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Abstract. In recent years manifold methods have attracted a consider-
able amount of attention in machine learning. However most algorithms
in that class may be termed “manifold-motivated” as they lack any ex-
plicit theoretical guarantees. In this paper we take a step towards closing
the gap between theory and practice for a class of Laplacian-based man-
ifold methods. We show that under certain conditions the graph Lapla-
cian of a point cloud converges to the Laplace-Beltrami operator on the
underlying manifold. Theorem 1 contains the first result showing conver-
gence of a random graph Laplacian to manifold Laplacian in the machine
learning context.

1 Introduction

Manifold methods have become increasingly important and popular in machine
learning and have seen numerous recent applications in data analysis including
dimensionality reduction, visualization, clustering and classification. The central
modeling assumption in all of these methods is that the data resides on or
near a low-dimensional submanifold in a higher-dimensional space. It should be
noted that such an assumption seems natural for a data-generating source with
relatively few degrees of freedom.

However in almost all modeling situations, one does not have access to the
underlying manifold but instead approximates it from a point cloud. The most
common approximation strategy in these methods it to construct an adjacency
graph associated to a point cloud. Most manifold learning algorithms then pro-
ceed by exploiting the structure of this graph. The underlying intuition has
always been that since the graph is a proxy for the manifold, inference based on
the structure of the graph corresponds to the desired inference based on the ge-
ometric structure of the manifold. However few theoretical results are available
to justify this intuition.

In this paper we take the first steps towards a theoretical foundation for
manifold-based methods in learning. An important and popular class of learning
methods makes use of the graph Laplacian for various learning applications. It
is worth noting that in almost all cases, the graph itself is an empirical object,
constructed as it is from sampled data. Therefore any graph-theoretic technique
is only applicable, when it can be related to the underlying process generating the
data. This is an implicit assumption, which is rarely formalized in the literature.



We will show that under certain conditions the graph Laplacian is directly
related to the manifold Laplace-Beltrami operator and converges to it as data
goes to infinity.

This paper presents and extends the unpublished results obtained in [1]. A
version of Theorem 1 showing empirical convergence of the graph Laplacian to
the manifold Laplacian was stated in [19].

1.1 Prior Work

Many manifold and graph-motivated learning methods have been recently pro-
posed, including [22, 27, 3, 12] for visualization and data representation, [30, 29,
9, 23, 4, 2, 26] for partially supervised classification and [25, 28, 24, 18, 14] among
others for spectral clustering. A discussion of various spectral methods and their
out-of-sample extensions is given in [5].

The problem of estimating geometric and topological invariants from point
cloud data has recently attracted some attention. Some of the recent work in-
cludes estimating geometric invariants of the manifold, such as homology [31,
20], geodesic distances [6], and comparing point clouds using Gromov-Hausdorff
distance [15].

In particular, we note the closely related Ph.D. thesis of Lafon, [16], which
generalized the convergence results from [1] to the important case of an arbitrary
probability distribution on a manifold. Those results are further generalized
and presented with an empirical convergence theorem in the parallel COLT
paper [13].

We also note [17], where convergence of a class of graph Laplacians and the
associated spectral objects, such as eigenfunctions and eigenvalues, is shown,
which in particular, implies consistency of normalized spectral clustering. How-
ever connections to geometric objects, such as the Laplace-Beltrami operator,
are not considered in that work.

Finally we point out that while the parallel between the geometry of man-
ifolds and the geometry of graphs is well-known in spectral graph theory and
in certain areas of differential geometry (see, e.g., [10]) the exact nature of that
parallel is usually not made precise.

2 Notation and Preliminaries

Before we can formulate the main result we need to fix some notation. In general,
we denote vectors and points on a manifold with bold letters and one-dimensional
quantities with ordinary letters. Matrices will be denoted by capital letters,
operators on functions by bold capital letters.

A weighted graph G = (V,E) is a set of vertices v1, . . . , vn ∈ V and weighted
edges connecting these vertices represented by an adjacency matrix W . W is a
symmetric matrix with nonnegative entries. Recall that the Laplacian matrix of
a weighted graph G is the matrix L = D − W , where D is a diagonal matrix
D(i, i) =

∑

j W (i, j).



