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Abstract

The method of polynomial chaos expansions is illustrated by showing how
uncertainties in boundary conditions specifying the flow from the Caribbean
Sea into the Gulf of Mexico manifest as uncertainties in a model’s simulation
of the Gulf’s surface elevation field. The method, which has been used for
a variety of engineering applications, is explained within an oceanographic
context and its advantages and disadvantages are discussed. The method’s
utility requires that the spatially and temporally varying uncertainties of the
inflow be characterized by a small number of independent random variables,
which here correspond to amplitudes of spatiotemporal modes inferred from
an available boundary climatology.
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1. Introduction

The object of this paper is to point out how uncertainties of oceano-
graphic simulations might be explored using the method of polynomial chaos
expansions. This method was first introduced by Norbert Wiener (1938),
who addressed the question of efficiently estimating uncertainties of a dy-
namical simulation stemming from uncertainties in its defining parameters.
He realized that, in principle, a probability density describing the uncertainty
of the parameters might be propagated dynamically to provide distributional
information about any aspects of the simulation, but there was the issue of
how to do it in practice. By using polynomial expansions to express the sim-
ulation’s dependence on the uncertain parameters, he reduced the problem of
propagating uncertainties to the task of determining expansion coefficients.
The phrase “polynomial chaos”, which has become popular in the engineer-
ing literature, stems from Wiener’s referring to uncertainty as “chaos” and
from his use of a polynomial expansion.1,2 When the outputs of a simulation
are well-approximated by polynomials of the inputs, polynomial expansions
are appropriate, but when they are not, the expansions may converge slowly
or may not converge at all.3 The “chaos” part of the method relates to the
choice of the polynomial basis: as the probability density function describing
the uncertainty of the inputs appears in all expectation integrals, it is best
to choose polynomials that are orthogonal when weighted by that density.

The method certainly should be of interest, as oceanographic simulations
have many uncertain inputs.4 For example, they depend on initial values
of temperature, salinity, and other state variables at each point within the
model’s domain, on temporally varying values characterizing forcing fluxes

1Chaos within this context should not be confused with its more modern usage to
indicate sensitivity to small perturbations (Lorenz, 1963).

2For an introduction to the engineering literature see the reviews by Xiu (2009) and
Najm (2009).

3While the Cameron-Martin theorem (Cameron and Martin, 1948) guarantees con-
vergence for any finite variance process, in practice convergence is tested by checking the
impact of retaining more terms in the expansion.

4Other approaches to oceanographic uncertainty can be found in the books of Ben-
nett (2002), Evensen (2009), and Wunsch (2006). For discussions of uncertainty in fields
other than oceanography, see the article in the special issue of Journal of Computational
Physics (Karniadakis and Glimm, 2006) in which Lermusiaux (2006) presents his view of
oceanographic uncertainties to a wider audience.
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everywhere on the air-sea boundary, on values used for a variety of trans-
port coefficients, and when there are open lateral boundaries on the details
of their specification. Quantitative information about the impacts of their
mis-specification could be quite valuable. Not only would it reveal the lim-
itations of the utility of a simulation, it would also suggest which inputs
must be better known to achieve a more useful simulation. It is important to
recognize that the method of polynomial chaos expansions, like all methods
for dealing with uncertainty, suffers from what Bellman (1957) called the
“curse of dimensionality”, namely the inescapable fact that computational
complexity increases geometrically with increasing numbers of uncertain pa-
rameters. Thus, in practice, the method is used to examine the consequences
of a limited number of uncertain inputs.

As Kalman filtering (e.g. Evensen, 2009) is better known to oceanogra-
phers, especially within the context of data assimilation where its role is to
characterize the dynamically evolving uncertainties of the model state, com-
paring it with the method of polynomial chaos expansions can be instructive.
The Kalman filter owes much of its utility to its characterization of the un-
certainties using only an evolving mean state and an evolving matrix of co-
variances characterizing the state’s uncertainty. The curse of dimensionality
manifests in the size of the error-covariance matrix, which is unmanageably
large, so much effort has been devoted to its approximation. For example,
the ensemble Kalman filter approximates it using covariances inferred from
a manageable number of simulations chosen to sample important aspects of
the state’s uncertainty. The method of polynomial chaos expansions as il-
lustrated here also uses an ensemble of simulations to characterize the input
uncertainties. However, the purpose of the ensemble is to provide quadrature
information needed for evaluating the expansion coefficients, so the ensemble
members are chosen to optimize the accuracy of the coefficients. The result-
ing expansions provide not just means and covariances but provide complete
distributional information about the model’s outputs.

It is also useful to note that Monte Carlo methods (e.g. Gilks et al., 1996),
which also seek general distributional information about outputs, generally
require a much larger ensemble of simulations to achieve the same accu-
racy that might be obtained from polynomial chaos expansions with a small
quadrature ensemble. Polynomial interpolation between simulations in effect
provides additional implicit sampling. While large Monte Carlo ensembles
are unachievable for computationally intensive simulations, smaller quadra-
ture ensembles might be affordable using today’s computational resources.
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If alternative choices for the uncertain parameters are regarded as per-
turbations of the favorite choice, then this method might be regarded as a
perturbation method. However, as there is no requirement that the perturba-
tions be small, the method of polynomial chaos expansions can accommodate
information about large but unlikely perturbations. Within the context of
automatic differentiation, propagation of infinitesimal perturbations is ac-
complished using the forward method and tangent-linear codes for accom-
plishing this can be generated automatically, but unfortunately they have to
be run once for each perturbed input (e.g. Griewank and Corliss, 1991). On
the other hand, sensitivities of a single output to infinitesimal perturbations
of all uncertain inputs can be computed with automatically generated codes
that implement the reverse or adjoint method.5

To illustrate the method of polynomial chaos expansions, we examine
how uncertainties in the inflow through the Yucatan Straits manifest in the
Gulf of Mexico’s surface-elevation field and in the behavior of the Loop Cur-
rent. Because of the Gulf’s semi-enclosed geography with the Loop Current
being the principal dynamical feature, we thought that the consequences of
mis-specifying the inflow should be interesting. Our challenge was to find a
way to reduce the uncertainties of the spatially and temporally varying in-
flow to a few parameters, as we could find no published example of a similar
problem. As the circulation in the Gulf is simulated using a high-resolution
numerical model, the major computational expense is the ensemble of sim-
ulations needed to evaluate the coefficients of the polynomial expansions;
the cost of evaluating the coefficients and using them to examine the output
uncertainties is trivial in comparison.

