
Kernel PCA

Schölkopf, Smola and Müller:

Nonlinear Component Analysis as a Kernel

Eigenvalue Problem

Ian Fasel

September 25, 2001

1 Overview

In this talk, I will discuss the kernel PCA paper by Schölkopf, Smola and
Müller. I begin by providing some background on kernel methods and PCA,
in order to motivate the discussion and give some intuition about what PCA
is for and why we would want to use a kernel method with it. Then I go
into some depth showing the derivation of kernel PCA, because I feel it is
important to actually work through the equations at least once to see how
the kernel trick is used and how it fits into standard PCA. Next, I will talk
about some of the things that have to be done differently in kernel PCA vs.
regular, linear PCA, which I hope will help illustrate some of the benefits of
using a Mercer kernel as opposed to some other (possibly nonlinear) function.
Next I go through the toy examples given by Schölkopf, Smola and Müller, in
addition to the real-world character recognition task they present. Finally, I
discuss the comparisons between kernel PCA and other techniques given in
the paper.

1



Vision and Learning Schölkopf, Smola and Müller: Kernel PCA 2

Slide 1

✬

✫

✩

✪

Overview

• Backround:
– High Dimensional Representations

– Kernels

– PCA

• Derivation of kernel PCA

• Differences between kernel PCA and regular PCA

• Examples:
– Toy examples

– Real World Example: Handwritten Character Recognition

• Comparisons with other techniques

2 High dimensionality can be good

I begin with an attempt to provide some intuition that taking raw input and
transforming it into some higher dimensional space can be a good thing.

The framework we are using here is called Statistical learning theory,
which I believe is synonymous with VC (Vapnik-Chervonenkis) theory. This
theory attempts to provide a mathematical framework for answering ques-
tions about how to make decisions about e.g., classification given only ex-
ample data, with no prior information or intuition about the problem.

One of the questions that is addressed in VC theory is: Under what con-
ditions are high dimensional representations good? One of the best-known
concepts of VC theory is VC dimension, which is in some sense a one-number
summary of a learning machine’s capacity. Others in this class will undoubt-
edly go into more depth later, however one result is that often mappings
which take us into a higher dimensional space than the dimension of the
input space provide us with greater classification power.



Vision and Learning Schölkopf, Smola and Müller: Kernel PCA 3

Slide 2

✬

✫

✩

✪

Under what conditions are high dimensional

representations good?

Given some problem, how do we know what classes of functions are
capable of solving that problem?

VC (Vapnik-Chervonenkis) theory tells us that often mappings
which take us into a higher dimensional space than the dimension
of the input space provide us with greater classification power.

2.1 Example: 2-D data: ring with center.

A nice example is as follows. Suppose we have the following data: (show
Slide 3)



Vision and Learning Schölkopf, Smola and Müller: Kernel PCA 4

Slide 3

✬

✫

✩

✪

Example: Take a two class problem with data in R
2.

These classes are linearly inseparable in the input space. Instead,
they would have to be separated with a quadratic decision surface.

In this example, we perform a simple mapping from R
2 to R

3. Suppose
we have the mapping:

Φ : X = R
2 → H = R

3

(x1, x2) �→ (x1, x2, x
2
1 + x2

2)
(1)

Then the ring gets spread out so that the center can be separated with a
separating plane.



Vision and Learning Schölkopf, Smola and Müller: Kernel PCA 5

Slide 4

✬

✫

✩

✪

We can make the problem linearly separable by a simple mapping
into R

3

Φ : X = R
2 → H = R

3

(x1, x2) �→ (x1, x2, x
2
1 + x2

2)
(2)

2.2 Problems with high-D

The problem of high dimensionality is that this can seriously increase com-
putation time. Consider the product features used in the paper, which take
all possible dth order products of the elements of the input vector and write
them into a new vector. For instance, take the product feature extractor
(from the paper) with d = 2 where d = 2,

This is fine for small toy examples, but for realistically sized problems:
for N dimensional data, there exist different monomials comprising a feature
space of dimension Nh. Thus, 16× 16 pixel input images with a monomial
degree d = 5 yeild a dimension of almost 1010. This is bad.



