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ABSTRACT

The response of planetary waves to stationary tropical heating in a stratified global atmosphere linearized
with respect to a basic zonal mean flow is investigated. The basic zonal wind has meridional and vertical shear.
The basic equations are solved by using the method of three-dimensional normal-mode expansion. Forced
solutions to a prescribed tropospheric equatorial heating distribution with a specific wavenumber in longitude
are examined.

Without the basic zonal flow, the internal vertical modes whose equivalent depths are on the order of a few
hundred meters are favorably excited, but the response of the external mode (“barotropic” mode) is relatively
small. With the inclusion of a zonal flow, the vertical shear of the zonal wind permits the coupling of the
external mode with the internal vertical modes. As a result of the coupling, a significant response occurs in the
external mode due to the excitation of the “baroclinic” internal modes by tropical heating. The meridional
structures of internal vertical modes are equatorially trapped and their intensities are less affected by the basic
zonal flow. Since the meridional structures of the external mode is global, a significant response of the external
mode to tropospheric tropical heating is no longer confined to the tropics. The direction of the basic zonal flow
and its meridional shear have a profound influence on the intensity of planetary waves in the mid- to higher
latitudes generated by stationary tropical heating. The present findings may fill in a missing link in the dynamical
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theory of atmospheric teleconnections.

1. Introduction

In an earlier work (Kasahara, 1984, hereafter referred
to as K84), the linear response of a stratified global
- atmosphere to tropical heating was investigated by us-
ing a normal mode expansion in both the vertical and
horizontal directions. It was shown that the vertical
internal modes whose vertical profiles have “baro-
clinic” structures are favorably excited by tropical
heating in agreement with Geisler and Stevens (1982),
Lim and Chang (1983) and Fulton and Schubert
(1985). Moreover, the appearance of an anticyclonic
pair in the upper troposphere sitting astride the equa-
torial heat source agrees with many related studies (e.g.,
Matsuno, 1966; Gill, 1980; Geisler, 1981; Moura and
Shulka, 1981; Lim and Chang, 1981; Lau and Lim,
1982; Silva Dias et al., 1983). One notable finding in
K84 was that the response of the external mode is rel-
atively small, though it is by no means.negligible. Since
the largest portion of atmospheric energy is observed
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to reside in the external mode, the question may be
raised whether or not the dominance of the internal

‘modes, corresponding to the equivalent heights of a

few hundred meters, is inconsistent with observation.

This question may be partly resolved by considering
the fact that the K84 study did not take into account
the effects of the basic zonal flow. Aiming at the study
of steady, linear response of a stratified atmosphere to
tropical thermal forcing, Webster (1972) used a two-
level linearized primitive-equation global model and
calculated the dynamical response of the model at-
mosphere, in which the basic zonal flow has both me-
ridional and vertical shear, to tropical forcings. Later,
Webster (1981, 1982) made extensive numerical cal-
culations with essentially the same model configuration
to investigate the mechanisms by which sea surface
temperature anomalies give rise to atmospheric re-
sponses and to study the seasonal variation of the at-
mospheric response to tropical heating. It is clear from
these studies, and also from Opsteegh and Van den
Dool (1980), that the response to tropical heating ap-
pears not only in the vicinity of the heat source, but
also in the middle to higher latitudes. Moreover, the
basic zonal flow plays an important role in determining
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the extent of middle to higher latitude response to
tropical thermal forcings.

Detailed analyses of the three-dimensional aspect of
the response of a global atmosphere to prescribed forc-
ings were also made by Hoskins and Karoly (1981),
Hendon and Hartmann (1982), Simmons (1982) and
Rosenlof et al. (1986) using linear, steady, multilayered
baroclinic models. One notable finding from these
studies is that the responses to tropical heating are
baroclinic in character in the vicinity of the heat
sources, while the responses become equivalent baro-
tropic away from the forcing régions. In fact, the middle
to higher latitude responses are very similar to those
induced by tropical forcings in a barotropic atmosphere
(Hoskins et al., 1977). There is little doubt that once
the tropical forcings have excited equivalent barotropic
disturbances, then they will propagate away from the
source regions. The basic zonal flow in the linearized
models must play an important role in meridional en-
ergy propagation as envisaged by Charney (1969).
However, we must still answer the question by what
mechanism are equivalent barotropic disturbances

“generated in the first place by tropospheric tropical
forcings. Lim and Chang (1983) have suggested that
the vertical shear of mean zonal wind plays an impor-
tant role in this respect.

The purpose of this paper is to investigate the effects
of basic mean zonal flow in calculating the steady re-
sponse of a linearized global atmosphere to tropical
heating.: The basic mean zonal flow has meridional and
vertical shear. The basic equations are presented in
section 2, and steady state solutions to a prescribed
heating distribution are discussed in section 3. For the
basic mean zonal flow, we assume a constant vertical
shear with a climatological zonal wind at the 500 mb
level. Numerical results of steady responses to a pre-
scribed equatorial heating in the model with and

without the vertical shear of zonal flow are presented .

in section 4. We will show that the presence of vertical
zonal-wind shear permits the coupling of the external
vertical mode with the internal vertical modes and a
significant response occurs in the external mode as a
- result -of exciting the “baroclinic” internal modes due

to tropical heating. The meridional structures of higher .

internal modes are equatorially trapped and their in-
tensities are less affected by the basic zonal flow. Since

- the meridional structure of the external mode is global,
the contribution of this mode in addition to the internal
modes produces a significant global response to tropical
heating. The direction of the basic zonal flow and its
meridional shear have a profound influence on the in-
tensity of planetary waves in the mid- to higher latitudes
generated by stationary tropical heating, as discussed
in section 5. The present finding will be useful in in-
terpreting the planetary wave response in the middle
to higher latitudes to tropical heating anomalies sim-
ulated in general circulation models, as further dis-
cussed in section 6.
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2. Basic equations

We adopt spherical coordinates of longitude A and
latitude ¢, increasing eastward and northward, respec-
tively, and modified pressure coordinates o, defined by

o=2p/p;—1, 2.1

where p and p; denote the pressure and a constant pres-
sure near the earth’s surface, respectively.