Section 2 describes the methodology. After describing the numerical
model used to simulate the Gulf’s circulation, section 3 explains our approach
to reducing the inflow uncertainties to two random parameters. Section 4
discusses how the expansions are truncated and the ensemble of simulations
needed for evaluating the coefficients of the polynomials. Then section 5
presents the mean and standard deviation of the surface elevation field result-
ing from assumed distribution of possible boundary conditions and discusses
surface-elevation covariances. By showing probability densities characteriz-
ing the non-Gaussian nature of the model’s response, section 6 illustrates

5Adjoint codes are typically used to compute the gradient of a cost function for use in
algorithms seeking to optimize the choice of a model’s uncertain input parameters.

4



how the polynomial expansions can be used to emulate the numerical model.
And section 7 examines the convergence of the polynomial expansion. Fi-
nally, section 8 concludes with comments about what the method might offer
for oceanographic applications.

2. The methodology

The objective of the method is to assess how uncertainties of inputs of a
dynamical system manifest in its outputs. To see how it works, consider the
simple case of only a single uncertain input x, as generalization to two or
more is relatively straightforward.6 To express its uncertainty quantitatively,
x can be expressed in terms of a central value x0, which when not accounting
for uncertainty would be used as input, and a spread x1 characterizing the
likely range of values around x0:

x = x0 + x1ξ , (1)

where ξ is a standardized random variable with probability density function
p(ξ).7 For most problems we might have some idea what values to use for x0
and x1, but there may be little empirical basis for our choice of p(ξ). When
there are no fixed bounds on the range of x, the probability density might
be taken as Gaussian. That was in fact the choice made by Wiener (1938),
and that will also be ours, but other, possibly empirical, densities might be
used.

Again for simplicity it is useful to focus on a single output y = y(ξ),
which might be thought of as the surface elevation at a particular space-
time point.8 The method centers on the assumption that output y can be

6When there is more than one uncertain parameter of interest, x in equation (1)
becomes a vector, as do x0 and ξ, while x1 becomes a matrix.

7When constructing software that might be used for a variety of applications, it is
useful to standardize ξ so that it has zero for its central value and a spread of unity.

8Another approach to polynomial chaos expansion (e.g. Knio and Le Mâıtre, 2006;
Le Mâıtre and Knio, 2010) does require that the uncertainty of all evolving state vari-
ables be computed. In that case the polynomial chaos expansions for all state variables,
each similar to equation (2), are inserted into the dynamical equations and the condition
that the residuals be small in a statistical sense produces a system of equations for the
expansion coefficients similar to but more complicated than the original dynamical sys-
tem. As this would require software at least as demanding to construct as that already
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efficiently described by series of polynomials of the input x, or equivalently
by polynomials of the standardized input ξ:

y(ξ) =
K∑
k=0

ykPk(ξ) + εK(ξ) , (2)

where P0(ξ) = 1, P1(ξ) = ξ, and Pk for k > 1 are orthogonal polynomials of
degree k and yk are coefficients that must be determined; K indicates where
the series is truncated and εK represents the truncation error. Rearranging
could cast the expansion as a power series, but the polynomial grouping
is preferred in order to exploit the orthogonality of the polynomials when
evaluating expectation integrals:∫

Pj(ξ)Pl(ξ)p(ξ)dξ = Nkδj,k , (3)

where Nk is a normalization constant. The probability density p(ξ) governs
the choice of polynomials to be used for the expansion. For example, a
Gaussian density requires Hermite polynomials, the first few of which are
listed in table 1 together with their normalization constants. Similarly, a
uniform density on a finite interval would require Legendre polynomials. And
polynomials for an empirical density might be constructed using a Gram-
Schmidt procedure (Witteveen and Bijl, 2006).

Before addressing the issues of how many terms are needed and how their
coefficients can be determined, consider how the polynomial expansion (2)
can be used to examine the uncertainty of model outputs. First, it allows
statistics of the uncertain output y to be computed in a straightforward
manner. For example, the mean of y for all possible values of x is simply the

existing for the numerical model, this option was not considered for this study. Finette
(2006) has proposed this approach for studying uncertainties of underwater acoustics, Ge
et al. (2008) for nonlinear shallow-water equations, and Shen et al. (2010) for the Lorenz
(1984) model. Somewhat similarly, Sapsis and Lermusiaux (2009) have suggested using a
temporal evolving set of basis functions rather than a fixed polynomial basis.
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Table 1: The first few Hermite polynomials Pn and their normalization factors Nn,
which are appropriate when ξ has a standard normal probability density p(ξ) =
(1/
√

2π) exp(−ξ2/2).

n Hn(ξ) Nn

0 1 1
1 ξ 1
2 ξ2 − 1 2
3 ξ3 − 3ξ 6
4 ξ4 − 6ξ2 + 3 24
5 ξ5 − 10ξ3 + 15ξ 120
6 ξ6 − 15ξ4 + 45ξ2 − 15 720

first term of the expansion y0:

〈y〉 =

∫
y(ξ)p(ξ)dξ

=
K∑
k=0

yk

∫
Pk(ξ)p(ξ)dξ +

∫
εK(ξ)p(ξ)dξ (4)

= y0 ,

where the truncation error term vanishes because it could have been repre-
sented by extending K to ∞. Thus, the mean is independent of the number
of terms retained in the expansion. Note that the mean output is generally
not the same as the output corresponding to the mean input: y0 6= y(ξ0).
The variance of y involves all coefficients except y0:

〈(y − y0)2〉 =
∞∑

k,l=1

ykyl

∫
Pk(ξ)Pl(ξ)p(ξ)dξ

=
K∑
k=1

Nky
2
k + truncation error . (5)

As the estimate for variance reflects the number of retained terms, it can
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be used to monitor convergence.9 And, for a second output variable z, per-
haps the surface elevation at another space-time point, which would have
expansion coefficients zk, the covariance is provided by a similar series:

〈(y − y0)(z − z0)〉 =
K∑
k=1

Nkykzk + truncation error . (6)

Higher statistical moments can be computed in a similar fashion.
Second, the expansion (2) can also be used to generate an output for any

desired input without the need for solving the dynamic system: just neglect
the truncation error εK and evaluate y(ξ) for the value of ξ corresponding
to the desired input x.10 Thus, knowing the expansion coefficients yk allows
you to synthesize an ensemble of outputs and thus to build a histogram
characterizing the likelihood of any given value. The major cost of this
convenience is in the evaluation of the expansion coefficients. The accuracy
with which the outputs can be evaluated depends on the degree to which the
polynomial expansion has converged. There appears to be no a priori way
to know how many terms are required, so an a posteriori examination of the
impact of the last retained term will be needed. Clearly, for high-resolution
ocean modeling, computational resources limit the number of terms that can
practically be considered.

