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Abstract

Geometrically based methods for various tasks of data analysis

have attracted considerable attention over the last few years. In many

of these algorithms, a central role is played by the eigenvectors of the

graph Laplacian of a data-derived graph. In this paper, we show that

if points are sampled uniformly at random from an unknown subman-

ifold M of R
N , then the eigenvectors of a suitably constructed graph

Laplacian converge to the eigenfunctions of the Laplace Beltrami op-

erator on M. This basic result directly establishes the convergence

of spectral manifold learning algorithms such as Laplacian Eigenmaps

and Diffusion Maps. It also has implications for the understanding of

geometric algorithms in data analysis, computational harmonic anal-

ysis, geometric random graphs, and graphics.

1 Introduction

The last several years have seen a flurry of activity in geometrically motivated
approaches to data analysis and machine learning. The unifying premise
behind these methods is the assumption that many types of high-dimensional
natural data lie on or near a low-dimensional submanifold of R

N . Collectively
this class of learning algorithms is often referred to as manifold learning.

Some recent manifold algorithms include Isomap [31], Locally Linear Em-
bedding (LLE) [28], Diffusion Maps [14], Hessian Eigenmaps [15] among oth-
ers.

∗The Ohio State University, Department of Computer Science and Engineering
†The University of Chicago, Departments of Computer Science and Statistics
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In [3] we introduced an algorithmic framework based on the Laplace-
Beltrami operator of a manifold to motivate using the graph Laplacian asso-
ciated to point-cloud data for data representation and dimensionality reduc-
tion. We called the algorithm arising out of this point of view the Laplacian
Eigenmaps.

Indeed, several recent manifold learning algorithms are closely related to
the Laplacian. The eigenfunctions of the Laplacian are also eigenfunctions
of the heat diffusion operators. The diffusion operators play an important
role in a variety of algorithms for data analysis developed by Coifman and
collaborators in a series of recent papers, see [14], and the special issue of
Applied and Computational Harmonic Analysis [1]. These papers combine
ideas from multiscale analysis and spectral geometry in many interesting
ways to give rise to a suite of novel geometrically motivated algorithms for
data processing. The Hessian Eigenmaps approach of Donoho and Grimes
[15] uses the Frobenius norm of the Hessian matrix while the Laplacian is
its trace. Finally, as observed in [3], the cost function that is minimized to
obtain the embedding of LLE [28] can be viewed as an approximation to the
squared Laplacian.

In the manifold learning setting, the underlying manifold is typically un-
known. Therefore functional maps from the manifold need to be estimated
using point cloud data. The common approximation strategy in these meth-
ods is to construct an adjacency graph associated to a point cloud. The
underlying intuition has always been that since the graph is a proxy for the
manifold, inference based on the structure of the graph corresponds to the
desired inference based on the geometric structure of the manifold. Theo-
retical results to justify this intuition have been developed over the last few
years. However, a proof of spectral convergence, necessary for guaranteeing
convergence of algorithms, has been elusive.

1.1 Prior and Related Work

The problem of estimating geometric and topological invariants from point
cloud data has recently attracted some attention. Some of the recent work
includes estimating geometric invariants of the manifold, such as homol-
ogy [32, 26], dimensionality [24, 20], geodesic distances [7], and comparing
point clouds using Gromov-Hausdorff distance [22].

This paper relies on results obtained in [4, 2] for functional convergence of
operators. However considerably more careful analysis is required to ensure
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spectral convergence, which guarantees convergence of the corresponding al-
gorithms. To the best of our knowledge previous results are not sufficient to
guarantee convergence for any spectral method in the manifold setting.

Empirical convergence of spectral clustering for a fixed kernel parameter t
was shown in [25]. However the geometric case requires t → 0. We also note
results on approximating empirical eigenfunctions in [21] and work in [6].

The results in this paper as well as in [4, 2] are for the case of a uniform
probability distribution on the manifold. Recently [16] provided deeper
probabilistic analysis in that case. In a different context closely related ideas
were considered in [30].

Lafon in [23] generalized pointwise convergence results from [2] to the
important case of an arbitrary probability distribution on the manifold. We
also note [8], where a similar result is shown for the case of a domain in
R

n. Those results were further generalized and presented with an empiri-
cal pointwise convergence theorem in [18]. A faster convergence rate was
obtained in [29].

We observe that the arguments in this paper are likely to allow one to
use their results to show convergence of eigenfunctions for a wide class of
probability distributions on the manifold.

2 Main Result

The main result of this paper is to show convergence of the eigenvectors of
the graph Laplacian associated to a point cloud dataset to eigenfunctions
of the Laplace-Beltrami operator when the data is sampled from a uniform
probability distribution on an embedded manifold. It is likely that this result
can be extended to a larger class of probability distributions on the manifold.

In what follows we will assume that the manifold M is a compact in-
finitely differentiable Riemannian submanifold of R

N (without boundary).
Recall now that the Laplace-Beltrami operator (for functions) ∆M on M is
a differential operator ∆M : C2(M) → L2(M) defined as

∆Mf = − div (∇f)

where ∇f is the gradient vector field and div denotes divergence.
∆M is a positive semidefinite self-adjoint operator and has a discrete

spectrum on a compact manifold. We will generally denote its ith smallest
eigenvalue by λi (in increasing order). It is important to note the well-known
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fact that all eigenfunctions of the Laplace-Beltrami operator are infinitely
differentiable functions. See [27] for an introduction to the subject.

We define the operator Lt : L2(M) → L2(M) as follows:

Lt(f)(p) =
1

t(4πt)k/2

(
∫

M
e−

‖p−y‖2
4t f(p) dµy −

∫

M
e−

‖p−y‖2
4t f(y) dµy

)

where µ is the uniform measure on M obtained from the volume form. As
shown in previous work, this operator serves as a functional approximation
to the Laplace-Beltrami operator on M.