Given a set of points Sn = {x1, . . . ,xn} in R
k, we construct a graph G,

whose vertices are data points. We put W t
n(i, j) = e−

‖xi−xj‖2

4t . We will denote
the corresponding graph Laplacian by Lt

n = Dt
n − W t

n. Note that we suppress
the dependence on Sn to simplify notation.

We may think of Lt
n as an operator on functions, defined on the graph of

data points. If f : V → R

Lt
nf(xi) = f(xi)

∑

j

e−
‖xi−xj‖2

4t −
∑

j

f(xj)e
− ‖xi−xj‖2

4t

This operator can be naturally extended to an integral operator (with respect
to the empirical measure of the dataset) on functions in R

k:

Lt
n(f)(x) = f(x)

∑

j

e−
‖x−xj‖2

4t −
∑

j

f(xj)e
− ‖x−xj‖2

4t

Of course, we have Lt
nf(xi) = Lt

nf(xi). We will call Lt
n the Laplacian operator

associated to the point cloud Sn.

3 Main Result

Our main contribution is to establish a connection between the graph Laplacian
associated to a point cloud and the Laplace-Beltrami operator on the underlying
manifold from which the points are drawn.

Consider a compact1 k-dimensional differentiable manifold M isometrically
embedded in R

N . We will assume that the data is sampled from a uniform
distribution in the induced measure on M.

Given data points Sn = {x1, . . . ,xn} in R
N sampled i.i.d. from this proba-

bility distribution we construct the associated Laplacian operator Lt
n. Our main

result shows that for a fixed function f ∈ C∞(M) and for a fixed point p ∈ M,
after appropriate scaling the operator Lt

n converges to the true Laplace-Beltrami
operator on the manifold.

Theorem 1. Let data points x1, . . . ,xn be sampled from a uniform distribution

on a manifold M ⊂ R
N Put tn = n− 1

k+2+α , where α > 0 and let f ∈ C∞(M).
Then there is a constant C, s.t. in probability,

lim
n→∞

C
(4πtn)−

k+2
2

n
Ltn

n f(x) = ∆Mf(x)

Without going into full details we then outline the proof of the following

1 It is possible to provide weaker but more technical conditions, which we will not
discuss here.



Theorem 2. Let data points x1, . . . ,xn be sampled from a uniform distribution
on a compact manifold M ⊂ R

N . Let F be the space of functions f ∈ C∞(M),
such that ∆f is Lipschitz a fixed Lipschitz constant. Then there exists a sequence
of real numbers tn → 0, and a constant C, such that in probability

lim
n→∞

sup
x∈M
f∈F

∣

∣

∣

∣

∣

C
(4πtn)−

k+2
2

n
Ltn

n f(x) − ∆Mf(x)

∣

∣

∣

∣

∣

= 0

This stronger uniform result (with, however, a potentially worse rate of con-
vergence) will in our opinion lead to consistency results for various learning
algorithms in the future work.

3.1 Laplace Operator and the Heat Equation

We will now recall some results on the heat equation and its connection to the
Laplace-Beltrami operator and develop some intuitions about the methods used
in the proof.

Now we need to recall some results about the heat equation and heat kernels.
Recall that the Laplace operator in R

k is defined as

∆f(x) =
∑

i

∂2f

∂x2
i

(x)

We say that a sufficiently differentiable function u(x, t) satisfies the heat
equation if

∂

∂t
u(x, t) − ∆u(x, t) = 0 (1)

The heat equation describes diffusion of heat with the initial distribution
u(x, t). The solution to the heat equation is given by a semi-group of heat oper-
ators Ht. Given an initial heat distribution f(x), Ht(f) is the heat distribution
at time t.

It turns out that this operator is given by convolution with the heat kernel,
which for R

k is the usual Gaussian.