Now turn to the issue of evaluating the coefficients. Rather than following
the original approach of Wiener (1938), which requires first deriving and
then solving a coupled set of equations for the temporally evolving expansion
coefficients, we take the simpler approach suggested by Le Mâıtre et al. (2002)
of determining them from a specifically designed ensemble of simulations
that sample the possible inputs.11. After multiplying (2) by Pk(ξ)p(ξ) and
integrating, orthogonality of the polynomials provides expressions for the

9Because each term in the expression (5) is positive, truncating the expansion neces-
sarily underestimates the variance.

10In this regard polynomial chaos expansions resemble the Bayesian emulator of Conti
and O’Hagan (2010).

11Tatang et al. (1997) have suggested a similar approach for studying uncertainties of
radiative forcing in atmospheric models and Webster and Sokolov (2000) for quantifying
uncertainties in climate projections.
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coefficients:

yk =
1

Nk

∫
y(ξ)Pk(ξ)p(ξ)dξ . (7)

If y(ξ) were known at sufficiently many values ξq, then the coefficients could
be evaluated by quadrature:∫

y(ξ)Pk(ξ)p(ξ)dξ =
∑
q

y(ξq)Pk(ξq)wq + quadrature error , (8)

where wq is the weight associated with quadrature point ξq and the sum-
mation is over all quadrature points (e.g. Abramowitz and Stegun, 1970).
Computing the expansion coefficients zk for a second output variable z re-
quires little additional expense, as exactly the same quadrature points ξq can
be used and the values z(ξq) can be obtained simultaneously with y(ξq). The
major computational expense of examining all outputs of an ocean circula-
tion model is the storage of their values for each quadrature point.

As obtaining the value of y(ξq) for each quadrature point would require
solving the dynamical system for the corresponding input xq = x0 + x1ξq,
when the coefficients are determined by quadrature, the polynomial chaos
method might be regarded as a special type of Monte Carlo method. How-
ever, a distinction can be drawn based on the number of ensemble members
needed for accurately portraying the statistics of y. When the expansion (2)
for y(ξ) converges rapidly, the number of quadrature points needed for accu-
rate evaluation of the coefficients is also small, requiring considerably fewer
model integrations than would be needed to achieve the same accuracy with
Monte Carlo methods.

Quadrature presents the issues of how many points are needed and where
they should be located so that they efficiently evaluate the integrals for the
expansion coefficients. The presence of the probability density p(ξ) in the
integrand can be exploited by Gaussian quadrature to guarantee that Q
quadrature points approximate the integral exactly when the rest of the in-
tegrand is a polynomial of degree 2Q− 1 or less. It is the product of a poly-
nomial of degree K or less with the output, so the coefficients y0, y1, . . . yK
can be computed exactly using K + 1 Gaussian quadrature points as long
as the output is a polynomial of degree K or less. If the neglected terms
are small, y is almost a polynomial of degree K, so K + 1 quadrature points
should give good approximations for the integrals. In practice, as the rate of
convergence of the polynomial expansion is a priori unknown, computational
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Table 2: Quadrature points ξq and weights wq for Hermite-Gauss integration with n points.

n ξq wq
2 ±1.000000 0.5000000
3 0 0.6666667
±1.732044 0.1666667

4 ±0.741964 0.4541241
±2.334414 0.0458758

5 0 0.5333335
±1.355626 0.2220757
±2.869694 0.0112574

6 ±0.616706 0.4088287
±1.889176 0.0886155
±3.324257 0.0025558

7 0 0.4571431
±1.154406 0.2401230
±2.366760 0.0307574
±3.750439 0.0005484

costs limit the number of model runs and thus the number of the quadrature
points that can be used, limiting the accuracy of the expansion coefficients.
Confirming the convergence of the quadrature integrals, like confirming the
convergence of the polynomial expansion, requires an a posteriori analysis.

When the probability density p(ξ) is Gaussian, the best locations for the
points are those appropriate for Hermite-Gauss quadrature (Abramowitz and
Stegun, 1970). These locations depend on the number of points used. Table 2
shows the locations and weights when the number of points range from 2 to
7. So the decision of where they should be located reduces to that of how
many to use to get accurate evaluations of the integrals.12

Because practicality dictates that the consequences of only a few uncer-
tain inputs can be analyzed, it is important to be clear about exactly which
are to be propagated. For this study the dynamical system is the circulation

12These quadrature points and weights are appropriate when the integrands involve
the normal density (1/

√
2π) exp(−ξ2/2). Tabulated values are often for integrands having

instead a factor exp(−ξ2) with the points shifted by a factor
√

2 and the weights larger
by a factor

√
π.
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of the Gulf of Mexico as described by a numerical model based on the partial-
differential equations of fluid dynamics, and the focus is on the uncertainties
of the inflow through the Yucatan Straits, which will be characterized in sec-
tion 3 below using two uncertain parameters. To a lesser extent practicality
also limits the number of outputs that can be analyzed.13 Here, they are
limited to the evolving surface elevation field sampled at 15-day intervals.

3. Modeling the Gulf of Mexico and its inflow

The flow in the Gulf of Mexico (figure 1) is simulated using the Hybrid
Coordinate Ocean Model, which is commonly known as HYCOM.14 The
configuration used here is the same as that being used operationally by the
U. S. Navy for ocean prediction.15 The computational domain is open along
portions of its southern and eastern boundaries, where values are generally
provided by a lower-resolution (1/12 degree vs. 1/25 degree) simulation of
HYCOM configured for the Atlantic Ocean (similar to Chassignet et al.,
2007). As boundary conditions were available for the period from September
9, 2004 through December 31, 2007, that period was chosen for demonstrating
the method of polynomial chaos expansions. To illustrate the method of
polynomial chaos expansions, we ask how uncertainties associated with flow
from the Caribbean manifest within the Gulf.