If data points x1, . . . , xn ∈ M ⊂ R
N are obtained by sampling M accord-

ing to µ, the corresponding empirical form of the operator is the following:

L̂t,n(f)(p) =
1

t(4πt)k/2

(

1

n

∑

e−
‖p−xi‖2

4t f(p) − 1

n

∑

i

e−
‖p−xi‖2

4t f(xi)

)

The operator L̂t,n is the point cloud Laplacian that forms the basis of the
Laplacian Eigenmaps algorithm for manifold learning. It acts on functions
M → R and may be viewed as an operator L̂t,n : C(M) → C(M) that is
the sum of a multiplication operator and a finite rank operator. Consider
the random (weighted) graph whose vertex set V is identified with the data
points x1, . . . , xn and where the the weight matrix W is given by Wij =

1
n

1
t(4πt)k/2 e

− ‖xi−xj‖2

4t . It is easy to see that for any f : M → R, if one considers

the restriction fV of f to the graph, then L̂t,nf restricted to V is the same
as the action of the graph Laplacian (matrix) L = D − W on (the vector)
fV . Therefore the eigenvalues of the graph Laplacian coincide with those of
L̂t,n (for small t) and the eigenfunctions of L̂t,n are naturally related to the
eigenvectors of the graph Laplacian.

Our main theorem shows that that there is a way to choose a sequence
tn, such that the eigenfunctions of the empirical operators L̂tn,n converge to
the true eigenfunctions of the Laplace-Beltrami operator ∆M in probability.

Theorem 2.1 Let λt
n,i be the ith eigenvalue of L̂t,n and et

n,i be the corre-
sponding eigenfunction (which, for each fixed i, will be shown to exist for t
sufficiently small). Let λi and ei be the corresponding eigenvalue and eigen-
function of 1

vol(M)
∆M respectively. Then there exists a sequence tn → 0, such

that
lim

n→∞
λtn

n,i = λi
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lim
n→∞

‖etn
n,i(x) − ei(x)‖ = 0

where the limits are taken in probability.

Note 1: We will assume that all eigenvalues are of multiplicity one. Other-
wise corresponding eigenvectors are not unique and convergence of spectral
projections may be obtained instead, using the same arguments. We also
note that eigenfunctions are defined up to a change of sign (assuming they
are norm one). To have a consistent way of choosing eigenfunctions, one
takes an arbitrary function f , not perpendicular to any of the eigenfunctions
and chooses eigenfunctions e, so that 〈e, f〉 > 0.
Note 2: In the rest of our exposition, we will let vol(M) = 1.

Our main result has implications for a number of different subjects. Our
own motivation was the analysis of algorithms for machine learning and the
result directly proves the convergence of the Laplacian Eigenmaps algorithm
and has consequences for a variety of algorithms that utilize ideas from spec-
tral geometry. Theorem 2.1 may also be viewed as a result in random matrices
where the spectrum (and corresponding spectral projections) of the random
graph Laplacian converges to that of the underlying Laplace-Beltrami opera-
tor. This basic convergence result also has consequences for sensor networks
(where sensors are dropped on a surface and their connectivity depends on
distance), for graphics (where surfaces are modeled by point clouds), for com-
putational harmonic analysis and scientific computing in a geometric setting
(where eigenfunctions of the Laplacian need to be computed and can play an
important role).

3 Structure of the proof

The proof of the main theorem consists of two main parts. One is spectral
convergence of the functional approximation Lt to ∆M as t → 0 and the
other is spectral convergence of the empirical approximation L̂t,n to Lt as the
number of data points n tends to infinity. These two types of convergence
are then put together to obtain the main Theorem 1.

Part 1. The hard part of the proof is to show convergence of eigenvalues
and eigenfunctions of the functional approximation Lt to those of ∆M as
t → 0. For that we will take a different functional approximation 1−Ht

t
of

∆M, where Ht is the heat operator. While 1−Ht

t
does not converge uniformly
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to ∆M they share an eigenbasis and for each fixed i the ith eigenvalue of 1−Ht

t

converges to the ith eigenvalue of ∆M.
We will then consider the operator Rt = 1−Ht

t
− Lt. A careful anal-

ysis of this operator, which constitutes the bulk of this paper, shows that
Rt is a small relatively bounded perturbation of 1−Ht

t
, in the sense that

supf∈L2(M) ‖ 〈Rtf,f〉
〈1−Ht

t
f,f〉

‖ → 0 as t → 0. This implies spectral convergence

and leads to the following

Theorem 3.1 Let λi, λ
t
i, ei, e

t
i be the ith smallest eigenvalues and the corre-

sponding eigenfunctions1 of ∆M and Lt respectively. Then

lim
t→0

|λi − λt
i| = 0

lim
t→0

‖ei − et
i‖ = 0

Part 2. The second part is to show that the eigenfunctions of the empiri-
cal operator L̂t,n converge to the eigenfunctions of Lt as n → ∞ in probability.
That result follows readily from the previous work in [25] together with the
analysis of the essential spectrum of Lt. The following theorem is obtained:

Theorem 3.2 For a fixed sufficiently small t, let λt
n,i and λt

i be the ith eigen-

value of L̂t,n and Lt respectively. Let et
n,i and et

i be the corresponding eigen-
functions. Then

lim
n→∞

λt
n,i = λt

i

lim
n→∞

‖et
n,i(x) − et

i(x)‖ = 0

with a.s. convergence, assuming that λt
i ≤ 1

2t
.

Observe that this implies convergence for any fixed i as soon as t is sufficiently
small.

Symbolically these two theorems together with the final Theorem 2.1 can
be represented by the following diagram:

Eig L̂t,n Eig ∆MEig Lt
...............................................................................................................................................................................

.....
..
..
..
.

n → ∞
...............................................................................................................................................................................

.....
..
..
..
.

t → 0
.
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.
.
.
.
.
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.
.
.
.
.
.
.
.
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.
.
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..
..
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..
..
..
..
..
..
..
...
.
..
.
.
.
.
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.
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.

.

.

.

.

.

.

.

....

n → ∞ tn → 0

1For simplicity we assume that ∆M has no multiple eigenvectors. If such eigenvectors

exist, spectral projections should be used instead of eigenvectors.

6



After demonstrating two types of convergence results in the top line of
the diagram (notice that the left arrow is convergence almost surely but
convergence of Lt to ∆M is deterministic), a simple argument shows that a
sequence tn can be chosen to guarantee convergence as in Theorem 2.1 and
provides the bottom arrow.
Remark: It is worth noting that ∆M is viewed as an operator C2(M) →
L2(M), L̂t,n is an operator C(M) → C(M) while Lt is an operator from
L2(M) → L2(M). Luckily the eigenfunctions of these operators are all in
C∞ and therefore contained in all the relevant function spaces. In proving
Theorem 3.2, we consider both L̂t,n and Lt to be operators C(M) → C(M)
while in proving Theorem 3.1, we consider Lt to be L2 → L2 and prove that
it is a relatively bounded perturbation of another operator 1−Ht

t
: L2 → L2.