Zonal and meridional velocity components # and-
v, vertical ¢ velocity w (=do/dt), temperature T, and
isobaric height z are expressed by

u=ilg, o)+ u(\ ¢, 0,0) y

v=0v'(\,9,0,1)

w=u'(A\,¢,0,1) ,
T=Tyo)+ T, )+ TG, 0,0) |

2= 2(0)+ ) + 2N b, 031) )

2.2y

~where ¢ denotes time.

In (2.2), To(o) and zo(o) represent the standard at-
mospheric temperature distribution and the corre-
sponding isobaric height distribution. They satisfy the
hydrostatic equation.

dz0_ _

£ do
with g and R denoting, respectively, the earth’s gravi-
tational acceleration and the specific gas constant. Also,

i1, T and Zrepresent the basic zonal flow and are related
by the hydrostatic equation

RTo.

l+o @3

4z  RT
8% 1+o 24
and a gradient wind equation
. u 20z
2Q sing +— tan¢ +——0 2.5)
a adg _

with Q and a denoting, respectively, the earth’s angular
velocity and radius, which are treated as constants. In
(2.2), u', v', o, T" and z’ are perturbation quantities
representing the deviations from the standard atmo-
sphere and the basic zonal flow.

We write the system of linearized equations utilizing
the equations of horizontal motion, continuity and
thermodynamics

ou’ ., g 9z _

_5_29 singv +acos¢ oA !
av’ az'
a—+29s1n¢u +§£—cz‘ L 26
] 2(1+0)dz aC;

V.V =—"2
a2 -5



15 SEPTEMBER 1986

where
w ou v'ou du uv'tang ]
—_— — + F
! acosp ON ado w&a a A
u v 2uu'tang
=- - +
= a cosp oA a Fo
_Zif @ or vol\ «(«T T\
To\acosp N adp] To\l+e do
Q  Fr
==+
ToC, To
_ KTQ dTo
°“1+¢ do
1 du
V.-V'= —_t—
a cos¢{a)\ 6¢(v cos¢)] J

2.7)

In (2.7), T denotes a measure of the static stability of
the standard atmosphere with « = R/C,, where R and
C, stand for the specific gas constant and the specific
heat at constant pressure. The zonal and meridional
components of frictional force are given by F, and Fy.
- The rate of heating is denoted by Q. The thermal dis-
- sipation is treated separately and is denoted by Fr. The
perturbation temperature 7 is expressed by

g(1+0)dz

r=- R 3¢’

Next, we introduce dimensionless variables to pertur-
bation quantities

d=u'[{(gH,)"?, similarly for &

#=2'/H,

&= aw'/(gH,)'" ,  (2.9a)
T=T/T,

=2

where H, is a scaling height chosen as 10 km and T,
= gH,/R. We also introduce the following dimension-
less variables

a = 1u/(2as} coso)
H=Z/H,
o (2.9b)
7=T/Te, 170=To/Ts
S = Fo/ T*

Dimensionless forms of the momentum and thermal
dissipation terms and the heating term are expressed
by
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F\=F\[29(gH )",
= Fr/Q2QT,)
0= Q/Q2QC,Ty)

The system of equations (2.6) is then expressed in
the following dimensionless form

similarly for F,
(2.9¢)

;N

o 9z .
a—;—sm¢6‘+'y os¢a)\_ + F,
g~+sm¢u+7g——B+F¢ L, (2.10)
[+002\], o ¢_9C, i_,
6t Ba S 9o do S
where ’
ol da
A_'a}ﬁ (Za sing — cos¢ 8¢)
I S
“ax asmdm.
el VR A . 8
C 3 (a8>\+708¢)+5 (2.11)
=—(1+ 0)0Z/0c
Y =(gH4)"*/(2aQ)
6.=av.

J

In 4 and C of (2.11), we neglected from C, and C; in
(2.7) two vertical transport terms involving «', which
are small by scaling considerations.

3. Forced solutibns

Our objective is to obtain the steady state response

~ of the system (2.10)—(2.11) for a prescribed heating dis-

tribution Q. In K84 we investigated the same problem,
except the basic state was treated as an atmosphere at
rest. In that case, the terms 4, B and C were all zero
except the heating term Q. In the present case, we will
take into account the effect of basic zonal flow. The
case of no basic zonal flow was solved by using the
method of three-dimensional normal mode expansion.
This solution technique highlights the coupling effect
of vertical normal modes through the vertical shear of

.basic zonal flow.

We assume that the heating takes the form
0= Cpf(p)H(d’)Aseiﬂs 3.1

where A, represents the Fourier coefficient for wave-
number s expressed in units of K s™*. The vertical de-
pendence factor f{p) in the form of a parabola and the
meridional dependence factor H(¢) with an exponen-
tial decay are the same as (3.2) and (3.4) in K84.

In order to solve the system of equations (2.10), we
assume that #, ¥ and Z are expressed by
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N
i= § Tun()‘ , t)<1>n(a)
N
7= > =0, ¢,0)® , 3.2
E; V—— U )®(0) r (3.2)
|
=2 }\—2” (N 6, 0)2(0)
n=1

where ®,(0) satisfies the vertical striicture equation

d 1+ o0d®,
do\ S do

where A, = H,/D, and parameter D, represents the
equivalent height. Integer N denotes the number of
vertical modes. The characteristics and solutions of
(3.3) are discussed in detail in K84.