We are immediately faced with the issue of how uncertainties in these
boundary conditions might be quantified. Ideally, they would be taken from
a large ensemble of Atlantic simulations carefully prepared by varying all
inputs over their likely values, but unfortunately no such ensemble exists.
What was available was a “climatology” of the open boundary conditions
(Kourafalou et al., 2009), and its spatial and temporal variability provides
a proxy for the statistics of the uncertainties of the boundary conditions.

13For our example, the outputs comprise the hydrodynamic and thermodynamic fields
at all points within the model’s domain as they evolve in time as well as Lagrangian
quantities such as centers of eddies or the maximum northward extent of the Loop Current.

14HYCOM’s distinguishing feature is a generalized vertical coordinate system that op-
timizes the distribution of vertical computational layers by making them isopycnic in
stratified regions, terrain-following in shallow coastal regions, and isobaric in the unstrat-
ified mixed layer (Bleck, 2002). It serves a large community, who use it for a variety of
applications. More information about HYCOM can be found at http://www.hycom.org .

15Details of the surface forcing, mixing parameterizations, etc. can be found in the
paper of Prasad and Hogan (2007).
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Figure 1: Model domain. Color-filled contours indicate bathymetry in meters. Com-
putational information from larger domain is provided along the red line along the open
boundary. Uncertainty of the inflow is modeled in the cross-hatched region at the southern
boundary.

Without having empirical evidence of the nature of the boundary uncertainty,
it seems best to guarantee that they have a similar spread and co-variability
as the boundary fields themselves, so that alternative boundary conditions
produce reasonable flows.

The next issue is reducing the boundary climatology to just a few param-
eters that might be propagated using the method of polynomial chaos expan-
sions. These few parameters should characterize the uncertainties of each of
the model’s state variables at every point on the open southern boundary. In
addition there is the issue of characterizing how these uncertainties change
with time. Even if the deviation of the boundary state at a given time might
differ from the favorite boundary conditions for that time, its deviation at
another time is not likely to be the same, but it should be related. So there
is the need to account for temporal variations in the uncertainty without
unduly increasing the number of random parameters.
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Our solution was to analyze the boundary climatology into a sum of prod-
ucts of spatial patterns and time series using singular-value decomposition.
The spatial patterns are multivariate empirical orthogonal functions (EOFs),
i.e. eigenvectors of the boundary-data correlation matrix, the times series
are the corresponding principal components, i.e. linear combinations of the
boundary variables, and the singular values indicate the amounts of variabil-
ity associated with each spatiotemporal mode. If the first few singular values
are sufficiently large, then most of the boundary climatology’s multivariate
spatial and temporal co-variability can be described by just a few modes,
and these modes of co-variability can be used to model the uncertainties of
the boundary conditions.

So a class of reasonable boundary conditions can be generated by adding
to the favorite boundary conditions some amounts of each of these modes,
with a probability density governing how much of each mode is reasonable.
The density’s central values would be zero, so that the favorite boundary
conditions would be the most likely boundary conditions, and the multidi-
mensional spread could be estimated from the singular values, which are
related to the fraction of variance of each mode occurring in the climatology.
Thus, if X0 is a matrix containing data for the favorite boundary condi-
tions, with each column corresponding to a particular time and each row to
a particular variable at a point on the open boundary, then other possible
boundary conditions could be represented by a similar matrix X:

X = X0 + α
N∑
κ

ξκλκcκr
T
κ , (9)

where the column vectors cκ are the EOFs, the row vectors rTκ are the prin-
cipal components, λκ are the singular values, N is the number of modes used
to characterize the boundary variability, ξκ are unit-variance random ampli-
tudes reflecting the uncertainty of the boundary values.16,17,18 The coefficient

16When computing the singular-value decomposition, the boundary data were first
standardized by removing each variable’s mean and dividing by its standard deviation, so
that all could be represented on a common scale. The components of the EOFs cκ were
then multiplied by the corresponding standard deviations to restore their units.

17The climatological boundary data were available bi-weekly for 26 weeks, and as means
had been removed, there were 25 non-zero singular values.

18It is interesting to compare equation (9) with its univariate counterpart (1). X, which
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α controls the spread of likely boundary values relative to the boundary’s cli-
matological variability; we use α = 1 for the examples discussed here, but
if we had considered our favorite boundary conditions to be more reliable, a
smaller value would have been be more appropriate.

Because the principal components are uncorrelated, their random ampli-
tudes should also be uncorrelated, and their multivariate probability density
function pN should be the product of univariate densities p:

pN(ξ1, ξ2, . . . , ξN) =
N∏
κ

p(ξκ) . (10)

And because the principal components reflect the variance of the climatology
about its mean, the univariate densities can be taken to be standard normal
densities.

The singular values λk are shown in figure 2. Their squares are propor-
tional to the fraction of variance of the climatology represented by the linear
combinations of the boundary variables corresponding to each mode. As the
first eight modes account for 90% of the variance, it would be good to use
these eight to model the uncertainty of the boundary conditions. However,
because computational costs increases geometrically with each additional un-
certain parameter, we have chosen to use only the first two, which together
account for 42% of the variance, as that is sufficient to illustrate the method.
Thus, equation (9) becomes:

X = X0 + αξ1λ1c1r
T
1 + αξ2λ2c2r

T
2 . (11)

The lower-left panel of figure 3 shows the first two principal components
r1 and r2, which characterize the temporal behavior of the two modes of

represents all variables at all points on the open southern boundary at all times, is the
multivariate generalization of the single uncertain input x, and X0 is the generalization of
the central value x0. While the many elements of X are all uncertain, their uncertainties
are not independent, as they are tied to the N parameters ξκ, the multivariate general-
izations of the standardized parameter ξ in (1). The spread x1 generalizes to the matrix
products αλκcκrκ assigning a spread to each boundary variable for each of the parameters
ξκ. If the matrices X and X0 are all unfolded into column vectors x and x0, and if the
parameters are regarded as elements of a (shorter) column vector ξξξ, then when unfolded
the spread matrices αλκcκrκ can be organized as columns of a grand spread matrix X1,
and equation (9) can be rewritten in a form analogous to (1): x = x0 +X1ξξξ.
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Figure 2: Singular values λκ of the boundary climatology. As the climatology provides
bi-weekly values and the means have been removed, there are only 25 non-zero singular
values.

southern-boundary variability. The upper two panels show the corresponding
spatial patterns of meridional velocity. These patterns, along with those
for zonal velocity, temperature, salinity and pressure which are not shown,
are contained in the column vectors c1 and c2. For comparison, the mean
meridional velocity is shown in the lower-right panel.