Notation: Let us fix our notational convention for the variety of mathe-
matical objects in this paper.
1. We will use bold letters to denote operators and capital letters to de-
note kernel functions for the associated integral operators. Thus, if K(x, y)
is a kernel, then K is the corresponding convolution operator K(f)(x) =
∫

M K(x, y)f(y)dµy.
2. In particular Gt(x, y) will denote the Gaussian kernel

Gt(f)(x) = (4πt)−
k
2 e−

‖x−y‖2
4t

and Gt will denote the corresponding convolution over the manifold:

Gt(f)(x) = (4πt)−
k
2

∫

M
e−

‖x−y‖2
4t f(y) dµy

Similarly Ht(x, y) will denote the heat kernel on M and Ht is the heat oper-
ator, which is convolution with the heat kernel.
3. For a function f : M → R, ‖f‖1, ‖f‖, ‖f‖∞, ‖f‖Hs will denote its norm
in L1, L2, L∞ and the Sobolev space Hs respectively. The last space, once s
is fixed, we will also denote as H. For an operator A, ‖A‖ denotes the L2

operator norm:
‖A‖ = sup

‖f‖=1

‖Af‖
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4 Spectral Convergence of Functional Approx-

imations.

4.1 Main Objects and Outline of the Proof

Let M be a smooth, compact k-dimensional submanifold of R
N with its Rie-

mannian structure inherited from R
N and the corresponding induced measure

µ.
We define the operator Lt : L2(M) → L2(M) as follows:

Lt(f)(x) =
1

t(4πt)k/2

(
∫

M
e−

‖x−y‖2
4t f(x) dµy −

∫

M
e−

‖x−y‖2
4t f(y) dµy

)

As shown in previous work (see [4] and citations therein), this operator
serves as a functional approximation (pointwise) to the Laplace-Beltrami
operator on M.

The purpose of this paper is to extend the previous results to the eigen-
values and eigenfunctions. This turns out to need some careful estimates.

Let Ht be the heat operator for the Riemannian manifold M. We define

Rt =
1 − Ht

t
− Lt

The idea is to give an estimate on the remainder term Rt, that will imply
that Rt is dominated by 1−Ht

t
. This, in turn, will imply convergence of the

spectrum and eigenfunctions.
We will need two estimates for the size of the perturbation Rt, which are

given in the following two propositions:

Proposition 4.1 Let f ∈ L2. There exists C ∈ R, such that for all suffi-
ciently small values of t

‖Rtf‖ ≤ C‖f‖

Proposition 4.2 Let f belong to the Sobolev space H
k
2
+1. There exists C ∈

R, such that for all sufficiently small values of t

‖Rtf‖ ≤ C
√

t‖f‖
H

k
2 +1

These propositions, will allow us to derive the main technical result of the
paper (whose proof together with the proofs of propositions will be presented
in the next few sections):
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Theorem 4.3 Let t ∈ (0, 0.1). Then there exists a constant C > 0, inde-
pendent of t, such that the following inequality holds:

sup
f∈L2

|〈Rtf, f〉|
〈1−Ht

t
f, f〉 ≤ Ct

2
k+6

In particular,

lim
t→0

sup
f∈L2

〈Rtf, f〉
〈1−Ht

t
f, f〉 = 0

and hence Rt is dominated by 1−Ht

t
.

This result, establishing a relative bound on the size of the perturbation
implies spectral convergence and hence establishes Theorem 2.1 as outlined
below.
Observation. The ith smallest eigenvalue of 1−Ht

t
(denoted by λi(

1−Ht

t
))

is equal to (1 − e−λit)/t. Thus limt→0 λi(
1−Ht

t
) = λi. The corresponding

eigenvector ei(
1−Ht

t
) is the same as ei. Thus we see that it is sufficient to

show that for a fixed i and small t, the ith eigenfunction and eigenvalue of
Lt are close to those of 1−Ht

t
.

We now provide the argument for convergence of eigenvalues. For conver-
gence of eigenvectors additional assumptions about the eigengap are needed.
However spectral projections can be shown to converge without those as-
sumptions ([19]).

Proposition 4.4 Let A,B be positive, self-adjoint operators with discrete
spectrum that may be arranged in increasing order. Let D = A − B and
λ1(A) ≤ λ2(A) ≤ . . . and λ1(B) ≤ λ2(B) ≤ . . . denote the eigenvalues of A
and B respectively. Assume that for all f ∈ L2

∣

∣

∣

∣

〈Df, f〉
〈Af, f〉

∣

∣

∣

∣

≤ ǫ

Then for all k, we have 1 − ǫ ≤ λk(B)/λk(A) ≤ 1 + ǫ.

Proof:

For any f ∈ L2, we have

|〈Af, f〉| ≤ |〈Bf, f〉| + |〈Df, f〉| ≤ |〈Bf, f〉| + ǫ|〈Af, f〉|
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By the same token,

|〈Af, f〉| ≥ |〈Bf, f〉| − |〈Df, f〉| ≥ |〈Bf, f〉| − ǫ|〈Af, f〉|

Putting these together, we have

(1 − ǫ)|〈Af, f〉| ≤ |〈Bf, f〉| ≤ (1 + ǫ)|〈Af, f〉|

Let H be an arbitrary k-dimensional subspace of L2 and H⊥ its orthogonal
complement. Then

(1 − ǫ) max
H

min
f∈H⊥

|〈Af, f〉| ≤ max
H

min
f∈H⊥

|〈Bf, f〉| ≤ (1 + ǫ) max
H

min
f∈H⊥

|〈Af, f〉|

By the Courant-Fischer theorem, the result follows. �

4.2 Proof of Theorem 4.3.

Technical note: We will consider all functions to be orthogonal to the
constant function in L2. This can be done without a loss of generality and is
needed at several points in the proofs. We will also normalize all eigenfuctions
to norm 1 in L2.