By substituting (3.2) into (2.10), multiplying by
®,(s), integrating the results with respect to ¢, and uti-
lizing the orthogonality of ®,(o), we obtain the system
of horizontal equations governing each vertical mode:

) +\®,=0, n=1,---,N (3.3)

0y . . Zn ]
—67 —sing?, + v, cospa =F,— ki,
3y t
it yYn—=F,~ ki, 5 4
LLryy v (3.4)
O ¥ V= Fm iy
ot J
where
Y=Y/ = (gD,)'/(2aR) (3.5)

and k. denotes a dimensionless form of the dissipation
coeflicient. Here, as in K84, the effects of momentum
and thermal dissipation are expressed through the
Rayleigh friction and Newtonian cooling parameter-
izations.

In (3.4), F,, F, and F, are expressed by

1
F,=VA, f_ lAcp,,(a)dﬂ

(3.6)

e —

1
F,=V\, f B®,(¢)do
-1 N

1 a .
~F,= f 9C P,(c)do
-100 J
The forms of 4, B and C are given in (2.11). A further
" manipulation of dC/ds by separating the heating term
from the rest yields

1
i)
-1\d¢ wTo

Qd

tI>,,(a)a'0'— 3.7
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where

ac - d [1+00Z a9 [yor
(af)WTQ ax[aa( S 6;)] ”aa(sa¢) 38)

In deriving the last term of (3.7), we assumed that O
= 0 at 0 = 1. We assume that the zonal flow is ex-
pressed by
a9, 0) = ag($)(1 — Ao)
N
= ag(¢) 2 B®i(0), 3.9

=1
where ag(¢) denotes the dimensionless basic-flow an-
gular velocity at the level ¢ = 0, which is equivalent
to the 500 mb level. The vertical shear is assumed to
be constant, with A denoting the dimensionless shear
parameter. The linear wind profile is then expanded
by the vertical structure functions. The coefficients of
the expansion are given by

1
Bi= f_l (1 —Ao0)®/(0)do. (3.10)

We seek the steady state solutions of (3.4) in response

to a prescribed heating Q. By introducing the vectors
Fo=(F.,F,,F)",

W, = (tn, 0, 2,7, (3.11)

the steady state system of (3.4) can be represented by

L.W,=F,— kW,, (3.12)

where L, is the linear differential matrix operator as
defined by (2.22) in K84.

The solutions W,, of (3.12) will be sought by ex-
panding W,, in terms of Hough vector functions

W.(¢) = E W (n)H ‘(d),n) - (3.13)
r=1
where
H,(¢; n) = [US(¢; n), =iV, (s n), Z(¢;m)]"  (3.14)

using the same notation as in K84. The summation
for serial number r from 1 to R should contain all
meridional modes of the westward- and eastward-
propagating gravity waves and rotational waves. The
advantage of adopting the Hough expansion is that the
matrix operator L,H,’ forms the eigenvalue-eigen-
function problem

[Ln— v’ (m]H($;n) =0, (3.15)
where »,* denotes the dimensionless frequency (= fre-
quency divided by 29).

Substituting (3.13) into (3.12), integrating the re-
sulting equation with respect to u (= sing) between u

= =1 after multiplying the complex conjugate H}*,

and utilizing the fact that H,® and »,° satisfy (3.15) and

the orthogonality of H,’, we obtain
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1
v + kWt = [ an~Hi7"(¢; ndu (3.16)

for each vertical mode n=1, 2,- - -, N.

The rlght-hand side of (3. 16) must be expressed ex-
plicitly in terms of the vertical expansion (3.2) and the
horizontal expansion (3.13) by utilizing the relation-
ships (3.6)-(3.9). The result is

N R
Wikn)+ 2, 2 oy (n, YW, (k)

k=1r=1

[ivid{n)+ k.

1
=—A450, f H@OZH$mdw (3.17)

forr=12-+++,Ron=1,2+++, N. The form of
matrix bj(n, k) and the forcing function Q, are given
in the Appendix.

Once W/ is determined from (3.17), the three-di-
mensional solutions are represented by

[N ¢,0), V(N ¢, 0),2'(N, b, 0)]"

N R
= 2'S, 2 WS(mH,(¢; n)®,(a)e™,

n=1

(3.18)

r=1

where §,, denotes the scaling matrix

(gD,)"? 0 0
0 (D)? 0 |. (319
0 0 D,

As in K84, the globally averaged total energy 7E is
expressed by

S,=

___ N R
TE= 2 Z(TE/)n,

n=1 r=1

(3.20)

where

(TE, ,,=%gD,,W,SW,S'. (3.21)

4. Numerical results

In the numerical results which follow, we consider
a heating pattern with zonal wavenumber 2. We adopt
the same symmetric heating distribution with respect
to the equator as discussed in K84, Figure 1 shows the
horizontal distribution of Q/C, without the vertical de-
pendence term f(p) in (3.1). The contour interval is
0.4 X 107> K s7! (=0.346 K d7!). The vertical depen-
dence term f{ p) is parabolic with respect to the pressure
with f{p) being zero at 1000 and 200 mb. The maxi-
mum value of f(p) occurs at p = 600 mb and is 30/16,
and this factor should be multiplied to obtain the heat-
ing or cooling at its maximum level.