Htf(x) =

∫

Rk

f(y)Ht(x,y)dy

Ht(x,y) = (4πt)−
k
2 e−

‖x−y‖2

4t

We summarize this in the following

Theorem 3 (Solution to the heat equation in R
k). Let f(x) be a suffi-

ciently differentiable bounded function. We then have

Htf = (4πt)−
k
2

∫

Rk

e−
‖x−y‖2

4t f(y)dy (2)



f(x) = lim
t→0

Htf(x) = (4πt)−
k
2

∫

Rk

e−
‖x−y‖2

4t f(y)dy (3)

The function u(x, t) = Htf satisfies the heat equation

∂

∂t
u(x, t) − ∆u(x, t) = 0

The heat equation is the key to approximating the Laplace operator. Recall-
ing that a Gaussian integrates to 1, we observe that

−∆f(x) =
∂

∂t
Htf(x)

∣

∣

∣

∣

t=0

=

lim
t→0

1

t

(

(4πt)−
k
2

∫

Rk

e−
‖x−y‖2

4t f(y)dy − f(x) (4πt)−
k
2

∫

Rk

e−
‖x−y‖2

4t dy

)

This quantity can easily be approximated from a point cloud2 x1, . . . ,xn by
computing the empirical version of the integrals involved:

∆̂f(x) =
1

t

(4πt)−
k
2

n

(

f(x)
∑

i

e−
‖xi−x‖2

4t −
∑

i

e−
‖xi−p‖2

4t f(xi)

)

=

(4πt)−
k+2
2

n
Lt

n(f)(p)

This intuition can be easily turned into a convergence result for R
k.

Extending this analysis to an arbitrary manifold, however, is not as straight-
forward as it might seem at first blush. The two principal technical issues are
the following:
1. With some very rare exceptions we do not know the exact form of the heat
kernel Ht

M(x,y).
2. Even the asymptotic form of the heat kernel requires knowing the geodesic dis-
tance between points in the point cloud. However we can only observe distances
in the ambient space R

N .
Remarkably both of these issues can be overcome as certain intrinsic quan-

tities (scalar curvature) make an appearance and ultimately cancel out in the
final computation!

4 Proof of the Main Results

4.1 Basic Differential Geometry

Before we proceed further, let us briefly review some basic notions of differential
geometry. Assume we have a compact3 differentiable k-dimensional submanifold

2 We are ignoring the technicalities about the probability distribution for the moment.
It is not hard however to show that it is sufficient to restrict the distribution to some
open set containing the point x.

3 We assume compactness to simplify the exposition. A weaker condition will suffice
as noted above.



of R
N with the induced Riemannian structure. That means that we have a notion

of length for curves on M. Given two points x,y ∈ M the geodesic distance
distM(x,y) is the length of the shortest curve connecting x and y. It is clear
that distM(x,y) ≥ ‖x − y‖.

Given a point p ∈ M, one can identify the tangent space TpM with an affine
subspace of R

N passing through p. This space has a natural linear structure
with the origin at p. Furthermore it is possible to define the exponential map
exp

p
: TpM → M. The key property of the exponential map is that it takes

lines through origin in TpM to geodesics passing through p. The exponential
map is a local diffeomorphism and produces a natural system of coordinates for
some neighborhood of p. The Hopf-Rinow theorem (see, e.g., [11]) implies that a
compact manifold is geodesically complete, i.e. that any geodesic can be extended
indefinitely which, in particular, implies that there exists a geodesic connecting
any two given points on the manifold.

The Riemannian structure on M induces a measure corresponding to the
volume form, which we will denote as µ. For a compact M total volume of M
is guaranteed to be finite, which gives rise to the canonical uniform probability
distribution on M.

||x−y||

x

y

M

dist  (x,y)M

Fig. 1. Geodesic and chordal distance.

Before proceeding with the main proof we state one curious property of
geodesics, which will be needed later. It concerns the relationship between distM(x,y)
and ‖x−y‖. The geodesic and chordal distances are shown pictorially in Fig. 1.
It is clear that when x and y are close, the difference between these two quanti-
ties is small. Interestingly, however, this difference is smaller than one (at least
the authors) would expect initially. It turns out (cf. 7) that when the manifold
is compact

distM(x,y) = ‖x − y‖ + O(‖x − y‖3)

In other words chordal distance approximates geodesic distance up to order
three. This observation and certain consequent properties of the geodesic map
make the approximations used in this paper possible.



The Laplace-Beltrami operator ∆M is a second order differential operator.
The family of diffusion operators Ht

M satisfies the following properties:

∆MHt
M(f) =

∂

∂t
Ht

M(f) Heat Equation

lim
t→0

Ht
M(f) = f δ-family property

It can be shown (see, e.g., [21]) that Ht
M(f) is an integral operator, a con-

volution with the heat kernel. Our proof hinges on the fact that in geodesic
coordinates the heat kernel can be approximated by a Gaussian for small values
of t and the observations about the geodesics above.