Before proceeding with the main result we need to formulate the following

Lemma 4.5 Let f =
∑

λi≤α aiei be a bandlimited function in terms of eigen-
functions of the Laplace-Beltrami operator. Then for some constant C > 0,
we have

‖f‖
H

k
2 +1 ≤ Cα

k+2
4 ‖f‖ (1)

In particular, if e is an eigenvector of ∆M with eigenvalue λ, then

‖e‖
H

k
2 +1 ≤ Cλ

k+2
4 (2)

Proof:∆−1
M is a bounded operator Hp → Hp+2. Recalling that L2 = H0 we

obtain

‖f‖
H

k
2 +1 ≤ C‖(∆M)

k+2
4 f‖H0 = C‖

∑

λi≤α

λ
k+2
4

i aiei‖ ≤ Cα
k+2
4 ‖f‖

�
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Now we can proceed with the proof of the central theorem 4.3.
Proof:[Theorem 4.3]

Let ei(x) be the ith eigenfunction of ∆M and let λi be the corresponding
eigenvalue. Recall that ei’s form an orthonormal basis of L2(M). Thus any
function f ∈ L2(M) can be written uniquely as

f(x) =
∞
∑

i=0

aiei(x)

where ai’s are such that
∑

a2
i < ∞.

Recall also that
Htf = exp(−t∆M)f (3)

Thus
Htei = exp(−tλi)ei (4)

1 − Ht

t
ei =

1 − e−λit

t
ei (5)

Now let us fix t and consider the function φ(x) = 1−e−xt

t
for positive x. It

is easy to check that φ is a concave and increasing function of x.
Put x0 = 1/

√
t. We have:

φ(0) = 0 φ(x0) =
1 − e−

√
t

t

φ(x0)

x0

=
1 − e−

√
t

√
t

Splitting the positive real line in two intervals [0, x0], [x0,∞) and using
concavity and monotonicity we observe that

φ(x) ≥ min

(

1 − e−
√

t

√
t

x,
1 − e−

√
t

t

)

Note that limt→0
1−e−

√
t√

t
= 1.

Therefore for positive and sufficiently small t (say, 0 < t < 0.1)

φ(x) ≥ min

(

1

2
x,

1

2
√

t

)

Thus
〈

1 − Ht

t
ei, ei

〉

=
1 − e−λit

t
≥ 1

2
min

(

λi,
1√
t

)

(6)
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Now take f ∈ L2, f(x) =
∑∞

i=1 aiei(x). Without loss of generality we can
assume that ‖f‖2 = 1. For any α > 0, we can split f as a sum of f1 and f2

as follows:
f1 =

∑

λi≤α

aiei, f2 =
∑

λi>α

aiei

It is clear that f = f1 + f2 and, since f1 and f2 are orthogonal, ‖f‖2 =
‖f1‖2 + ‖f2‖2. We will now deal separately with f1 and with f2.

Notice that Rt is self-adjoint and thus

〈Rtf, f〉 = 〈Rtf1, f1〉 + 2〈Rtf1, f2〉 + 〈Rtf2, f2〉

Using the Cauchy-Schwartz and triangle inequalities, we have

|〈Rtf, f〉| ≤ 3‖Rtf1‖ + ‖Rtf2‖‖f2‖ (7)

We now give a bound for ‖Rtf1‖
〈1−Ht

t
f,f〉 . We see that by Proposition 4.2,

‖Rtf1‖ < C
√

t‖f1‖
H

k
2 +1

Using the fact that f1 is band-limited by α and applying Lemma 4.5, we get

‖Rtf1‖ < C
√

t

∥

∥

∥

∥

∥

∑

λi≤α

aiei

∥

∥

∥

∥

∥

H
k
2 +1

< C1

√
tα

k+2
4

On the other hand, from Inequality 6

〈

1 − Ht

t
f, f

〉

=

〈

∑

i

1 − e−tλi

t
aiei,

∑

i

aiei

〉

=
∑

i

a2
i

1 − e−tλi

t
>

1

2

∑

i

a2
i min(λi,

1√
t
)

Therefore, for 0 < t < 0.1, we obtain
〈

1 − Ht

t
f, f

〉

>
1

2
λ1

∑

i

a2
i =

λ1

2

Thus,
‖Rtf1‖

〈1−Ht

t
f, f〉 <

2C1

λ1

√
tα

k+2
4 (8)
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We will now bound ‖Rtf2‖‖f2‖
〈1−Ht

t
f,f〉 . By applying Proposition 4.1, we have

‖Rtf2‖‖f2‖ ≤ C3‖f2‖2

On the other hand,

〈

1 − Ht

t
f, f

〉

≥
〈

1 − Ht

t
f2, f2

〉

≥
∑

λi>α

a2
i

1

2
min(α,

1√
t
) ≥ 1

2
min(α,

1√
t
)‖f2‖2

Thus,
‖Rtf2‖‖f2‖
〈1−Ht

t
f, f〉 ≤ C3

min(α, 1√
t
)
≤ C3 max(

1

α
,
√

t) (9)

Putting this together with inequalities (7,8), we get

〈Rtf, f〉
〈1−Ht

t
f, f〉 ≤ C4

(√
tα

k+2
4 + max(

1

α
,
√

t)

)

(10)

Letting α = t−
2

k+6 , we recover the theorem.
�

4.3 Proof of Estimate for L2 norm of Rt (Proposition 4.1).

Let M be a smooth, compact, k-dimensional Riemannian submanifold of
R

N . Following [26], we characterize the complexity of the embedding of M
by a quantity τ defined as the largest number having the property: The open
normal bundle about M of radius r is imbedded in R

N for every r < τ . 1
τ

bounds the norm of the second fundamental form and therefore provides a
bound on curvature and nearness of self-intersection of M. τ is also called
the reach or the rolling ball condition in computational geometry. Since M
is compact and smooth, we are guaranteed that τ > 0.

Let Ht be the heat kernel on the manifold M. Let the ambient Gaussian
kernel be

Gt(p, q) =
1

(4πt)k/2
e−

‖p−q‖2
4t

and let Et be the geodesic Gaussian kernel given by

Et(p, q) =
1

(4πt)k/2
e−

d2(p,q)
4t
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where d(p, q) is the geodesic distance between p, q ∈ M. Each kernel is
naturally associated with an integral operator on the manifold denoted by
Ht, Gt and Et respectively. We will start with the main result and then
prove the necessary technical ingredients.
Proof:[Proposition 4.1]

Recall that

Ltf(x) =
1

t

(

f(x)

∫

M
Gt(x, y)dµy −

∫

M
f(y)Gt(x, y)dµy

)

Thus

Rtf =
1

t

(

1 −
∫

M
Gt(x, y)dµy

)

f − 1

t
(Ht − Gt)f

Applying Proposition 4.6, we see that the norm of the operator Ht −Gt

is bounded by Ct.
On the other hand, it is easily verified that the norm of the multiplication

operator Mgf = fg is bounded by sup |g|, ‖Mg‖ ≤ sup |g|. Hence applying
Proposition 4.11, we see that the norm of the multiplication operator in
Eq. (4.3) is bounded by C ′t.