We use the first six vertical modes as described in
K84. For the meridional resolution, we selected a total
of 17 modes, consisting of 16 rotational modes plus
the Kelvin mode for each vertical mode. It was shown
in K84 that the gravity modes, except the Kelvin mode,
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FIG. 1. Horizontal distribution of Q/C, without the vertical
dependence term f{p) in (3.1).

do not play important roles for slow heating. In the
present case, we consider only the stationary response
to heating. Therefore, we can neglect the contribution
of gravity modes except for the Kelvin mode. The
number of rotational modes is decided based on the
spectral distribution of atmospheric energy (Tanaka,
1985) in terms of rotational modes. The rotational
modes include both the symmetric and antisymmetric
components with respect to the equator. Although the
heating pattern used in this calculation is symmetric
with respect to the equator, responses to a symmetric
heating are not going to be symmetric, since the basic
zonal flow in the calculation is not necessarily sym-
metric.

a. Case of no basic zonal flow

In this case, we will reproduce essentially the same
result given in K84 by considering the total of 17 me-
ridional components per vertical mode instead of 36
meridional components per vertical mode used in K84.
Figure 2a shows the flow pattern at the 870 mb level
by superimposing the velocity field in arrows over the
isobaric height in meters. The wind field indicates a
low-level convergence (divergence) over the area of
heating (cooling). We notice a strong zonal flow in the
equatorial region. Away from the equator, the flow is
quasi-geostrophic in relation to the height field. Al-
though low pressure prevails over the heating areas,
the maximum low pressure does not appear over the
equator, but is shifted outside the tropics.

Figure 2b shows the flow pattern at the 227 mb level.
The flow at this level is generally opposite to that at
the lower level. This reflects the fact that the forced
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motion is dominated by the internal mode whose ver-
tical profile is typically “baroclinic.” Both Figs. 2a, b
agree well with Figs. 3a, b, respectively, of K84. This
reflects the fact that the contributions of gravity waves
except the Kelvin wave in each vertical mode are neg-
ligible in a slow forcing problem. In fact, the present
model carries 16 rotational components instead of 12
in K84. Therefore, Figs. 2a, b are more accurate than
Figs. 3a, b of K84, despite the fact that the number of
the total meridional components used in the. present
calculation is smaller than that used in K84,

b. Case of DIJF basic zonal flow with vertical shear
A=1in(3.9)

We show now the resuits of calculations including
the zonal flow with vertical shear parameter A = 1 in
(3.9). This means that the zonal flow is linear with
respect to a vertical coordinate ¢ with a(¢) = 0 at the
surface level, p = p,. As the meridional profile of the
zonal flow ay(¢), we choose the climatological zonal
wind distribution at 500 mb for December, January
and February (DJF) shown in Fig. 3, which was used
in Kasahara (1980).

Figures 4a, b show the flow patterns for this case at
the 870 and 227 mb levels, respectively. Comparisons
of Fig. 4a with Fig. 2a and Fig. 4b with Fig. 2b reveal

a number of features unique to the case of the DIF

zonal flow with vertical shear A = 1. Tropical responses
of the equatorial heating are generally similar in both
cases, but the tropical response in the present case is

LATITUDE North

South

-5 (o] 5 10 15 20 25
ZONAL VELOCITY (ms™)

FiG. 3. Climatological zonal wind distribution at 500 mb. The
solid line shows the distribution for December, January, February
(DJF) and the dashed line for June, July, August (JJA). The source
of data is given in Kasahara (1980).
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much more confined to the low latitude region than.
those in the case of no zonal flow. Again, the tropical
response to the heating is “baroclinic,” i.e., the upper-
level flow is generally opposite to the low-level flow.
The most distinctive aspect of Figs. 4a, b is that the

equatorial heating also produces a significant response
in the middle to higher latitudes with the inclusion of
zonal flow. Moreover, the midlatitude response of the

_equatorial heating is “barotropic,” unlike the case of

the tropical response. Notice that the midlatitude re-
sponse is stronger in the Northern Hemisphere than
in the Southern Hemisphere. We will discuss this aspect
further in section 5. '

General features of the isobaric height response to
the equatorial heating seen in Figs. 4a, b agree with
these found in Fig. 12 of Webster (1982), apart from
obvious differences in the two calculations due mainly

_to the different heating distributions; one is a local

forcing and the other a wavenumber 2 forcing.

¢. Case of DIF basic zonal flow with no vertical shear
A=0in(3.9)

In order to understand the impact of the basic zonal
flow, we will show the results of calculations using the
DJF basic flow without vertical shear A = 0 in (3.9).

. Figures Sa, b show the flow patterns at the 870 and

227 mb levels, respectively, in this case. Comparison
between Figs. 4 and 5 indicates that a major difference
is the absence of the middle to higher latitude response
in the present case. Also, the low-level tropical response
in the case of no vertical shear is much weaker than
that in the DJF flow with vertical shear, while the up-
per-level tropical response is almost the same in its
intensity in both cases.

d. Energy considerations

Because rather drastic changes occurred in the case
of no vertical shear compared with the case of A = 1,
it is instructive to show the spectral distribution of total
energy (TE,”), defined by (3.21) for both cases. Figure
6a shows this spectral distribution against the meridi-
onal index r for each vertical mode » = 1 to 6 for the
case of A = 1. The meridional index r = —1 refers to
the Kelvin mode, and » = Q to 15 the rotational modes.
The distribution for the external mode (n = 1) is shown
by a solid line connecting the dots and that for the
third internal mode (n = 4) by a dashed line connecting
the triangles. Because the departure of the DJF zonal
flow distribution from latitudinal symmetry with re-
spect to the equator is small, the amounts of energy in