4. Quadrature ensemble.

With two random inputs the polynomial chaos expansion involves polyno-
mials of two variables. Because the parameters ξ1 and ξ2 are, by construction,
uncorrelated over the one-year interval for which there were data to define
them, they can be regarded as statistically independent. Consequently, the
bi-variate probability density describing their distribution is the product of
two univariate densities p(ξ1) and p(ξ1), in this case standard Gaussians, and
the expansion polynomials can be chosen as products of Hermite polynomi-
als Pk1(ξ1) and Pk2(ξ2). Thus, the polynomial expansion for a single output
becomes:

y(ξ1, ξ2) =

k1+k2≤K∑
k1,k2

yk1,k2Pk1(ξ1)Pk2(ξ2) + εK(ξ1, ξ2) , (12)
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Figure 3: Principal components (lower-left panel), 1st EOF (upper-left) and 2nd EOF
(upper-right) for the meridional velocity, and mean meridional velocity at the southern
open boundary. The inserts show the bathymetry at the open southern boundary.

where triangular truncation retains polynomials of total degree no greater
than K = 6.19 Exploiting orthogonality of the polynomials as in section 2
expresses the expansion coefficients as double integrals:

yk1,k2 =
1

Nk1Nk2

∫ ∫
y(ξ1, ξ2)Pk1(ξ1)p(ξ1)dξ1Pk2(ξ2)p(ξ2)dξ2 , (13)

19Because the principal components are uncorrelated, so are their sums and differences.
So the expansions equally well might have been in polynomials of ξ± = (ξ1 ± ξ2)/

√
2,

which if truncated at degree K would contain terms involving ξ2K1 and ξ2K2 . Triangular
truncation K1 +K2 ≤ K better respects the isotropy of the random variables and regards
the products K1 +K2 > K as being of higher order.
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which can be evaluated by Gauss-Hermite quadrature one integral at a time:∫ ∫
y(ξ1, ξ2)Pk1(ξ1)p(ξ1)dξ1Pk2(ξ2)p(ξ2)dξ2 ≈∑

q1

∑
q2

y(ξq1 , ξq2)Pk1(ξq1)wq1Pk2(ξq2)wq2 . (14)

The quadrature points q1 and q2 and weights w1 and w2 (table 2) are for
integrating over ξ1 and ξ2, respectively.

Now comes the question of how many quadrature points to use. First,
should the same number be used for both integrations? If the polynomial
expansion converges faster for one uncertain input than for the other, the
output is more nearly a low-order polynomial of that variable and fewer
quadrature points may suffice. However, as the rates of convergence are not
known a priori, it seems best to use the same number for both. With the
two uncertain variables treated symmetrically, the locations of the quadrature
points needed for one integration are the same as for the other, just along
a different axis; because the quadrature approximates a double integral, the
points are not confined to the axes but are spread over the plane (figure 4).
So if Q points are needed for each one-dimensional integral, then Q2 pairs
(ξq1 , ξq1) are need for the double integral. As truncation ignores polynomials
of degree k > 6, it is reasonable to use Q = 7 quadrature points in each
direction or 49 in all, each requiring a separate run of the HYCOM model.
And as the model has a horizontal resolution of roughly 4 km For Q = 8,
the 64 runs would tax our available computational resources, so we chose to
proceed with 7 quadrature points in each direction.

Figure 4 shows the locations of the 49 quadrature points relative to
contours of the bi-variate normal density function. There is a 90% prob-
ability that an open southern boundary conditions corresponds to points
(ξ1, ξ2) within the smallest circle. The next larger circle encloses an addi-
tional 9% of the possible boundary conditions, and each larger circle adds a
smaller fraction, leaving only 0.0001% outside the largest circle. Note that
many of the quadrature points correspond to boundary conditions that are
highly unlikely. Thus, the ensemble of HYCOM runs providing values at
the quadrature points includes what might be regarded as quite extreme
events. Monte Carlo methods would require an ensemble of 1,000,000 ran-
domly drawn boundary conditions to have a reasonable chance of sampling
beyond the largest circle where the much smaller quadrature ensemble has
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Figure 4: Circles enclose regions of 90%, 99%, . . ., 99.9999% probability. Dots mark
locations of the Gauss-Hermite quadrature points, with red dots corresponding to relatively
likely, blue less likely, green unlikely, and magenta highly unlikely boundary conditions.

four points. Note however that each of these remote cases has a quadrature
weight of only 3.0074× 10−7.20

Each of the 49 quadrature points provides a different specification of the
open southern boundary. And with initial conditions, surface forcing, mix-
ing parameters and all other inputs being the same, the boundary conditions
determine an ensemble of 49 HYCOM simulations. Figure 5 illustrates how
the sea-surface-elevation field differs across the members of this ensemble.
Because even the quadrature points within the inner circle of figure 4 cor-
respond to significant departures from the favorite boundary conditions, the
red contours do not cluster around the thicker black contour. With the
other members of the quadrature ensemble corresponding to rather unlikely
boundary conditions, it appears that the boundary ensemble does not provide
much direct information about the consequences of more likely situations; in-
stead, that sort of information might be obtained from the polynomial chaos
expansions once the coefficients have been evaluated using the quadrature

20For practical purposes these weights might be taken to be zero and the simulations
corresponding to the four most unlikely members of the ensemble could be avoided. The
two-dimensional array of quadrature points does not appear to be optimal for sampling
likely situations and other approaches to two- and higher-dimensional quadrature might
be more cost-effective.
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Figure 5: Locations of the Loop Current and its eddies from the 49 HYCOM quadrature
runs as indicated by 17 cm sea-surface-height contours. The panels, from upper left to
lower right, show the contours at 15, 150, 300, 450, 600, and 750 days after the boundary
uncertainties were initiated. The colors of the contours correspond to the colors of the dots
in figure 4 with the thick black contour indicating the central member of the ensemble.
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ensemble. Nevertheless, one thing is immediately clear: the variability af-
ter 15 days is much less than that after a longer time. The reason is that
all members of the ensemble start from the same initial conditions, which
did not reflect previous uncertainties in the flow through the open south-
ern boundary. There is a transient period during which the uncertainties
develop, and only after this period can the consequences of the boundary
uncertainty be fully appreciated. However, because natural dynamical vari-
ability is also present, the ensemble of simulations evolve in time even after
the uncertainties are fully developed.