Putting these two observation together we arrive at Proposition 4.1. �

Proposition 4.6 For some constant C depending only on the manifold and
independent of t

‖Ht − Gt‖ ≤ Ct

Proof: We observe that

‖Ht − Gt‖ ≤ ‖Ht − Et‖ + ‖Et − Gt‖

by the triangle inequality. The first term may be bounded by Lemma 4.13
while the second may be bounded by Lemma 4.7. The result follows.

�

We will now state the main technical result of this subsection:

Lemma 4.7 For some constant C independent of t

‖Et − Gt‖ ≤ Ct

14



Proof:

Consider a point p ∈ M. We see that

(Gt − Et)(f)(p) =
1

(4πt)k/2

∫

M
(e−

‖p−q‖2
4t − e−

d2(p,q)
4t )f(q)dµ

Consider the geodesic ball Bǫ(p) = {q ∈ M|d(q, p) < ǫ}, which is the set of
all points in M whose geodesic distance from p is less than ǫ. Choose ǫ <
min(τ/2, 1). We break the integral above in two parts, (Gt −Et)f = A + B,

A =
1

(4πt)k/2

∫

Bǫ(p)

(e−
‖p−q‖2

4t − e−
d2(p,q)

4t )f(q)dµ

B =
1

(4πt)k/2

∫

M\Bǫ(p)

(e
‖p−q‖2

4t − e−
d2(p,q)

4t )f(q)dµ

From Lemma 4.10, we see that |A| < C1tE2t(|f |)(p) for some C1 > 0..
similarly, from Lemma 4.8, we have that |B| < C2t‖f‖. Define h1(p) =
C1tE2t(|f |)(p) and h2(p) = C2t‖f‖ (a constant function). Then, we see that

|(Et − Gt)(f)(p)| ≤ h1(p) + h2(p)

from which it follows that

‖(Et − Gt)f‖ ≤ ‖h1‖ + ‖h2‖

¿From Corollary 4.16 we see that ‖h1‖ = C1t‖E2tf‖ < C3t‖f‖. Since the
manifold is compact ‖h2‖ < C2t‖f‖. Putting these inequalities together, we
see that there is a constant C > 0 such that

‖(Et − Gt)f‖ ≤ Ct‖f‖

The proposition is proved. �

We will now give necessary bounds for B and A.

Lemma 4.8 For some constant C and t sufficiently small

|B| =
1

(4πt)k/2

∣

∣

∣

∣

∫

M\Bǫ(p)

(

e−
‖p−q‖2

4t − e−
d2(p,q)

4t

)

f(q)dµ

∣

∣

∣

∣

≤ Ct‖f‖

15



Proof: We observe that ‖p − q‖ ≤ d(p, q) and hence by the triangle
inequality

|B| ≤ 2

(4πt)k/2

∫

M\Bǫ(p)

e−
‖p−q‖2

4t |f(q)|dµ(q)

Now let X = infq∈M\Bǫ(p) ‖q − p‖. Clearly,

|B| ≤ 2
e−

X2

4t

(4πt)k/2

∫

M\Bǫ(p)

|f(q)|dµ(q) ≤ 2
e−

X2

4t

(4πt)k/2

∫

M
|f(q)|dµ(q)

By Schwartz inequality, we have
∫

M |f |dµ ≤ ‖1‖‖f‖ = vol(M)‖f‖. There-
fore,

|B| ≤ 2
e−

X2

4t

(4πt)k/2
vol(M)‖f‖

It now only remains to check what X is.
We use the fact (proved in [26]) that for any two points p, q ∈ M, such

that ‖p − q‖ < τ/2, we have that

‖p − q‖ ≤ d(p, q) ≤ τ − τ

√

1 − 2
‖p − q‖

τ

Therefore, we see that

‖p − q‖ < α =⇒ d(p, q) ≤ ǫ

for α = (τ/2)
(

1 − (1 − ǫ
τ
)2
)

. For all points q ∈ M\Bǫ(p), we have d(p, q) > ǫ
and hence ‖p − q‖ > α. Therefore

0 < α ≤ inf
q∈M\Bǫ(p)

‖p − q‖ = X

leading to e−
X2

4t ≤ e−
α2

4t . Since exponential function increases faster than a
polynomial, the lemma is proved. �

Now we turn to bounding A = 1
(4πt)k/2

∫

Bǫ(p)

(

e−
‖p−q‖2

4t − e−
d2(p,q)

4t

)

f(q)dµ.

Since p, q ∈ Bǫ(p) are nearby, we can resort to the following lemma (appears
in [5]).

Lemma 4.9 For any two points p, q ∈ M such that d(p, q) < 1, the rela-
tionship between the Euclidean distance and geodesic distance is given by

‖p − q‖2 = d2(p, q) − h(p, q)

16



where h(p, q) = O(d4(p, q)). In other words, there exists an a > 0 such
that |h(p, q)| ≤ ad4(p, q) for all such p, q. The constant a depends upon
the embedding of the manifold and bounds on the third derivatives of the
embedding coordinates.

Using this lemma, we can now prove

Lemma 4.10 For any point p ∈ M and point q ∈ Bǫ(p), we have

|Et(p, q) − Gt(p, q)| ≤ CtE2t(p, q)

Proof:Using the exponential map exp : Bǫ → M from an ǫ-ball in Tp

(centered at the origin) to M, we can write in exponential coordinates to let
q = exp(x). Then, we see that since d(p, q) = ‖x‖, we have by Lemma 4.9
that ‖p − q‖2 ≥ ‖x‖2 − a‖x‖4. Hence, we have

Et(p, q) =
1

(4πt)k/2
e

−‖x‖2
4t

and

Gt(p, q) =
1

(4πt)k/2
e−

‖p−q‖2
4t ≤ 1

(4πt)k/2
e−

‖x‖2−a‖x‖4
4t

Therefore,

|Et − Gt| ≤
1

(4πt)k/2

(

e−
‖x‖2−a‖x‖4

4t − e−
‖x‖2
4t

)