4.2 Main Proof

We will now proceed with the proof of the main theorem.

First we note that the quantities

∫

M
e−

‖p−x‖2

4t f(x) dµx

and

f(p)

∫

M
e−

‖p−x‖2

4t dµx

can be empirically estimated from the point cloud.

We will show how the Laplace-Beltrami operator can be estimated using
these two empirical quantities. This estimate will provide a connection to Lt

n

The main theorem will be proved in several steps.

Lemma 1. Given any open set B ⊂ M, p ∈ B, for any l ∈ N ,

∫

B⊂M
e−

‖p−y‖2

4t f(y) dµy −
∫

M
e−

‖p−y‖2

4t f(y) dµy = o(tl)

as t → 0.

Proof. Let d = infx6∈B ‖p−x‖2 and let M be the measure of the complement to
B, i.e., M = µ(M−B). Since B is open and M is locally compact, d > 0. We
thus see that

∣

∣

∣

∣

∫

B
e−

‖p−y‖2

4t f(y) dµy −
∫

M
e−

‖p−y‖2

4t f(y) dµy

∣

∣

∣

∣

≤ M sup
x∈M

(|f(x)|)e− d2

4t

The first two terms are constant and e−
d2

4t approaches zero faster then any
polynomial as t tends to zero.



This Lemma allows us to replace the integral over the manifold by an integral
over some small open set around p. We will need it in order to change the
coordinates to the standard geodesic coordinate system given by the following
equation:

y = exp
p
(x)

Given a function f : M → R, we rewrite it in geodesic coordinates by putting
f̃(x) = f(exp(x)).

We will need the following key statement relating the Laplace-Beltrami op-
erator and the Euclidean Laplacian:

Lemma 2.
∆Mf(p) = ∆Rk f̃(0) (4)

Proof. See, e.g., [21], page 90.

This allows one to reduce Laplace-Beltrami operator to a more easily ana-
lyzed Laplace operator on R

k.
Since exp

p
: TMp = R

k → M is a locally invertible, we can choose an open

B̃ ⊂ R
k, s.t. exp

p
is a diffeomorphism onto its image B ⊂ M.

Lemma 3. The following change of variable formula holds:
∫

B
e−

‖p−y‖2

4t f(y) dµy =

∫

B̃
e−

φ(x)
4t f̃(x) det(d exp(x)) dx (5)

where φ(x) is a function, such that φ(x) = ‖x2‖ + O(‖x4‖).
Proof. We obtain the result by applying the usual change of variable formula for
manifold integrals and observing the relationship between geodesic and chordal
distances from Lemma 7.

Lemma 4. There exists a constant C, such that

∂

∂t

(

(4πt)−
k
2

∫

B
e−

‖p−y‖2

4t f(y) dµy

)∣

∣

∣

∣

0

= ∆Mf(p) +
1

3
ks(p)f(p) + Cf(p) (6)

Proof. We first use Eq. 5 from the previous Lemma to rewrite the integral in
the geodesic normal coordinates. We then apply Eq. 12 to obtain

∂

∂t

(

(4πt)−
k
2

∫

B
e−

‖p−y‖2

4t f(y) dµy

)∣

∣

∣

∣

0

= ∆Rk(f̃ det(d exp
p
))(0) + Cf̃(0) (7)

From the asymptotics of the exponential map (Eq. 10), we know that

|∆Rk det(d exp
p
(x))| =

s(p)

3
+ O(‖x‖)

Using properties of the Laplacian and recalling that f̃(0) = f(p) yields and that
det(d exp

p
(x))| has no terms of degree 1 in its Taylor expansion at 0, we have

∆Rk(f̃ det(d exp
p
))(0) = ∆Rk f̃(0) +

1

3
ks(p)f(p)

Noticing that by Eq. 4 ∆Rk f̃(0) = ∆Mf(p), we obtain the result.