5. Means, standard deviations, and covariances of surface elevation

For this study the surface elevation for each grid cell was saved at 15-day
intervals, and we focused on just six of these days.21 For each grid cell there
were 49 values of surface elevation on each of those days, one value from each
member of the quadrature ensemble, which were used to evaluate the coeffi-
cients of the polynomial expansions for each cell’s surface elevation.22 Once
the expansion coefficients for surface elevation have been computed, comput-
ing mean and variance is straightforward as the generalization of equations
(4) and (5) to the case of two uncertain inputs is obvious: the mean is given
by the constant term in the expansion, and the variance is approximated by
the sum of the squares of the coefficients of the other terms.

Figure 6 shows the mean surface elevation for each grid cell at six different
times. These means are averages over the uncertainties in the boundary
conditions as characterized by the two boundary modes. The plots look
much like those of the central member of the ensemble at the corresponding
times, but somewhat less sharp. Notice that 15 days after the boundary
uncertainty was initiated, when each member of the ensemble retains much
of their common heritage of the same initial conditions, gradients of the
mean surface elevation are stronger than they are in the other panels, where

21Subsurface variables might also have been saved in order to avoid redoing the ensemble
of simulations in case uncertainties of some aspects of subsurface circulation might be a
focus of future interest.

22Note that coefficients for all outputs need not be computed at once. The appropriate
strategy is first to compute the coefficients needed to get the statistics you think might be
the most useful; if other statistics are subsequently desired, then more coefficients can be
computed at that time.
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Figure 6: Mean (m) of the sea-surface-height field from the polynomial chaos expansion
at 15, 150, 300, 450, 600, and 750 days after the boundary uncertainties were initiated.
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sufficient time has passed for the cumulative effect of past uncertainties to
be felt.

While each output’s mean can be estimated from a single expansion coef-
ficient, estimates of its variance involve all the remaining coefficients and are
thus subject to truncation error.23 Figure 7 shows estimates of the standard
deviations of each grid cell’s surface elevation at the same times as the means
were shown in figure 6. These standard deviations reflect the uncertainties
in the positions of the Loop Current and its rings in the HYCOM simula-
tion stemming from the uncertainties in the flow from the Caribbean into
the Gulf. The fact that the uncertainties are smaller for day 15 illustrates
again the fact that boundary uncertainties predating the quadrature simula-
tions were not reflected in the common initial conditions. The fact that the
magnitudes of the standard deviations of surface elevation are comparable in
size to the means of figure 6 reflects the choice α = 1 in equation (9), which
characterizes uncertainties in the inflow comparable to its climatic range.
A smaller value of α more appropriate for a situation where the inflow is
relatively well known could have led to smaller values of standard deviation.

Estimates of covariances of two outputs are computed from sums of prod-
ucts of their expansion coefficients. Figure 8 shows plots of covariance of
surface elevation for a target cell at the coordinates (86◦E, 24.1◦N), with
that of all grid cells. That target cell, which is marked by a white star, was
chosen because it appears to be at the center of variability of the Loop Cur-
rent circulation. Just as in the plots for the means and standard deviations,
the spin-up of uncertainty is evident. To de-emphasize the magnitude of the
uncertainty, plots of correlation coefficients (not shown) could also be drawn;
they would be expected to show a maximum at the target point and a similar
general structure with high correlations over the region for which the Loop
Current penetrates.

The covariances of figure 8 represent a subset of all covariances that might
be estimated. If all variables could be saved during the quadrature runs,
then it would be possible in principle to estimate the evolving covariance
matrix for the complete model state. As a covariance matrix quantifying
the spread of uncertainty of the model state is central to statistical meth-
ods for assimilating data, it is useful to consider whether those estimated

23With triangular truncation at 6th degree, there are (1 + 2 + . . . + 7)/2 = 28 terms
retained in the polynomial expansion and thus 27 terms contributing to the variance.
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expansion at 15, 150, 300, 450, 600, and 750 days.
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from polynomial chaos expansions might be useful for that task. While the
covariances of figure 8 characterize only the uncertainties attributable to un-
certainties associated with the specification of the open southern boundary,
their counterparts needed for assimilating data should account for all sources
of uncertainty. On the other hand, because the covariances associated with
all sources of uncertainty are not known, much of the art of assimilation
is in their approximation. Perhaps uncertainties from other sources, e.g.
wind stress or mixing parameters, when propagated give similar patterns
of co-variability, indicating that dynamical evolution causes uncertainties to
forget their origins and to manifest in patterns reflecting the likely state of
the system. If so, then polynomial chaos expansions might offer a way to
explore useful approximations to the error-covariance matrix.

6. Emulation and kernel density estimates for surface elevation

A great advantage of the method of polynomial expansion is that it al-
lows for a detailed view of the distributions of the outputs of the dynamical
system. Once an output’s expansion coefficients have been evaluated, then
the expansion in equation (12) can be used to emulate possible values of the
output y without the need for additional expensive simulations.

Figure 9 illustrates how emulated values can provide information about
the consequences of different boundary conditions for any output. It shows
the response of surface elevation at (86◦E,24.1◦N) as a function of ξ1 and
ξ2. Recall from figure 4 that the likely boundary conditions are near the
center of the plots, so the responses within the innermost circle are generally
more useful. Note that the response does not necessarily vary monotonically
with ξ1 and ξ2; instead it can exhibit maxima and minima consistent with its
assumed polynomial nature. Note also that, for extremely unlikely boundary
flows as indicated by the circular contours, the response can be extremely
large, while the range of responses for more likely boundary flows is quite
reasonable.