To prove the lemma, it is sufficient to show

1

(4πt)k/2

(

e−
‖x‖2−a‖x‖4

4t − e−
‖x‖2
4t

)

≤ Ct
1

(4πt)k/2
e−

‖x‖2
8t

for some constant C. Canceling common terms, we reduce the above inequal-
ity to

e−
‖x‖2
8t

(

e
a‖x‖4

4t − 1

)

≤ Ct

Putting z = ‖x‖2, we see that this is equivalent to showing

f(z) = e−
z
8t

(

e
az2

4t − 1
)

≤ Ct

17



Examining f(z), we see that the derivative f ′(z) is given by

f ′(z) =
1

8t

(

(4az − 1)e
2az2−z

8t + e−
z
8t

)

Notice that f ′(z) < 0 if

1 ≤ (1 − 4az)e
az2

4t

Since e
az2

4t ≥ 1 + az2

4t
, we see that f ′(z) < 0 as long as 1 + az2

4t
≥ 1

1−4az
or

z
4t

≥ 4
1−4az

. Since we are working in the ball Bǫ(p), we have z < ǫ2. By

choosing ǫ so that 4aǫ2 < 1
2
, we see that f ′(z) < 0 for z ≥ 32t. Therefore,

for z ≥ 0, f(z) attains its maximum when z ≤ 32t.
For z ≤ 32t, and for t sufficiently small, we have

|f(z)| ≤ e
az2

4t − 1 ≤ e256at − 1 ≤ 512at

The lemma is proved. �

Proposition 4.11
∣

∣

∣

∣

1 −
∫

M
Gtdµ

∣

∣

∣

∣

≤ Ct

for some constant C > 0 that depends only on the manifold M and is inde-
pendent of t.

Proof:We begin by noting that

∫

M
Gtdµ =

∫

Bǫ(p)

Gt dµ +

∫

M\Bǫ(p)

Gtd µ

By the same arguments used in Lemma 4.8, the quantity
∫

M\Bǫ(p)
Gt can be

controlled as t goes to 0. We therefore concentrate on the term
∫

Bǫ(p)
Gt.

Switching to exponential coordinates by writing q = exp(x) as before and
using the fact that ez = 1+O(zez), we can write

∫

Bǫ(p)
Gt dµ = D+F , where

D =
1

(4πt)k/2

∫

Bǫ

e−
‖x‖2
4t

√

det(g)dx

F = O

(

1

(4πt)k/2

∫

Bǫ

‖x‖4

4t
e−

‖x‖2−a‖x‖4
4t

√

det(g)dx

)

18



Here g is the metric tensor in exponetial coordinates and we will use the fact
that the quantity

√

det(g) can be written as

√

det(g) = 1 − 1

6
xT Rx + O(‖x‖3), (11)

where R is the Ricci curvature tensor.
Consider first the term F . Notice first that for ‖x‖ ≤ 1√

2a
, we have that

e−
‖x‖2−a‖x‖4

4t ≤ e−
‖x‖2
8t . Therefore for some C ′

F <
C ′

(4πt)k/2

∫

Bǫ

e−
‖x‖2
8t

‖x‖4

4t

√

det(g)dx

Using the Eq. 11, we see that F is upper bounded by C′

4t
(u4 + u6 + u7)

where u4, u6, u7 are the fourth, sixth, and seventh moments of the Gaussian
distribution with variance 4t. Hence u4 + u6 + u7 = O(t2) and F = O(t).

The first term D can be written as

D =
1

(4πt)k/2

∫

Bǫ

e−
‖x‖2
4t

(

1 − 1

6
xT Rx + O(‖x‖3)

)

dx

Using similar reasoning, it is easy to check that this quantity is also 1+O(t)
and the lemma is established. �

We now turn to bounding ‖Ht − Et‖. We start with the following

Lemma 4.12 Let M be a smooth compact Riemannian manifold. As above,
let Ht be the corresponding heat kernel. Fix ǫ > 0. For all p, q ∈ M such
that d(p, q) ≥ ǫ, we have that for small t

Ht(p, q) ≤ Ct3/2

where C > 0 depends on ǫ and the invariants of the manifold.

Proof:The proof follows directly from estimates on the heat kernel obtained
in the literature. See, for example, Theorem 1.1 of [17]. �

Lemma 4.13
‖Ht − Et‖ ≤ Ct

where C is a constant depending only upon the manifold.
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Proof:We begin by evaluating

(Ht − Et)(f)(p) =

∫

M
(Ht(p, q) − Et(p, q))f(q)dµ(q)

As before, we break this integral into a local and a global part. for the local
part, we consider a geodesic ball around p given by Bǫ(p) = {q ∈ M|d(p, q) <
ǫ}. We therefore have

(Ht − Et) (f)(p) = A + B

A =

∫

Bǫ(p)

(Ht(p, q) − Et(p, q))f(q) dµ(q)

B =

∫

M\Bǫ(p)

(Ht(p, q) − Et(p, q))f(q) dµ(q)

We bound A and B separately. For the first term, we see that

A ≤
∫

Bǫ(p)

|Ht(p, q) − Et(p, q)| |f(q)| dµ(q)

Using Lemma 4.14, we see that on Bǫ(p), there exists a constant C ′ such that

|Ht(p, q) − Et(p, q)| ≤ C ′t(H2t(p, q) + Ht(p, q) + 1)

Therefore, we have

|A| ≤ C ′t

∫

Bǫ(p)

(H2t(p, q) + Ht(p, q) + 1) |f(q)|dµ(q) ≤ C ′′t (H2t|f |(p) + Ht|f |(p) + ‖f‖)

For the set M\ Bǫ(p), we have

|B| ≤
∫

M\Bǫ(p)

Ht|f(q)|dµ(q) +

∫

M\Bǫ(p)

Et|f(q)|dµ(q)

Using using the arguments from Lemma 4.8 and Lemma 4.12, we know that
|Et(p, q)| and |Ht(p, q)| can be bounded by O(t) when d(p, q) > ǫ. Therefore,

|B| ≤ C1t

∫

M
|f(q)|dµ(q) = C1t‖f‖1 ≤ C2t‖f‖
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Putting these together, we have that

| (Ht − Et) (f)(p)| ≤ Ct ((H2t + Ht)(|f |)(p) + ‖f‖2)