"antisymmetric modes r = 0, 2, 4, etc. are relatively

small. The amounts of energy in the external mode,
shown by the solid line, are much less than those in
the lower vertical modes in a lower meridional index
regime (say r = —1 to 3), but the amounts of external
mode energy in the higher meridional index regime,
say beyond r = 4, are comparable to or even higher
than those of the internal vertical modes.
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Figure 6b shows the same as Fig. 6a, except for the
case of DJF basic flow without vertical shear. The most
noticeable changes in Fig. 6b are that the amounts of
the external mode energy are considerably decreased,
while those of higher vertical modes are more or less

unchanged.
Figure 7 shows the total energy summed with respect
to meridional index from r = —1 to 15 as a function

of vertical mode 7 in the abscissa. The heavy dashed
line shows the case of DJF basic flow with vertical shear
A = 1 and the thin dashed line the same DJF flow but
without vertical shear. In addition, the case of no zonal
flow is presented by a solid line. It is clear that the
amounts of total energy for the vertical modes n = 1
to 3 increased substantially due to the vertical shear,
while those for the vertical modes # = 4 to 6 are hardly
affected. It is of interest to find, as far as the total energy
distribution is concerned, that the case of no zonal flow
is similar to the case of DJF basic flow without vertical
shear. '

e. Effects of the zonal flow vertical shear

Both Figs. 6 and 7 indicate clearly a profound effect
of the vertical shear of zonal flow. The key factors re-
vealing the effects of the vertical shear of zonal flow
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FIG. 7. The total energy summed with respect to the meridional
index from r = —1 to 15 as a function of vertical mode 7 in the
abscissa. The three cases of no zonal flow, DJF flow with vertical
shear (A = 1), and DJF flow without shear (A = 0) are shown by the
solid, heavy dashed, and thin dashed lines, respectively.
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are 1) the expansion coefficients 3; defined by (3.10)
and 2) the triple-interaction coefficients L;, defined
by (A2). v

Concerning the first factor, Fig. 8a shows the log
distribution of 8, for the vertical linear profile 1 — ¢ as
a function of vertical mode /. In the present calculation,
we used only the first six vertical modes to expand the
vertical profile 1 — ¢. The dashed line in Fig. 8b shows
the composite of the vertical profile with six vertical
modes [ = 1 to 6. It approximates the linear profile
reasonably well except for the lower atmosphere. It is
seen from Fig. 8a that the external mode (/ = 1) con-
tribution is largest and the magnitude of §; drops
sharply as / increases. Hence, the neglect of the last
three vertical modes may be justified for approximation
of the linear wind profile.

Concerning the second factor for the A = 1 case, the
values of the triple-interaction coefficients L, for up
to 6 in each vertical mode, /, n or k are shown in Table
1. The largest contribution in each / for the external
mode (n = 1 row) is denoted by an asterisk. In all cases
this maximum contribution occurs at / = k, and the
order of magnitude is unity. For n = 1, the rest of the
contributions are negligibly small. This means that the
vertical shear interactions have all the same signs and
only the self interactions contributed to n = 1. The
situation is different for a higher vertical mode. For
example, we denote the largest contribution in each /
for the vertical mode » = 4 by a dagger. The largest
contributions for # = 4 appear at / = 1 and k = 4
(similarly, / = 4 and k = 1), at / = 2 and k = 3 (similarly,
/=3and k=2)and at/ = 5 and k = 6 (similarly, /
= 6 and k = 5). This means that cross interactions are
involved in addition to self interactions. In fact, the
rest of the contributions for n = 4 are not so small.
Hence, the contributions to » = 4 come from various
interactions and the sum of all contributions may tend
to be small due to cancellation. These findings may
explain why the vertical shear so strongly affects the
first few vertical modes, but not the higher vertical
modes seen in Fig. 7.

It is clear that the effects of the zonal-flow vertical
shear intensify the energy in the lower vertical modes
(nctably the external mode) through coupling between
the lower and higher vertical modes. Earlier, Holton
(1971) noted that the structure of the atmospheric per-
turbation in response to a given heating pattern is very
sensitive to vertical shear of the zonal mean wind. The
present finding also agrees with that of Lim and Chang
(1986) in which the vertical shear of the zonal flow
provides a mechanism of energy transfer from the in-
ternal mode motions to the external mode motions.

FIG. 8. (a) The log distribution of the magnitude of 8, for the linear
vertical profile 1 — ¢ as a function of vertical mode /. (b) The solid
line shows the linear vertical profile 1 — o, which can be reproduced
by the expansion with nine vertical modes. The dashed line shows
the representation of the profile with the first six vertical modes.
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TABLE 1. The values of the triple-interaction coefficients Ly

JOURNAL OF THE ATMOSPHERIC SCIENCES

defined by (A2).
k

n 1 2 3 4 5 6

I=1
1 075* —0718 001  —0.02 0.00 0.00
2 -0.18 1.08 0.14 0.03 003  —0.02
3 001 014 0.87 0.10 005 —0.04
4 —002 0.03 0.10 073" 006 —0.03
5 0.00 0.03 0.05 0.06 070  —0.05
6 000 —002 —004 —003 —0.05 0.68

I=2
1 —0.18 1.08*  0.14 0.03 003  —0.02
2 108 -221 -090 -032 —020 0.7
3 014 -090 075 —057 —036 . 0.28
4 003 —032 -057" -003 —027 0.21
5 003 —020 —036 —027 0.14 0.18
6 —0.02 0.17 0.28 0.21 0.18 0.20

I=3
1 001 0.14 087  0.10 005  —0.04
2 014 -090 —075 —0.57 —0.36 0.28
3 087 —075 0.55 0.10  —025 0.23
4 010 057 0.1 0.07 023 —0.03
5 005 —036 —025 023 —002 —020
6 —0.04 0.28 023 -003 —020 —021

I=4
1 —0.02 0.03 0.10  073* 006 —003
2 003 -032 —057 —003 —027 021
3 010 —057 0.10 0.07 023 —003
4 073 -003 007 —043 —029 —023
5 006 —027 023 -029 —0.20 0.32
6 —0.03 021 —003 —-023 0.32 0.00

=5
1 000 0.03 0.05 0.06 0.70* —0.05
2 003 -020 —036 —027 0.14 0.18
3 005 —036 —025 023 -002 —020
4 006 027 023 -029 —0.20 0.32'
5 070 0.14 —002 —0.20 0.17  —0.09
6 —005 018  —020 032  —0.09 0.11

1=6
1 000 -002 —004 —003 —0.05 0.68*
2 -002 0.17 0.28 0.21 0.18 0.20
3 —0.04 0.28 023 —003 020 —021
4 —003 021 -003 —023 032! 0.00
5 —0.05 0.18  —0.20 032  ~0.09 0.11
6 0.8 020 021 0.00 0.11 0.19

* Denotes the largest contribution in each / for the external node
(n=1row).