Vision and Learning Schölkopf, Smola and Müller: Kernel PCA 6

Slide 5

✬

✫

✩

✪

So what’s wrong with high-D?

High Dimensionality increases computational complexity. For
instance, take the product feature extractor (from paper) with
d = 2,

Φ : R2 → R
3

(x1, x2) → (x2
1, x

2
2, x1x2, x2x1).

(3)

This is simple, however for N dimensional data, there exist

NH =


 N + d+ 1

d


 =

(d+N − 1)!
d!(N − 1)! (4)

different monomials comprising a feature space of dimension NH.
Thus, 16× 16 pixel input images with a monomial degree d = 5
yeild a dimension of almost 1010. This is bad.!

Is there any way to get around this problem and still get the benefit of
the high-dimensional feature spaces?

The good news is that Yes, sometimes it is possible to take advantage
of high dimensional representations without actually having to work in the
high dimensional space.

In certain cases, it is possible to compute dot products in these high-
dimensional feature spaces without actually having to explicitly carry out
the mapping into these spaces. If the subsequent processing can be carried
out using dot products exclusively, then we can work in the high dimensional
space without ever explicitly mapping into the spaces!



Vision and Learning Schölkopf, Smola and Müller: Kernel PCA 7

Slide 6

✬

✫

✩

✪

The Kernel Trick

Can we get around this problem and still get the benefit of high-D?

Yes!

Sometimes it is possible to compute dot-products without explicitly
mapping into the high dimensional feature space. We employ dot
products of the form

k(x, x′) = 〈Φ(x),Φ(x′)〉

which allow us to compute the value of the dot product in H
without having to explicitly compute the map Φ.

Slide 7

✬

✫

✩

✪

The Kernel Trick

Given any algorithm that can be expresssed solely in terms of dot
products, this kernel method allows us to construct different
nonlinear versions of it.

Now, we go in search of an algorithm to try this trick on. . .



Vision and Learning Schölkopf, Smola and Müller: Kernel PCA 8

3 PCA

Now, taking that kernel idea and keeping it in the back of your mind, we
move on to describe one kind of statistical anaylsis technique that, as we will
see, can be expressed exclusively in terms of dot products. This technique is
called Principal Components Analysis.

Principal Components Analysis (PCA) attempts to provide us with a set
of orthogonal axes along which we can project our data, hopefully allowing
us to account for most of the data with just the first few axes in teh new
space.

Slide 8

✬

✫

✩

✪

PCA

Principal Components Analysis (PCA) attempts to efficiently
represent the data by finding orthonormal axes which maximally
decorrelate the data

Makes Following assumtions:

• Sources are Gaussian

• Sources are independent and stationary (iid)

In the following example, we consider a person who is attempting to effi-
ciently report measurements of shoe-sizes. Clearly, there are a large number
of possible measurements they could take. But were they to take a lot of
data, and plot foot length vs. foot width, you’d see that the two are highly
correlated. PCA would tell them that, should they want to describe shoe
size with a single number, most of the information is conveyed by reporting
the projection of a foot onto the line on the right. Then, the rest of the
information, hould it be needed, is along the orthogonal axis.



Vision and Learning Schölkopf, Smola and Müller: Kernel PCA 9

Slide 9

✬

✫

✩

✪

PCA

Principal Components Analysis (PCA) attempts to efficiently
represent the data by finding orthonormal axes which maximally
decorrelate the data

Makes Following assumtions:

• Sources are Gaussian

• Sources are independent and stationary (iid)

Best shown with an example:

Slide 10

✬

✫

✩

✪



Vision and Learning Schölkopf, Smola and Müller: Kernel PCA 10

If we think of PCA as a method for blind source separation, it can be
shown that, given the assumptions of gaussianity and iid, the principal com-
ponents are the maximum likelihood estimators of the sources.