Hence, by a standard argument,

‖(Ht − Et)f‖ ≤ Ct(‖H2t(|f |)‖ + ‖Ht(|f |)‖ + ‖f‖)

Using Lemma 4.15, we obtain

‖(Ht − Et)f‖ ≤ 3Ct‖f‖

and the proposition is proved. �

Lemma 4.14 For sufficiently small t and for all p, q sufficiently close, we
have

|Ht(p, q) − Et(p, q)| ≤ Ct(H2t(p, q) + Ht(p, q) + 1)

Proof:¿From the asymptotic expansion of the heat kernel, it is known (see
Rosenberg, 1997) that for p, q sufficiently close, there exist continuous func-
tions u0(p, q) and u1(p, q) such that

|Ht(p, q) − Et(p, q)(u0(p, q) + tu1)(p, q)| < C ′t

from which it follows that

|Ht(p, q) − Et(p, q)| ≤ Et(p, q)|u0(p, q) − 1| + tEt(p, q)|u1(p, q)| + C ′t

Using compactness of M, we let M = supp,q∈M |u1(p, q)| < ∞. Therefore,
we have

|Ht − Et| ≤ Et|u0 − 1| + tEtM + C ′t

Now using the fact that u0(p, q) = det−
1
2 (gij(q)) (again, g is the metric

tensor at point q; see Rosenberg, 1997), and using the asymptotic expansion
in Eq. 11 of det(g), we have for a compact M that u0 = 1 + O(‖x‖2).
Therefore,

Et|u0 − 1| ≤ C ′′ 1

(4πt)k/2
e−

‖x‖2
4t ‖x‖2
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Letting z = ‖x‖√
t
, we have

1

(4πt)k/2
e−

‖x‖2
4t ‖x‖2 = t

1

(4πt)k/2
e−

z2

4 z2 ≤ tC1
1

(4πt)k/2
e−

z2

8 = C2tE2t

where the penultimate inequality makes use of the fact that e−
z2

4 z2 = e−
z2

8 e−
z2

8 z2

and that e−
z2

8 z2 is a bounded function of z.
Therefore

|Ht − Et| ≤ Ct(E2t + Et + 1) (12)

for some constant C > 0.
Finally, to prove the lemma, we notice that

|Ht −Et| ≤ Et|u0 − 1|+ tEtM + Bt ≤ M ′(Et(d
2(p, q) + t) + t) ≤ 2ǫM ′Et + ǫ

for sufficiently small t > 0. Therefore, we have

Et(1 − 2ǫM ′) ≤ Ht + ǫ

ultimately proving that there exists a constant P > 0 such that

Et ≤ P (Ht + 1)

Combining this with Eq. 12, the lemma is proved. �

Lemma 4.15 Let f ∈ L2. Then for any t ≥ 0

‖Htf‖ ≤ ‖f‖

Proof:Write f =
∑

aiei. ‖f‖2 =
∑

a2
i . We have Htf =

∑

e−tλiaiei and

‖Htf‖2 =
∑

(e−tλiai)
2 ≤

∑

a2
i

as e−tλi ≤ 1. �

Notice that in combination with Lemma 4.13, we have the following corol-
lary:

Corollary 4.16 Let f ∈ L2. Then there exists a constant C such that for t
sufficiently small

‖Etf‖ ≤ C‖f‖
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4.4 Proof of estimate for H
k

2
+1 norm of Rt (Proposi-

tion 4.2).

To simplify the notation in this section we will denote the Sobolev space
H

k
2
+1 by H. We will first need the following standard fact (for reference see,

e.g., ??, Chapter 4):

Lemma 4.17 Let f ∈ H. Then f is Lipschitz with the Lipschitz constant
bounded by C‖f‖H for some universal constant C.

Observe that for a smoothly embedded compact M Lipschitz functions
on M are also Lipschitz in terms of the ambient distance. The ratio of the
Lipschitz constants depends on the embedding of M.

Proposition 4.18 Let f ∈ H. Then there exists a constant C, such that
for t sufficiently small

‖Rtf‖2 ≤ C
√

t‖f‖H

Proof:

We begin by using the fact that the constant function is an eigenfunction
of Ht so that 1 =

∫

M Ht(x, y)dµ(y). Therefore, we can write

Rtf(p) =
1

t

∫

M
(Ht(p, q) − Gt(p, q))(f(p) − f(q))dµ(q)

We bound this integral by writing it as a sum of two parts, choosing an
appropriate ǫ > 0 and considering the set Bǫ(p) = {q|d(p, q) < ǫ} and its
complement in the usual way. Thus we have two integrals given by

A =

∫

Bǫ(p)

(Ht(p, q) − Gt(p, q))(f(p) − f(q))dµ(q)

and

B =

∫

M\Bǫ(p)

(Ht(p, q) − Gt(p, q))(f(p) − f(q))dµ(q)

respectively. Let us begin by bounding A. Using the exponential map exp :
Tp → M, we write q = exp(x) and get

A =

∫

Bǫ

(Ht − Gt)(f(0) − f(x))
√

det(g)dx
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Now we use the fact that for small ‖x‖ and small t, we have

Ht =
1

(4πt)k/2
e−

‖x‖2
4t (u0 + tu1 + t2u2) + O(t2)

Additionally, using the fact that u0 = det−
1
2 (g), and the asymptotic ex-

pansion of det(g) = 1 − 1
6
xT Rx + O(‖x‖3), we see that for small ‖x‖ and

sufficiently small t, we have

Ht = Et + O(Et(‖x‖2 + t) + t2)

By Lemma 4.10, we have

Gt = Et + O(tE2t)

Therefore,
|Ht − Gt| ≤ C(Et(‖x‖2 + t) + t2 + tE2t)

Since the Lipschitz constant of f is controlled by H norm, we have

|f(0) − f(x)| ≤ C‖f‖H‖x‖

and

|A| ≤ C‖f‖H
1

(4πt)k/2

∫

Bǫ

(

(Et(‖x‖2 + t) + t2) + tE2t

)

‖x‖
√

det(g)dx

It is easy to check that this gives us

|A| ≤ Ct3/2‖f‖H

For bounding B, we simply make use of the fact that on M \ Bǫ, both
Ht and Gt are O(t3/2) (Lemma 4.12 and the argument of lemma 4.8) and
|f(p) − f(q)| = O(‖f‖H supp,q∈M d(p, q)) to see that

|B| ≤ Ct3/2‖f‖H

Putting these together, we see that

|Rtf(p)| = |1
t
(A + B)| ≤ Ct1/2‖f‖H

The proposition follows immediately.
�
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5 Spectral Convergence of Empirical Approx-

imation

The discussion in section relies on technical results obtained in previous work.
We will now need the following

Proposition 5.1 For t sufficiently small

SpecEss (Lt) ⊂
(

1

2
t−1,∞

)

where SpecEss denotes the essential spectrum of the operator.