¥ Denotes the largest contribution in each / for the vertical mode
n=4.

5. Horizontal propagation of stationary waves

In the previous section, we saw the response of plan-
etary waves in the mid- to higher latitudes to stationary
heating in the equatorial region in the case of DJF zonal
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flow with vertical shear A = 1. Moreover, the midia-
titude response is stronger in the Northern Hemisphere
than in the Southern Hemisphere. In the case of DJF
zonal flow without vertical shear (A = 0), however, we
find little midlatitude response. It is well known that
the presence of a westerly zonal flow whose intensity
is less than the critical value U. is favorable to the me-
ridional propagation of stationary planetary-scale
waves, while the propagation is prohibited in an easterly
regime (Charney, 1969). According to Dickinson
(1980), the critical value is given by

U,~300m s '/(s®+3), 5.1

where s is the zonal wavenumber. The values of U,
become 75, 43 and 25 m s™! for s = 1, 2 and 3, re-
spectively. Since we are concerned with s = 2 in this
paper and the maximum westerly speed in the DJF
profile is about 22 m s™!, we can expect that planetary
wave 2 generated by the tropical heating will be able
to propagate into the midlatitudes. Although the use
of the word “propagation” may not be appropriate for -
stationary wave solutions, one should look upon it as
the process of reaching a stationary state when ¢t > oo
in an initial value problem under a stationary forcing.

Because we found little midlatitude response for the
DJF zonal flow without vertical shear (A = 0), a ques-
tion may arise whether this result is in contradiction
with the idea of meridional propagation of planetary-
scale waves. We explore this question in this section.

Since the meridional structures of the higher internal
modes are equatorially trapped, while those of the ex-
ternal mode (and also lower internal modes) are global,
we first examine the horizontal flow patterns associated
with the vertical mode ». Figure 9a shows the horizontal
flow pattern of the external mode n = 1 in the case of
DIJF zonal flow with vertical shear A = 1. Solid (dashed)
lines denote positive (negative) isobaric height contours
with intervals of 5 m. Arrows represent wind vectors
with the velocity scale of 2.5 m s™! shown at the lower
right-hand corner. Features of Fig. 9a are that the re-
sponse to equatorial heating appears strongest in the
higher latitudes and the tropical response is visible only
in the wind field. Moreover, the wind response in the
tropics does not appear to be as organized as in the
higher latitudes.

Figure 9b shows the same as Fig. 9a, except for the
third internal mode (n = 4). Note the velocity scale is
10 m s™!. Recall that the vertical mode # = 4 is one of
the most active components, together with n = 5, as
seen in Fig. 7. The tropical responses in the height and
wind fields are reminiscent of those shown by Gill
(1980). The height field shows a weak midlatitude re-
sponse, and the wind field associated with it is very
weak. Figures 9a, b are instructive in understanding
what is happening in Figs. 4a, b. It is clear that the
“barotropic” response in the higher latitudes is gen-
erated mainly by the external mode n = 1 with some
contributions from n = 2 and n = 3. On the other
hand, the “baroclinic” response in the tropics is gen-
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erated by the higher internal modes, mostly n = 4 and
n=>5.

Let us then look at the same modal structures for
the case of DJF zonal flow without vertical shear A
= (. Figure 10a shows the same as Fig. 9a, except for
this case. Note that the contour interval is 0.5 m, a
factor of 10 smaller than that in Fig. 9a, though the
overall contour pattern is similar to that of Fig. 9a. It

is clear that the meridional propagation of planetary

waves generated by the tropical heating has indeed oc-
curred in this case. However, due to the fact that the
~ intensity of external mode n = 1 was weak, the response
of the mid- to higher latitudes in the composite patterns
shown in Figs. 5a, b is overshadowed by the strong
local responses of higher internal modes. Figure 10b
shows the same as Fig. 9b, except for the DJF case
without vertical shear A = 0. Although the tropical
response in this case is somewhat weaker than the DJF
case with vertical shear A = 1, the response of this
higher internal mode is less affected by the presence of
zonal flow as implied also from Fig. 7.

We have seen that the meridional propagation of
planetary waves occurs in the basic zonal flow, regard-
less of the wave 1nten51ty, as long as the basic zonal
flow configuration is favorable. Moreover, the ability
of planetary waves to propagate meridionally in the
zonal flow depends also on the vertical mode. In order
to examine the question of propagability somewhat
more quantitatively, we will resort to the concept of
refractive index.

