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1. Derivation of Montgomery potential for isopycnic layer model  

The Montgomery potential is the potential energy term of the Bernoulli function. The 

fluid particle tends to follow the constant Montgomery potential when the kinetic energy 

term in the Bernoulli function is of much less importance. The Montgomery potential can 

be also recognized as the pressure deficit caused by the fact that the water column above 

the layer k has a density that is different from the one of this layer. The Montgomery 

potential is defined as  

 

gzpM                                                          (1.1)  

 

Consider a hydrostatic ocean, which is divided into N layers of different densities. 

Neglecting the atmospheric pressure and using Boussinesq approximation, more practical 

formula for the Montgomery potential is  
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where 1 represents sea surface elevation, and k the layer interface elevation. The 

constant terms are removed from (1.2) because they do not contribute on the horizontal 

gradient. Equation (1.2) can be rearranged to the following recursive equations. 
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Since the isopycnal layer models use pressure rather then interface elevation or thickness 

variation, equation (1.5) can be written in term of pressure variable. 
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where the pressure variables are defined at the layer interfaces, i.e., 
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Note that, in (1.6) the last term (surface elevation term) can be neglected since it is 

multiplied with (k+1 - k). Then the Montgomery potential can be now written as  

 

  kkkkrkr pgMM    11                                      (1.8) 

 

Suppose that the surface elevation is not known, but the bottom pressure is known. Then 

the Montgomery potential at the bottom is, by definition,  

 

gHpM rbNr                                                    (1.9) 

 

where the bottom pressure is defined as  
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Now, we can derive the Montgomery potential, starting from the bottom, using (1.2) and 

(1.9). 
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Using the known Montgomery potential at the bottom (1.9), we get  
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Neglecting the small term in the last expression of (1.12), we get the final form of the 

Montgomery potential to be used in the model. 
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2. Mode splitting of Hallberg (1997) 

 

In Hallberg (1997), the barotropic Montgomery potential was obtained by vertically 

integrating (1.13) from top to the bottom of the ocean. However, we are interested in the 

vertical average of the horizontal gradient, which can be written as  
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Note that the contribution of surface elevation in the pressure variables in the last term is 

very small, due to the multiplicative factor (k+1 - k). Therefore it is neglected. 



 

3. Mode splitting of Bleck and Smith (1990). 

 

In Bleck and Smith (1990), it was assumed that the divergence caused by external mode 

in each layer is proportional to that of the external mode. Therefore, the pressure was 

expressed in the following way. 

 

  1pp                                                       (3.1) 

 

where  is dimensionless, and it represents the external mode component of the pressure 

field. Substituting this equation into (1.9) gives, 

 

  gHpM rbNr   1                                            (3.2) 

 

where pb is non-time varying and can be written as  
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The baroclinic Montgomery potential at the bottom must be also non-time varying, and it 

is defined as  

 

gHppMM rbbNrNr                                       (3.4) 

 

In any case, substituting (3.1) into (1-13), the Montgomery potential for each layer 

becomes 
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Note that (k+1 - k) terms are neglected since they are small.  



 

The baroclinic Montgomery potential is therefore defined as  
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4. Major differences between Hallberg (1997) and Bleck and Smith (1990) 

 

It is obvious that the barotropic Montgomery potential used in Hallberg (1997) and Bleck 

and Smith (1990) are very much different. Hallberg (1997) defined the barotropic 

Montgomery potential as “depth averaged”, which is consistent with the definition of 

barotropic transport. In Bleck and Smith (1990), on the other hand, the barotropic 

Montgomery potential is defined as “the bottom pressure”. Due to the inconsistency 

between the definition of “barotropic Montgomery potential” and “barotropic transport”, 

Bleck and Smith (1990) had to introduce fictitious terms, u* and v* in the momentum 

equations in order to counterbalance this inconsistency. 

 

It is apparent that the depth average of the baroclinic Montgomery potential (3.6) is non-

zero. Therefore, equations for u* and v* can be derived. 
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where M is the baroclinic Montgomery potential defined in Hallberg (1997) in which the 

depth average is zero. Using  (1.13) and (2.1), we get the equation for u*. 
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Following the same method, v* can be also obtained. 

 



In MICOM and also in HYCOM, u* is kept constant while the barotropic Montgomery 

potential and momentum are integrated in time. Obviously, u* term contains barotropic 

part as well as baroclinic part of the Mongomery potential. Since u* contains fast mode, it 

has to be also updated during the calculation of fast mode (barotropic mode). This is a 

flaw in MICOM and HYCOM, and as pointed out by Higdon and Bennett (1996) and 

also by de Szoeke and Higdon (1997), numerical instability occurs at all wavelengths for 

any size time step due to the inexact splitting between the fast and slow modes. Hallberg 

(1997) pointed out that heavy temporal smoothing is required in MICOM and HYCOM 

in order to remove this numerical instability. Hallberg (1997) also pointed out that mass 

conservation for each layer may not be achieved due to this flaw for long term time 

integration. 

 

5. Application to two–layers model 

 

We understand that u* and v* in MICOM and HYCOM are basically pressure gradient 

terms and plays very important roles. These terms are diagnostically determined at each 

time step by the equation stating that the depth averaged baroclnic transport must be zero.  

 

Now, let’s see how the model works when the data are assimilated. To understand, two-

layer model is a useful too. Let’s assume geostropy to further simply the dynamics. For 

two-layer model, the zonal momentum equations are 
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Multiplying h1 and h2 to (14) and (15), respectively, we get the zonal momentum 

equation for the external mode: 
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Subtracting (5.3) from (5.1) and (5.2) yields zonal momentum equations for internal 

mode: 
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According to Bleck and Smith (1990), the barotropic Montgomery potential is the bottom 

pressure, i.e., 
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Now using (3.6), the baroclinic momentum equations become 
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By the definition that the baroclinic transport has to be zero, we get the following 

equation for u*., i.e., 
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The barotropic momentum equation becomes 
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6. Data assimilation (two-layer model) 

 

Let’s suppose that the pressure is corrected through data assimilation. If one does no 

pretreatment in the momentum equation, the momentum equation for the correction is  
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Note that the perturbation of the baroclinic Montgomery potential in the 2nd layer is kept 

zero. Therefore, the perturbation in the 2nd layer has to be enforced through u* term.  The 

depth integration of the corrected baroclinic momentum fields has to vanish. Then we get 

the following equation. 
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Plugging this equation into (6.1)~(6.3), we get 
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Now, subtract (5.3), (5.4) and (5.5) from (6.6), (6.7) and (6.8), respectively. The 

momentum equations for the correction emerges, 
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Since the XBT cast does not contain any information on surface elevation, the surface 

elevation has to be kept unchanged during the assimilation. This can be achieved by the 

following formula. 
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where superscript b and a represent “before” and “after” the assimilation. By using (3.6), 

the new barotropic Montgomery potential can be found. 
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