Proof:As noted before Ltf is a difference of a multiplication operator and
a compact operator

Ltf(x) = g(x)f(x) − Kf (13)

where

g(x) = (4πt)−
k+2
2

∫

M
e−

‖x−y‖2
4t dµy

and Kf is a convolution with a Gaussian. As noted in [25], it is a fact in
basic perturbation theory (e.g., [12]) that

SpecEss (Lt) = rg g

where rg g is the range of the function g : M → R. To estimate rg g observe
first that

lim
t→∞

(4πt)−
k
2

∫

M
e−

‖p−y‖2
4t dµy = 1

We thus see that for t sufficiently small

(4πt)−
k
2

∫

M
e−

‖p−y‖2
4t dµy >

1

2

and hence g(t) > 1
2
t−1. �

It is a well-known fact that all eigenfunctions of ∆M are infinitely differ-
entiable.

Lemma 5.2 Let et be an eigenfunction of Lt, Lte
t = λtet, λt < 1

2
t−1. Then

et ∈ C∞.
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Proof:Write Lte(x) = g(x)e(x) − Ke(x) as in Eq. 13. We have

e(x) =
Ke(x)

λt − g(x)

Since K is a convolution operator Ke ∈ C∞. Since λt /∈ rg g , we see that
the ratio is in C∞ as well. �

We see that Theorem 3.2 follows easily:
Proof:[Theorem 3.2] By the Proposition 5.1 we see that the part of the spec-
trum of Lt between 0 and 1

2
t−1 is discrete. It is a standard fact of functional

analysis (follows from a general form of the Spectral Theorem, e.g. [12]) that
such points are eigenvalues and there are corresponding eigenspaces of finite
dimension. For simplicity we will assume that all multiplicities are one.

Consider now λt
i ∈ [0, 1

2
t−1] and the corresponding eigenfunction et

i.
The Theorem 4 then follows from Theorem 23 and Proposition 25 in [25],

which show convergence of spectral properties for the empirical operators. �

6 Main Theorem

We are finally in position to prove the main Theorem 2.1.
Proof:[Theorem 2.1] ¿From Theorems 3.1 and Theorem 3.2 we obtain the
following convergence results:

Eig L̂t,n Eig ∆MEig Lt
.....................................................................................................................................

.....
..
..
..
.

n → ∞
.....................................................................................................................................

.....
..
..
..
.

t → 0

where the first convergence is almost surely for λi ≤ 1
2
t−1. To see how to

choose a sequence tn, we express t and n in terms of a common integer
parameter j. Let t = 1

j
. For every j, i.e., every tj = 1

j
, pick nj such that

∀i such that λ
tj
i <

1

2tj
, P

{

‖etj
nj ,i − e

tj
i ‖ ≥ 1

j

}

≤ 1

j

Such an nj always exists by the convergence implied in Theorem 3.2. We
arrange it so that nj is an increasing sequence. Then for any i ∈ N, we see
that

P

{

‖etj
nj ,i − ei‖ > ǫ

}

≤ P

{

‖etj
nj ,i − e

tj
i ‖ + ‖etj

i − ei‖ > ǫ
}

By the convergence implied in Theorem 3.1, there exists a J such that for
all j > J , we have ‖etj

i − ei‖ ≤ ǫ
2
. Therefore, for all j > J , we have

P

{

‖etj
nj ,i − ei‖ > ǫ

}

≤ P

{

‖etj
nj ,i − e

tj
i ‖ >

ǫ

2

}
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On the other hand, for all j > max(2λ
tj
i , 2

ǫ
), we have

P

{

‖etj
nj ,i − e

tj
i ‖ >

ǫ

2

}

≤ P

{

‖etj
nj ,i − e

tj
i ‖ >

1

j

}

≤ 1

j

Thus it follows that for any ǫ > 0 and any i ∈ N,

lim
j→∞

P

{

‖etj
nj ,i − ei‖ > ǫ

}

= 0

Inverting the relationship between tj and nj allows us to choose a sequence
tn such that

lim
n→∞

P

{

‖etn
n,i − ei‖ > ǫ

}

= 0

�

A Note on Rates: Rates of convergence may be easily derived from the
exposition here with some additional considerations. In [25], the rate of
convergence of L̂t

n to Lt as a function of n was obtained for each fixed t. From
Theorem 4.3, we explicitly obtain the rate of convergence of Lt to 1−Ht

t
as

a function of t. Putting these together, appropriate rates may be obtained.
A preliminary analysis suggests that any tn satisfying limn→∞ tn = 0 and
limn→∞ ntk+2

n = ∞ is sufficient to guarantee convergence. We leave a more
complete analysis for the future.

7 Conclusions

The graph Laplacian associated to the data, the corresponding point cloud
Laplace operator and the manifold Laplace-Beltrami operator play a central
role in our understanding of a class of algorithms for data analysis. In this
paper we have shown that the eigenfunctions of the point cloud graph Lapla-
cian converge to eigenfunctions of the manifold Laplacian in probability. This
provides a first consistency result for the Laplacian Eigenmaps algorithms.

This basic result has implications for a number of additional algorithms in
data analysis, clustering, and machine learning that use ideas from spectral
geometry. It also suggests how to perform computational harmonic analysis
on an unknown manifold, how to reconstruct the heat kernel (for large t), and
how to solve partial differential equations of of a suitable type from random
point samples. There are connections to geometric random graphs, random
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matrices, and the applications of these to algorithm analysis and design in
graphics, scientific computing, and sensor networks.

A variety of questions arise for the future. These include a more complete
analysis of rates of convergence, an understanding of the robustness of our
estimates to noise in the data, and generalizations of this kind of result to
other operators. In a more geometric direction, it makes one wonder if, more
generally, one might be able to recover the Laplace-Beltrami operator on
differential forms from random samples and thus construct a probabilistic
convergence theory to parallel the deterministic convergence theory as seen
in the work of Dodziuk and Patodi [9, 10].
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