Emulated values of surface elevation from a large ensemble of randomly
generated (ξ1, ξ2) pairs can be used to construct a histogram that can be
smoothed to provide an approximate probability density. An example for
surface elevation at the same location (86◦E,24.1◦N) is shown in figure 10.
The histograms correspond to 50,000 randomly drawn (ξ1, ξ2) pairs, each de-
termining a different boundary condition that is propagated through the Gulf
by emulation, as an ensemble of numerical simulations of this size is clearly
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responses: Contours are at 10 cm intervals from -50 to 50 cm, and more extreme values are
represented with a compressed scale. The circles, which are the same as those of figure 4,
indicate that the extreme values are highly unlikely.
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Figure 10: Kernel density estimates for surface elevation (m) at the point (86◦E, 24.1◦N)
for days 15, 150, 300, 450, 600, and 750. They were derived from histograms generated us-
ing polynomial chaos expansion for the mixed layer depths corresponding to 50,000 random
boundary conditions. Ticks along the bottom indicate values for the 49 HYCOM simu-
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with means and standard deviations from the polynomial expansions.
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unfordable. The range of emulated data actually range from -2.20 to 3.25 m,
but as there are very few extreme values, the plots have been restricted to
a more reasonable range. For comparison, there are ticks marking the 49
simulated values from the quadrature ensemble. Kernel density functions
are superimposed in red as estimates of the probability densities. The den-
sities are clearly evolving. The small spread at day 15 is another reflection
of the memory of the common initial conditions shared by all members of
the quadrature ensemble, and the evolving shape of the density is a conse-
quence of the different responses to surface forcing of the different ensemble
members. For reference, superimposed in black, are Gaussian densities with
means and standard deviations given by the polynomial expansions, which
agree quite closely with their counterparts estimated from the data compris-
ing the histograms. The kernel densities are clearly not Gaussian; note their
narrower peaks, their skewness, and at day 300 an indication of bi-modality.

7. Convergence

One method for assessing convergence of polynomial chaos expansions is
by examining the convergence of variance. This can be done by examining
the fraction of variance associated with the polynomials of highest degree
that are retained:

fK =
σ2
K − σ2

K−1

σ2
K

, (15)

where σ2
K is the variance at the Kth level of truncation. Note that the

number of terms contributing to the numerator increases with increasing K;
with triangular truncation used here there are K+ 1 terms with total degree
K. Nevertheless, if the series is converging, then fK should decrease with
increasing K.

The upper panels of figure 11 shows contour plots of f5 and f6 for the
terminal fraction of the variance of surface elevation in each grid cell for day
750. The left panel, which shows the fraction of variance associated with the
5th-degree terms when 6th-degree and higher terms are dropped. Similarly,
the right panel shows that associated with the 6th-degree terms, which are
the highest that we computed. Overall, the terminal fraction of variance
is seen to decrease, but there are a few small regions where, although the
fraction is small at both truncations, it can be seen to increase. This is an
indication that, if they could be afforded, more terms should be used.
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Figure 11: Upper panels show fraction of variance of survace elevation at day 750 due to
the retained polynomial terms of highest degree: (left) contribution of the 6 5th-degree
terms relative to the total contributed by the 21 terms of degree less than 6; (right)
contribution of the 7 6th-degree terms relative to the total contributed by the 28 terms of
degree less than 7. Lower panels show incrementalal contribution to standard deviation
(cm) of surface elevation at day 750.
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Another method for assessing convergence is the incremental contribution
of the terms of highest degree to the standard deviation. As each term in the
expansion for variance is positive, the incremental contribution to the stan-
dard deviation is necessarily positive, and it should be seen to decrease to
indicate convergence. The lower panels of figure 11 indicate that the contri-
butions to the standard deviation of surface elevation are generally smaller
when going from 5th to 6th degree, but this is not the case everywhere.
These small increases again suggest that more terms might be needed in the
polynomial expansions for surface elevations in some parts of the Gulf. How-
ever, as retaining polynomials of higher degree requires a larger quadrature
ensemble and increases the computational costs, the benefits of greater con-
vergence must be balanced against the imprecision with which the boundary
uncertainties can be quantified. For practical purposes convergence might be
regarded as being adequate almost everywhere.

A third way to judge convergence is by how well the polynomial ex-
pansions reproduce values computed during the 49 quadrature runs. For
example, figure 12 shows the errors in surface elevation at (86◦E,24.1◦N)
when the polynomial chaos expansions are truncated to exclude terms with
polynomials of total degree greater than six. The low-probability boundary
conditions, which were associated with unreasonable extremes of surface el-
evation in figure 9 are also associated with the largest errors. In order to
focus on the more likely boundary conditions, the color scale was limited
to errors of ±20 cm. Errors at all quadrature points within the inner cir-
cle indicating the region of 90% most likely boundary conditions are within
the limits of the color scale, as are most of those within the 99% annulus.
The larger disagreements at the quadrature points corresponding to unlikely
boundary conditions is another indication that more terms are needed for
convergence, while the reasonable agreement at the central points suggests
that convergence is sufficient for practical use.

8. Discussion and Conclusions

The objective of this paper has been to introduce to the oceanographic
community the method of polynomial chaos expansions for propagating un-
certainties through a dynamical system. In particular, we wanted to demon-
strate that it could be used with state-of-the-art numerical models such as
HYCOM. The examples illustrated how uncertainties in the specification of
the flow from the Caribbean Sea into the Gulf of Mexico manifest as un-
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certainties in surface elevation as characterized by the mean and standard
deviation at each grid cell, by their covariances, and by estimates of their
probability density functions.

The novel aspect of the paper is its treatment of the uncertainties of
the open boundary conditions. Because practicality limits the number of
parameters characterizing the uncertainties that are to be propagated, it
was essential to reduce the spatially and temporally varying multivariate de-
scription of the inflow to a small number of random variables. The solution
presented here has been to assume first that the patterns of uncertainty are
similar to the patterns of variability of a climatology of the boundary flow
and second that they can be approximated by the first two terms of a modal
decomposition. As the two modes are uncorrelated, their random amplitudes
could be assumed to be statistically independent and the joint probability
density function for the amplitudes could be the product of individual den-
sities. Furthermore, as the modal decomposition partitions climatological
variance about the mean, it seemed most appropriate to take the individual
densities to be Gaussians.