By applying to the stationary system of equation
(2.10) a quasi-geostrophic analysis similar to that by
Matsuno (1970), we obtain

- 4 sin%¢ 9 [cos¢ 92 &z
an|” cos¢ 3¢ \sin2p ¢/ cos’p IN?
0q_v 97_

+sin2¢i9_ 1+09% 4
vy do\ S do d¢ cosd AN

Here, we omitted the contributions of momentum dis-
sipation and heating. Moreover, we will consider the
basic zonal flow without vertical shear A = 0, so that
the basic flow angular velocity a will be replaced by
ay(¢). We have seen that the constant vertical shear of
zonal flow did not affect very much the meridional
propagation of energy. In the case of A = 0, the me-
ridional gradient of the potential vorticity of basic flow
9q/d¢ (in the dlmenswnless form adopted in this paper)
becomes

v &%

(5.2)

dq _d(  dag
d¢—cos¢ 4o (cos¢ )

As adopted in (3.2), we express Z of (5.2) by the
vertical modal expansion

—2ap s1n¢) (5.3)

Z= E . Zd(\, $)21(0) (5.4)

n
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and introduce the expression

£dN, 6)= > ha(p)e™. (5.5)
After substitutions of (5.4) and (5.5) into (5.2), utili-

zation of the Fourier transform and the vertical struc-
ture equation (3.5), we obtain

_ [sin’p d (cosp dh,’\ s> | sin ¢
?[ao[cosg) d¢ (sin2¢ dd)) cos’¢ b~ ¥ 7 M ]
1 dg h,’ 1
XS Bt g <I>] 0.

By multiplying the above equation by &,,, integrating
the resultant equation with respect to ¢ from —1 to 1,
and utilizing the orthogonality condition on &, dis-
cussed in K84, we obtain

sin’¢ d (cos¢ dh,
cos¢ do \sin’p do

+R,°h,*=0, (5.6)
where ,
1 dg sin 20 s
‘= - 7
apcospdp 2 M 2 5.7)

COs“¢
denotes an index of refraction squared.

If R’ <0, A, will have an evanescent character. In
order to observe a significant response in mid- to higher
latitudes to tropical heating, the zonal flow configu-
ration must be in such a condition that R, > 0. The
zonal wavenumber s appears only in the last term of
(5.7), which is negative, so that longitudinally small-
scale disturbances are not favorable to meridional
propagation. Likewise, the inverse of the equivalent
height A, (=H,/D,) appears only in the second term
on the right-hand side of (5.7) and this term is negative.
Hence, disturbances with a small equivalent height are
also not favorable to meridional propagation. The first
term on the right-hand side of (5.7) represents a con-
tribution of the zonal flow. Since cos¢ will usually
dominate in the expression of dg/d¢ in (5.3) in lower
latitudes, horizontal energy propagation will not be ex-
pected in the region of easterlies (ap < 0).

Figure 11a stipples the latitude ranges in which R,°
< 0 for each vertical mode n = 1 to 6 in the case of
DJF zonal flow. Since the heating distribution is sym-
metric and the stippled region in the tropics (in each
n) is shifted southward, it is expected that meridional
energy propagation is more active in the Northern
Hemisphere than in the Southern Hemisphere. Since
this analysis is applicable to the case of no vertical shear
A = 0, let us interpret the modal structure of n = 1
shown in Fig. 10a in light of the R,’ discriminant for
n = 1 shown in Fig. 11a. We see on Fig. 10a that a
strong height response appears in the Northern Hemi-
sphere around 70°N, which is close to the northern
edge of positive R, in n = 1 on Fig. 11a. On the other
hand, we see on Fig. 10a that the Southern Hemisphere
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profile with A = 0.

response, though it is weak, extends as far as 80°S.
This situation may be expected by the fact that for n
= 1 on Fig. 11a the southern edge of the positive R,’
reaches 80°S, though the positive R,* region is inter-
rupted by the negative R,® between 60° and 72°S. For
vertical mode n = 4, the R,’ discriminant shown in
Fig. 11a appears useful in explaining the maximum
response around 20° in both the Northern and South-
ern hemispheres.

Figure 11b shows the same as Fig. 11a, except for
the case of June, July, August (JJA) zonal flow shown
in Fig. 3. The negative R,’ region in the tropics (in each
n} is shifted northward. Hence, one expects a stronger
response in the Southern Hemisphere to the symmetric
heating used in the present study. However, the North-
ern Hemisphere midlatitude response would reach a
latitude higher than the corresponding latitude to which
the Southern Hemisphere midlatitude response would
reach. This is expected from the R,’ discriminant pat-
tern for n = 1 and n = 2 shown in Fig. 11b. _

Figures 12a, b show the flow patterns at the 870 and
227 mb levels, respectively, the same as Figs. 4a, b
except for the JJA zonal flow with vertical shear A
= 1. We see that the midlatitude response is greater in
the Southern Hemisphere than the Northern Hemi-
sphere, but the midlatitude response reaches higher in
latitude in the Northern Hemisphere than the Southern
Hemisphere. These observations are consistent with
what would be expected from Fig. 11b.
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6. Summary and discussion

The response of planetary waves to stationary tro-
pospheric tropical heating was investigated using a
stratified global atmospheric model linearized with re-
spect to a basic mean zonal flow. The method of three-
dimensional normal mode expansion was used to solve
the basic equation in order to reveal modal character-
istics of the solutions in the vertical direction as well
as in the horizontal direction.

The basic mean zonal wind was represented by the
product of meridional and vertical dependence terms
in order to examine their roles separately. Climatolog-
ical zonal wind distributions at the 500 mb level for
December, January and February (DJF) and June, July
and August (JJA) were used for the meridional depen-
dence. The linear vertical profile with zero velocity at
the 1000 mb level was adopted, except for the case of
no vertical shear.

As the tropical heating distribution, we assumed a
wavenumber 2 dependence in longitude and a sym-
metric bell shape in latitude with the maximum at the
equator. The vertical distribution of heating was par-
abolic in pressure p with zero heating at p = 200 and
1000 mb. v

Without the basic zonal flow, the internal vertical
modes whose equivalent heights are on the order of a
few hundred meters were favorably excited, but the
response of the external mode (“barotropic” mode) was
relatively small, in agreement with the conclusion
of K84, :

With inclusion of the basic zonal flow, the vertical
shear of zonal flow permits the coupling of the external
mode with the internal vertical modes. A significant
response was obtained in the external mode through
this coupling as a result of exciting the “baroclinic”
internal modes by tropical heating. The present finding
that the vertical shear of zonal flow provides a mech-
anism of energy transfer from the internal mode mo-
tions to the external mode motions is in agreement
with Lim and Chang (1986).