Slide 11

✬

✫

✩

✪

The Standard PCA Algorithm

Centered Observations: column vectors xi ∈ R
N , i = 1, . . . ,m

(Centered meaning:
∑m

i=1 xi = 0)

PCA finds the principal axes by diagonalizing the covariance matrix

C =
1
m

m∑
j=1

xjx
T
j (5)

Note that C is positive definite, and thus can be diagonalized with
nonnegative eigenvalues.

λv = Cv (6)



Vision and Learning Schölkopf, Smola and Müller: Kernel PCA 11

Slide 12

✬

✫

✩

✪

Using PCA

1. Find eigenvectors, and arrange in order of decreasing
eigenvalue.

2. Project test points onto eigenvectors

3. use those coefficients to do something useful (classification,
image reconstruction, etc).

Slide 13

✬

✫

✩

✪

Rewriting PCA in terms of dot products

First, we need to remember that the eigenvectors lie in the span of
x1 . . . xn Proof: Substituting equation 4 into 5, we get

Cv =
1
m

m∑
j=1

xjx
T
j v = λv

Thus,

v = 1
mλ

∑m
j=1 xjx

T
j v

= 1
mλ

∑m
j=1(xj · v)xj

(7)



Vision and Learning Schölkopf, Smola and Müller: Kernel PCA 12

Slide 14

✬

✫

✩

✪

Show that (xxT )v = (x · v)x

(xxT )v =




x1x1 x1x2 . . . x1xM

x2x1 x2x2 . . . x2xM

...
...

. . .
...

xMx1 xMx2 . . . xMxM







v1

v2

...

vM




=




x1x1v1 + x1x2v2 + . . .+ x1xMvM

x2x1v1 + x2x2v2 + . . .+ x2xMvM

...

xMx1v1 + xMx2v2 + . . .+ xMxMvM




Slide 15

✬

✫

✩

✪

=




(x1v1 + x2v2 + . . .+ xMvM ) x1

(x1v1 + x2v2 + . . .+ xMvM ) x2

...

(x1v1 + x2v2 + . . .+ xMvM ) xM




=
(

x1v1 + x2v2 + . . .+ xMvM

)




x1

x2

...

xM




= (x · v)x ✷

(8)



Vision and Learning Schölkopf, Smola and Müller: Kernel PCA 13

Slide 16

✬

✫

✩

✪

So, from before, we had

v = 1
mλ

∑m
j=1 xjx

T
j v

= 1
mλ

∑m
j=1(xj · v)xj

But (xj · v) is just a scalar, so this means that all solutions v with
λ �= 0 lie in the span of x1 . . . xm, i.e.,

v =
m∑

i=1

αixi (9)

Slide 17

✬

✫

✩

✪

If we first send the data into another space,

Φ : X → H, x �→ Φ(x) (10)

Then, assuming we can center the data (i.e.,
∑m

k=1Φ(xk) = 0 – this
is shown in the appendix), we can write the covariance matrix

C =
1
m

m∑
j=1

Φ(xj)Φ(xj)T (11)

Which can be diagonalized with nonnegative eigenvalues satisfying

λV = CV (12)



Vision and Learning Schölkopf, Smola and Müller: Kernel PCA 14

Slide 18

✬

✫

✩

✪

Now, we just showed that all solutions v with λ �= 0 lie in the span
of Phi(x1), . . . ,Φ(xm), that is

Cv = λv = λ

m∑
i=1

αiΦ(xi) (13)

Substituting (10) and (12) into (11), we get

m∑
i=1

m∑
j=1

αjΦ(xi)K(xi, xj) = mλ

m∑
j=1

αjΦ(xi (14)

where K(xi, xj) is an inner-product kernel defined by

K(xi, xj) = Φ(xi)TΦ(xi) (15)

Slide 19

✬

✫

✩

✪

To express the relationship entirely in terms of the inner-product
kernel, we premultiply both sides by Φ(xk)T and define