Thus we get the following

Lemma 5.

lim
t→0

(4πt)−
k+2
2

(
∫

M
e

‖p−y‖2

4t f(p) dµy −
∫

M
e

‖p−y‖2

4t f(y) dµy

)

= ∆Mf(p)

Proof. Consider the constant function g(y) = f(p). By applying the Eq. 6 to
this function we obtain

∂

∂t

(

(4πt)−
k
2

∫

B
e−

‖p−y‖2

4t f(p) dµy

)∣

∣

∣

∣

0

=
1

3
ks(p)f(p) + Cf(p) (8)

To simplify the formulas put A(t) = (4πt)−
k+2
2

∫

M e
‖p−y‖2

4t f(y) dµy. Using the
δ-family property of the heat kernel, we see that

A(0) = lim
t→0

(4πtn)−
k
2

∫

B
e−

‖p−y‖2

4t f(p) dµy = f(p)

From the definition of the derivative and Eqs. 6,8 we obtain

∆Mf(p) = lim
t→0

A(t) − A(0)

t
=

lim
t→0

(4πtn)−
k+2
2

(
∫

M
e

‖p−y‖2

4t f(p) dµy −
∫

M
e

‖p−y‖2

4t f(y) dµy

)

Theorem 4. Let data points x1, . . . ,xn be sampled in i.i.d. fashion from a uni-
form distribution on a compact submanifold M ⊂ R

N . Fix p ∈ M. Let Ltn
n

be the associated operator. Put tn = n− 1
k+2+α , where α > 0, α ∈ R. Then in

probability

lim
n→∞

(4πtn)−
k+2
2 Ltn

n f(x) =
∆Mf(p)

vol(M)

Proof. Recall that (the extension of) the graph Laplacian Lt
n applied to f at p

is

Lt
nf(p) =

1

n

(

n
∑

i=1

e−
‖p−xi‖2

4t f(p) −
n
∑

i=1

e−
‖p−xi‖2

4t f(xi)

)

We note that Lt
nf(p) is the empirical average of n independent random

variables with the expectation

ELt
nf(p) =

(

f(p)

∫

M
e−

‖p−y‖2

4t dy −
∫

M
f(y)e−

‖p−y‖2

4t dy

)

(9)

By an application of Hoeffding’s inequality 6, we have

P

[

(4πt)−(k+2)/2|Lt
nf(p) − ELt

nf(p)| > ε
]

≤ e−ε2n(4πt)(k+2)



Choosing t as a function of n by letting t = tn = ( 1
n )

1
k+2+α , where α > 0, we see

that for any fixed ε > 0

lim
n→∞ P

[

(4πtn)−(k+2)/2|Ltn
n f(p) − 1

n
ELtn

n f(p)| > ε

]

= 0.

Noting that by Lemma 5 and Eq. 9

lim
n→∞

(4πtn)−
1

(k+2)/2 Ltn
n =

∆Mf(p)

vol(M)

we obtain the theorem.

5 Uniform Convergence

For a fixed function f , let

Af (t) = (4πt)−
k+2
2

(
∫

M
e−

‖p−y‖2

4t f(p) dµy −
∫

M
e−

‖p−y‖2

4t f(y) dµy

)

Its empirical version from the point cloud is simply

Âf (t) = (4πt)−
k+2
2

1

n

n
∑

i=1

e−
‖p−y‖2

4t (f(p) − f(xi)) =
−(4πt)

k+2
2

n
Lt

nf(p)

By the standard law of large numbers, we have that Âf (t) converges to Af (t)
in probability. One can easily extend this uniformly over all functions in the
following proposition

Proposition 1. Let F be the space of functions f ∈ C∞(M), such that ∆f is
Lipschitz with Lipschitz constant C. For each fixed t, we have

lim
n→∞ P

[

sup
f∈F

|Âf (t) − Af (t)| > ε

]

= 0

Proof. Let Fγ ⊂ F be a γ-net in F in the L∞ topology (guaranteed by the
Sobolev embedding theorem) and let N(γ) be the size of this net. This guarantees
that for any f ∈ F , there exists g ∈ Fγ such that ‖f − g‖∞ < γ. By a standard
union bound over the finite elements of Fγ , we have

lim
n→∞ P

[

sup
g∈Fγ

|Âg(t) − Ag(t)| >
ε

2

]