The local response to tropical heating, such as an
anticyclonic pair in the upper troposphere astride the
equator, is explained by the excitation of the internal
vertical modes. Their meridional structures are equa-
torially trapped, and the intensity of the response is
less affected by the basic zonal flow. Hence, the findings
of Gill (1980) are applicable to more general situations
of the reference atmosphere with mean zonal flow.

Since the meridional structure of the external mode
is global, a significant response of the external mode
to tropical heating is not confined to the tropics. The
direction of the basic zonal flow and its meridional
shear has a profound influence on the meridional en-
ergy propagation of planetary waves as envisaged by
Charney (1969). Our results show that the mid- to
higher latitude response to tropical heating is mostly
barotropic and that the remote response is stronger in
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the Northern Hemisphere than in the Southern Hemi-
sphere in the case of DJF zonal flow, and the reverse
occurs in the case of JJA zonal flow. The propagability
of zonal mean flow in order to produce a remote re-
sponse was analyzed in section 5 using the concept of
refractive index.

The present findings may serve to fill in a missing
link in the dynamical theory of atmospheric telecon-
nections—correlations in atmospheric circulation
anomalies over widely separated regions of the earth.
Blackmon et al. (1983) investigated the response of a
general circulation model (GCM) to warm sea surface
temperature anomalies in the equatorial Pacific east of
the dateline. Their results indicate that the mid- to
higher latitude responses as well as the local response
agree, in many respects, with the observed atmospheric
anomaly pattern discussed in Horel and Wallace

(1981).

- Branstator (1985) examined the solutions of a linear,
steady, global barotropic model under a prescribed
tropical forcing. When a long-term mean zonally vary-
ing basic flow obtained from the GCM experiment of
Blackmon et al. was used to linearize the barotropic
vorticity equation, Branstator (1985) found that the
midlatitude response of the GCM was well reproduced
by the simple model. Since Branstator’s (1985) model
is barotropic and steady state, the midlatitude response
to a prescribed tropical forcing can be interpreted by
the mechanism of horizontal energy propagation in a
barotropic atmosphere with meridional and zonal
structure (Webster and Holton, 1982; Branstator,
1983). It is important to note here that, although no
specific reference is made to the equivalent depth in
the vorticity equation used by Branstator (1985), his
formulation assumes that a prescribed tropical forcing
- is given to the Haurwitz mode (corresponding to the
case of infinite equivalent height), which is essentially
what is referred to as the external mode here.

When equatorial waters are unusually warm, such
as during El Nifio, cumulus convection tends to be
anchored over the warm water, releasing latent heat of
condensation that gives rise to thermal forcing. Plan-
etary-scale waves will be generated by the anomalous
heating and propagated into the midlatitudes. In order
for this scenario to describe the process of atmospheric
teleconnections, it is necessary to explain the excitation
of the external mode by the anomalous heating as pos-
tulated by Branstator (1985). The present study suggests
that the vertical shear of the basic zonal flow plays an
important role in energy transfer to intensify the ex-
ternal mode as the result of exciting “baroclinic™ in-
ternal modes by tropospheric tropical heating.

As an additional dynamical mechanism responsible
for atmospheric teleconnections, Simmons et al. (1983)
. demonstrated that the teleconnection pattern appears
as a preferable normal mode of barotropic instability
in the zonally varying mean basic state. Therefore, the
basic state provides energy for the disturbances. Al-
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though anomalous tropical forcing may not be the only
way of exciting the preferred wave patterns, it can be
looked upon as an effective source of excitation for the
disturbances. Simmons et al. (1983) hypothesize that
teleconnection patterns resembling unstable normal
mode structures are favorable to excitation, because
they are able to extract energy from the basic state.
Therefore, one might expect to see evidence of these
normal-modelike structures in lonig-term statistics.

It is not the intention of this paper to review the
mechanism of atmospheric teleconnections. The ques-
tion of barotropic and baroclinic instability in dis-
cussing the response of a time-dependent, baroclinic
atmosphere to tropical thermal forcing is an important
issue in the framework of a nonlinear model (Grose et
al., 1984) that should be investigated separately. Nev-
ertheless, it may be pertinent to comment here that
application of the three-dimensional normal mode ex-
pansion to solving a time-dependent, baroclinic model
of the atmosphere would be helpful in interpreting the

‘modal characteristics in spectral space in the vertical

direction as well as in the horizontal. A preliminary
study based on a particular basic zonal wind distri-
bution used by Simmons and Hoskins (1976) and
Frederiksen (1978) shows that the three-dimensional
normal mode formulation can be applicable to the
problem of baroclinic-barotropic instability over the
sphere. '
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APPENDIX

Forms of Matrix b}, (k, n) and Forcing Function Q,

A2l ' ‘
b n, k) = EL,M(X'!) o[ [s&o(¢){Ur’(¢; WUHS:n)
1 k -1
x,,
1 280(6) sing { V(s U@ m) + U6 KV, m)}

_ dao(¢)
de

)\ 1/2
+ VA& K)Vid;n) + (—") Z(b; K)ZA s n)}

1_
cosp V(¢ kYU ¢; n) + 5 ao(d)

X sing cosé ¥ (e; KVZo; n)v%]du, (A1)
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where u = cosd,

1
Lu= | #(@®ode  (AD
J‘ f(a) d<I> (A3)
18(0) da
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