• the m ×m matrix K, called the kernel matrix, whose ij-th
element is the inner-product kernel K(xi, xj)

• the m × 1 vector α, whose jth element is the coefficient αj

and can finally rewrite the expression as the eigenvalue problem

Kα = λα (16)



Vision and Learning Schölkopf, Smola and Müller: Kernel PCA 15

If we chose Φ properly, we don’t have to compute the map explicitly. We
can use a kernel function

k(Φ(xi),Φ(xj )) = 〈Φ(xi),Φ(xj)〉 (17)

Which can potentially save us a lot of computation.
The final step is showing how to project a test point onto the eigenvectors

in the high-dimensional space H in terms of a dot product so we can still
keep on with the kernel trick.

Slide 20

✬

✫

✩

✪

Extracting Principal Components

The resulting set of eigenvectors V k in H are then used to extract
the Principal Components of a test point by

〈vk,Φ(x)〉 =
m∑

i=1

αn
i k(xi, x), n = 1, . . . , p; (18)



Vision and Learning Schölkopf, Smola and Müller: Kernel PCA 16

Slide 21

✬

✫

✩

✪
Having shown how to do kernel PCA, I now come to discussion of some

of the differences betwen kernel PCA and linear PCA.
First off, what PCA gives us is a set of components in feature space which

may not be easily interpretable in terms of the input space. Slide 22 shows
one way of thinking about this in an example of 2-D inputs.



Vision and Learning Schölkopf, Smola and Müller: Kernel PCA 17

Slide 22

✬

✫

✩

✪

Kernel PCA vs regular (linear) PCA

Slide 23

✬

✫

✩

✪

Dimensionality reduction, etc.

Suppose that the number of observations m exceeds the input
dimensionality n.

In linear PCA, we can find most n nonzero eigenvalues.

Kernel PCA can find up to m nonzero eigenvalues. Thus, this is
not necessarily a dimensionality reduction.

Furthermore, it may not be possible to find an exact preimage in
input space of a reconstructed pattern based on a few of the
eigenvectors.



Vision and Learning Schölkopf, Smola and Müller: Kernel PCA 18

Another example might be face processing. In regular PCA, we can
visualize the eigenfaces and have some intuition about them as capturing
certain aspects of faceness. However, it may be more difficult to visualize
kernel eigenfaces, because some directions in feature space might not have
preimages in input space.

Slide 24

✬

✫

✩

✪

Computational Comp[lexity

If the kernel functions are easy to compute, e.g., polynomial
kernels, the computational complexity of finding the eigenvalues is
hardly changed by using K.

However, extracting principal components does take more work,
because you have to evaluate the kernel function m times for each
extracted principal component, instead of just doing one dot
product as in linear PCA.

Although the added work of kernel PCA is small compared to the work it
would take if we had to explicitly project each exemple and each subsequent
test point into the high dimensional space, it still is a bit more costly than
doing linear PCA. So we want to verify that we are compensated by improv-
ing performance or decreasing necessary complexity in subsequent stages of
classification.



Vision and Learning Schölkopf, Smola and Müller: Kernel PCA 19

Slide 25

✬

✫

✩

✪

So, does it work?

Examples:

• Toy examples

• Handwritten character recognition

In this first example, a parabola with gaussian noise added is shown.
From right to left, the polynomial degree of the kernel increases from 1 to 4.
From top to bottom: the first three eigenvectors are shown. Note that only
two eigenvectors are available in linear PCA.



Vision and Learning Schölkopf, Smola and Müller: Kernel PCA 20

Slide 26

✬

✫

✩

✪

Example 1

Here, the data set is composed of three clusters. In this case, they are
using a radial basis function (i.e., Gaussian) for the kernel. Note that the
first two principal components nicely separate the data.



Vision and Learning Schölkopf, Smola and Müller: Kernel PCA 21

Slide 27

✬

✫

✩

✪

Example 2