= 0

Now for any f ∈ F , we have that

|Âf (t) − Af (t)| ≤ |Âf (t) − Âg(t) + Âg(t) + Ag(t) − Ag(t) − Af (t)|



≤ |Âf (t) − Âg(t)| + |Âg(t) − Ag(t)| + |Ag(t) − Af (t)|

It is easy to check that for γ = ε
4 (4πt)

k+2
2 , we have

|Âf (t) − Af (t)| <
ε

2
+ sup

g∈Fγ

|Âg(t) − Ag(t)|

Therefore

P

[

sup
f∈F

|Âf (t) − Af (t)| > ε

]

≤ P

[

sup
g∈Fγ

|Âg(t) − Ag(t)| >
ε

2

]

Taking limits as n goes to infinity, the result follows.

Now we note from Lemma 5 that for each f ∈ F , we have

lim
t→0

(Af (t) − ∆Mf(p)) = 0

By an analog of the Arzela-Ascoli Theorem, the uniform convergence over a ball
in a suitable Sobolev space over a compact domain can be shown, i.e.,

lim
t→0

sup
f∈F

(Af (t) − ∆Mf(p)) = 0

Therefore, from Proposition 1 and the above fact, we see that there exists
a monotonically decreasing sequence tn such that limn→∞ tn = 0 for which the
following theorem is true

Theorem 5. Let data points x1, . . . ,xn be sampled from a uniform distribution
on a compact manifold M ⊂ R

N and let FC be the space of functions f ∈
C∞(M), such that ∆f is Lipschitz with Lipschitz constant C. Then there exists
a sequence of real numbers tn, tn → 0, such that in probability

lim
n→∞

sup
f∈FC

∣

∣

∣

∣

∣

(4πtn)−
k+2
2

n
Ltn

n f(x) − ∆Mf(x)

∣

∣

∣

∣

∣

= 0

A similar uniform convergence bound can be shown using the compactness of
M and leads to Theorem 2.

6 Auxiliary and Technical Lemmas

6.1 Exponential Map and Geodesics

Lemma 6. Asymptotics for the derivative of the exp.

|∆Rk det(d exp
p
(x))| =

s(p)

3
+ O(‖x‖) (10)

where s(p) is the scalar curvature of M at p.



Proof. This fairly standard result of differential geometry follows from properties
of Jacobi fields. While the proof goes beyond the scope of this paper, cf. the
discussion on page 115 in [11]. The result above follows from Eq. 6 together
with some basic linear algebra after writing the curvature tensor in the geodesic
normal coordinates.

Lemma 7.
‖ exp

p
(x)‖2 = ‖x − p‖2 + O(‖x − p‖4)

Proof. The geodesic distance from a fixed point x ∈ Mk as a function of y can
be written as

distMk(x,y) = ‖y − x‖ + O(‖y − x‖3)

where ‖y − x‖ is the ordinary norm in R
N . Thus the geodesic distance can be

approximated by Euclidean distance in the ambient space up to terms of order
three. We outline the proof. We first prove the statement for the curve length in
R

2. Let f(x) be a differentiable function. Without the loss of generality we can
assume that f(0) = 0, f ′(0) = 0. Therefore f(x) = ax2 +O(x3). Now the length
of the curve along the graph of f(x) is given by

distM,0(t) =

∫ t

0

√

1 + (f ′)2 dx

We have
√

1 + (f ′)2 = 1 + 2ax2 + O(x3). Thus

∫ t

0

√

1 + (f ′)2 dx = t +
2

3
at3 + O(t4)

Similarly, we can also see that segment of the line connecting the point t to the
origin is equal in length to both the curve length and to t up to some terms of
order 3.

In general, we can take a section of the manifold by a 2-dimensional plane
through x and y, such that the plane intersects the manifold at a curve. It is
not hard to see, that such a plane always exists.

It is clear that the length of the geodesic is bounded from below by the length
of the line segment connecting x to the y and from above by the length of the
curve formed by intersection of the plane and Mk. By applying the case of R

2,
we see that the latter is equal to ‖x − y‖ plus order three terms, which implies
the statement.