This treatment of the boundary uncertainties is simply one of convenience
necessitated by the lack of a quantitative understanding of the actual uncer-
tainties of the specification of the evolving state of the inflow. Conceptually,
a similar but better treatment would be based not on the available climatol-
ogy but on a large ensemble of runs of the outer model, which provides the
boundary conditions for the Gulf model, with each member of that ensemble
reflecting uncertainties in the outer model’s specification. A modal decom-
position of the boundary conditions provided by that ensemble would reflect
the uncertainties of the actual flow. Unfortunately, such computations are
prohibitively expensive. The available climatology provided a proxy for that
ideal ensemble of simulations.

The uncertainties in the boundary conditions were propagated as though
the initial conditions were perfectly known, even though uncertainties in
earlier flow through the open boundary would have contributed to the un-
certainties of the initial conditions. Consequently, there was an initial period
during which the effect of the boundary uncertainties accumulated within
the Gulf. If the hypothetical large ensemble of outer-model simulations of
the previous paragraph had been initiated much earlier to allow for an uncer-
tainty spin-up, then there would be uncertainties in the interior of the Gulf
that would be compatible with those at the open boundary, and a modal
decomposition might reduce this larger set of data to a few parameters that
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could characterize both the open boundary and the initial conditions. In the
absence of that hypothetical ensemble, it seemed appropriate to spin-up the
interior uncertainties from a completely certain initial state.

The polynomial expansions are most valuable when they converge rapidly.
Here, the issue of convergence of the polynomial expansions has been illus-
trated by showing how retaining more terms impacts the variance of the
surface elevation. The results indicated that convergence was adequate ev-
erywhere within the Gulf of Mexico, given the paucity of information about
the nature of the uncertainties of the inflow and the computational cost of
achieving higher precision.

The method of polynomial chaos expansions can be regarded as occupy-
ing the middle ground between Monte Carlo methods and Kalman filtering
(Evensen, 2009). Like Monte Carlo methods, polynomial chaos expansion
attempt to obtain complete information about the statistical distributions of
the outputs of a dynamical system, whereas Kalman filtering presumes those
distributions can be characterized adequately by an error-covariance matrix.
But while Monte Carlo methods require a very large ensemble of solutions to
the dynamical system, polynomial expansions need a much smaller ensemble
to provide values for evaluating expansion coefficients.

The essential difficulty faced by all methods is the curse of dimensional-
ity: the computational burden grows geometrically with increasing number
of uncertain parameters. While Kalman filtering treats each state variable
as being uncertain, for oceanographic applications where models have huge
numbers of uncertain inputs, the focus is on finding computationally efficient
ways to capture important aspects of the uncertainties using as few parame-
ters as possible. The ensemble Kalman filter, for example, uses an ensemble
of simulations comparable in size to the quadrature ensemble used in this
study, but the appropriate composition of the ensemble is still a matter of
study.

One question that was not explored here is that of the convergence of the
quadrature approximations of the integrals. This becomes increasingly im-
portant as the number of uncertain inputs increases. Here we illustrated how
two-dimensional quadrature requires the square of the number of simulations
needed for the individual one-dimensional quadratures, which is simply an-
other manifestation of the curse of dimensionality. In the future we plan to
explore the use of sparse quadrature methods for handling several uncertain
parameters and to take a closer look at convergence in quadrature.

33



Acknowledgments

The research herein was supported by the Office of Naval Research, un-
der grant No N000141010498. Dr. Iskandarani was also supported by NSF-
OCE0622662. All calculations were performed at the Center for Computa-
tional Science at the University of Miami. The authors would like to thank
the reviewers for their helpful suggestions.

Abramowitz, M., Stegun, I., 1970. Handbook of Mathematical Functions.
Dover.

Bellman, R., 1957. Dynamic Programming. Princeton University Press,
Princeton NJ.

Bennett, A. F., 2002. Inverse Modeling of the Ocean and Atmosphere. Cam-
bridge University Press, Cambridge.

Bleck, R., 2002. An oceanic general circulation model framed in hybrid
isopycnic-Cartesian coordinates. Ocean Model. 37, 55–88.

Cameron, R. H., Martin, W. T., 1948. Transformations of Wiener integrals
under translations. Ann. Math. 45 (2), 386–396.

Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwell, G. R., Hogan,
P. J., Wallcraft, A. J., Baraille, R., Bleck, R., 2007. The HYCOM (Hybrid
Coordinate Ocean Model) data assimilative system. J. Mar. Syst. 65, 60–
83.

Conti, S., O’Hagan, A., 2010. Bayesian emulation of complex multi-output
and dynamic computer models. J. Stat. Plan. Infer. 140, 640–651.

Evensen, G., 2009. Data Assimilation: The Ensemble Kalman Filter.
Springer-Verlag, Berlin.

Finette, S., 2006. A stochastic representation of environmental uncertainty
and its coupling to acoustic wave propagation in ocean waveguides. J.
Acoust. Soc. Am. 12, 2567–2579.

Ge, L., Cheung, K. F., Kobayashi, M. H., 2008. Stochastic solution for un-
certainty propagation in nonlinear shallow-water equations. J. Hydraulic.
Engg. 134, 1732–1743.

Gilks, W. R., Richardson, S., Spiegelhalter, D. J. (Eds.), 1996. Markov Chain
Monte Carlo in Practice. Chapman & Hall, London.

34



Griewank, A., Corliss, G. F. (Eds.), 1991. Automatic Differentiation of Al-
gorithms: Theory, Implementation, and Application. SIAM Proceeding
Series. Society for Industrial and Applied Mathematics, Philadelphia.

Karniadakis, G. E., Glimm, J. (Eds.), 2006. Uncertainty Quantification in
Simulation Science. Elsevier, (Volume 217 of Journal of Computational
Physics).

Knio, O. M., Le Mâıtre, O. P., 2006. Uncertainty propagation in CFD using
polynomial chaos decomposition. Fluid Dyn. Res. 38, 616–640.

Kourafalou, V. H., Pang, G., Kang, H., Hogan, P. J., Smedsted, O., Weis-
berg, R. H., 2009. Evaluation of Global Ocean Data Assimilation Exper-
iment products on South Florida nested simulations with Hybrid Coordi-
nate Ocean Model. Ocean Dynamics 59, 47–66.
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