this route, we reduce
the length of the N � 1 window to N� � 1. This window
still lies initially along the t axis and we search for
temporal patterns, i.e., the N�-long PCs, that maximize
the variance in the M � L views of the time series [Allen
and Robertson, 1996; Robertson, 1996]. This is equivalent
to SSA of the univariate time series formed by stringing
together all the channels of the original multichannel
time series end to end, with the complementary window
N� playing the role of M in SSA. The (reduced) PCs are
the eigenvectors of the N� � N� reduced covariance
matrix with the elements

Cjj�
	R
 �

1
LM �

l�1

L  �
t�1

M

Xl	t � j � 1
 Xl	t � j� � 1
� . (A1)

[232] This matrix, unlike the LM � LM matrix of
(48), is given by

C	R
 �
1

LM X̃X̃t. (A2)

In typical climate applications, N� � LM; hence C(R) is
smaller than C̃X and the latter has a null space of
dimension LM � N�. The eigenvectors of C̃X that lie
outside this null space, i.e., that correspond to nonzero
eigenvalues, are identical to those of C(R).

[233] ACKNOWLEDGMENTS. It is gratifying to thank
our past and present SSA, MEM, and MTM collaborators, P.
Billant, N. Jiang, C. L. Keppenne, M. Kimoto, J. M. Lees,
K.-C. Mo, J. Park, J. D. Neelin, J. M. Pap, M. C. Penland, G.
Plaut, E. Simonnet, L. A. Smith, D. Sornette, C. M. Strong, C.
Taricco, R. Vautard, R. K. Ulrich, Y. S. Unal and W. Weibel,
for the pleasure of working together and exchanging ideas; we
hope this review gives credit to the joint work and does not
betray their occasionally different ideas. It is a pleasure to
thank Tommy Dickey, past editor of Reviews of Geophysics, for
inviting the paper and thus motivating us to bring it all to-
gether, and Jeffrey Park, Yohan Guyado, and Michael Perfit
for their constructive comments on the original typescript. The
dedication of F. Fleuriau in helping finalize the text is greatly
appreciated, as is the help of J. Meyerson with the figures.
M.G.’s spectral methods work was supported by an NSF Spe-
cial Creativity Award. M.R.A. was supported by a NOAA
Postdoctoral Fellowship in Climate and Global and Change
(1994–1995), K.I. was supported by NASA grant NAG5-9294,
D.K., F.V., and the further development and maintenance of
the SSA-MTM Toolkit were supported by NSF grant ATM-
0082131, A.W.R. was supported by DOE grant DE-FG03-
98ER62615, and P.Y. was supported by the French Commis-
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modèles, Ph.D. thesis, 183 pp., Univ. Pierre et Marie Curie,
Paris, 1994.

Yiou, P., C. Genthon, J. Jouzel, M. Ghil, H. Le Treut, J. M.
Barnola, C. Lorius, and Y. N. Korotkevitch, High-frequency
paleovariability in climate and in CO2 levels from Vostok
ice-core records, J. Geophys. Res., 96, 20,365–20,378, 1991.

Yiou, P., M. Ghil, J. Jouzel, D. Paillard, and R. Vautard,
Nonlinear variability of the climatic system, from singular
and power spectra of Late Quaternary records, Clim. Dyn.,
9, 371–389, 1994.

Yiou, P., J. Jouzel, S. Johnsen, and Ö. E. Rögnvaldsson, Rapid
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