6.2 Technical Results in R
k

Lemma 8. Let B ∈ R
k be an open set, such that x ∈ B. Then as t → 0

∫

Rk−B

(4πt)−
k
2 e−

‖x−y‖2

4t dx = o

(

1

t
e−

1
t

)



Proof. Without a loss of generality we can assume that x = 0. There exists a

cube Cs with side s, such that 0 ∈ Cs ∈ B. We have
∫

Rk−B
(4πt)−

k
2 e−

‖z‖2

4t dx <

∫

Rk−Cs

(4πt)−
k
2 e−

‖z‖2

4t dx. Using the standard substitution z = ‖z|√
t
, we can rewrite

the last integral as
∫

Rk−Cs

(4πt)−
k
2 e−

‖z‖2

4t dx =

∫

Rk−C s√
t

(4π)−
k
2 e−

‖z‖2

4 dz

The last quantity is the probability that all coordinates of a standard multivari-
ate Gaussian are greater than than s√

t
in absolute value and is therefore equal

to 2 − 2(1 − Erf( s√
t
))k < 2k − 2k Erf ( s√

t
). Applying a well-known inequality

1 − Erf(t) < 1
t exp(t2) yields the statement.

Lemma 9. Let φ : R
k → R

k be a differentiable function such that φ(x) =
x + O(x3), i.e. the Taylor expansion for each coordinate of φ does not have any
terms of degree 2, [φ(x)]i = xi + O(‖x‖3) at the origin. Then for any open set
B containing the origin the following two expressions hold (the first one is true
even if φ has terms of degree 2.

f(0) = lim
t→0

(4πt)−
n
2

∫

B⊂Rk

e−
φ(y)2

4t f(y) dy (11)

∆f(0) = − ∂

∂t

(

(4πt)−
n
2

∫

B⊂Rk

e−
φ(y)2

4t f(y) dy

)∣

∣

∣

∣

0

+ Cf(0) (12)

C here is a constant depending only on φ.

Proof. We will concentrate on proving formula (12), formula (11) is a corollary
of the computation below. From the previous Lemma, it can be easily seen that
the set B can be replaced by the whole space Rk. For simplicity we will show
the formula when n = 1. The case of arbitrary n is no different but requires
rather cumbersome notation. We can write f(y) = a0 + a1y + a2y

2 + . . . and
φ(y) = y + b0y

3 + . . .. Put y =
√

tx. Changing the variable, we get:

1√
t

∫

R

e−
φ(y)2

4t f(y)dy =
1√
t

∫

R

e−
ty2+t2b0y4+...

4t f(
√

ty)
√

tdy =

=

∫

R

e−
y2+tb0y4+o(t)

4 f(
√

ty)dy

Note that e−
y2+tb0y4+o(t)

4 = e−
y2

4 e−
tb0y4+o(t)

4 = e−
y2

4 (1 − t b0
4 y4 + o(t)).

Thus the previous integral can be written as

∫

R

e−
x2

4

(

1 − t
b0

4
x4 + o(t)

)

f(
√

tx)dx



=

∫

R

e−
x2

4

(

1 − t
b0

4
x4 + o(t)

)

(

a0 + a1

√
tx + a2tx

2 + o(t)
)

dx

=

∫

R

e−
x2

4

(

a0 + a1

√
tx + t(a2x

2 − a0
b0

4
x4) + o(t)

)

dx

Note that the second term a1

√
tx is an odd function in x and therefore

∫

R
e−

x2

4 a1

√
txdx = 0.

Thus

∂

∂t

(

1

2
√

tπ

∫

R

e−
y2+y4φ(y)

4t f(y)dy

)∣

∣

∣

∣

0

=
1

2
√

π

∫

R

e−
x2

4 a2x
2dx− 1

2
√

π

∫

R

e−
x2

4 a0
b0

4
x4dx

The first integral in the sum is exactly the Laplacian of f at 0, ∆f(0) =
1

2
√

π

∫

R
e−

x2

4 a2x
2dx. The second summand depends only on the value a0 = f(0)

and the function φ, which completes the proof.

6.3 Probability

Theorem 6 (Hoeffding). Let X1, . . . , Xn be independent identically distributed
random variables, such that |Xi| ≤ K. Then

P

{∣

∣

∣

∣

∑

i Xi

n
− EXi

∣

∣

∣

∣

> ε

}

< 2 exp

(

− ε2n

2K2

)
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