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[1] The July –August – September (JAS) seasonal
predictability of the Atlantic Warm Pool (AWP) is
examined in the extensive set of seasonal hindcasts of the
National Centers for Environmental Prediction (NCEP)
Climate Forecast System (CFS). We conduct both
deterministic and probabilistic skill analyses of the NCEP
CFS Seasonal Hindcasts (SHs). This study reveals that the
SHs have a reasonable climatology of the AWP. The
presence of robust decadal variability in sea surface
temperature (SST) observations, while absent in the SHs,
does seem to indicate its influence on the seasonal errors of
the AWP in the NCEP CFS. However, after filtering out the
observed SST for variability greater than 8 years, there is no
systematic relation of AWP seasonal errors in the NCEP
CFS with lead time. The signal to noise ratio of the area of
the AWP in the SHs decreases with lead time, largely due to
increases in the ensemble spread (noise). It is sobering to
note that there is barely any probabilistic skill in the NCEP
CFS SHs for the prediction of the anomalous AWP events
(occurring either in the upper or lower terciles) at nearly all
lead times. However if we examine the SHs from 1981–
1996, when the observed SST in the AWP region is in one
uniform phase of the prevalent decadal variation, then the
SHs display useful skill in the prediction of anomalously
large AWP events at all lead times. Furthermore, these
truncated SHs also show significant probabilistic skill in the
prediction of small (lower tercile) and normal (middle
tercile) AWP events up to a lead time of 1 month.
Citation: Misra, V., and S. Chan (2009), Seasonal
predictability of the Atlantic Warm Pool in the NCEP CFS,
Geophys. Res. Lett., 36, L16708, doi:10.1029/2009GL039762.

1. Introduction

[2] The Atlantic Warm Pool (AWP), as the name suggests
is a region of warm sea surface temperature (SST) that
appears in the boreal summer and fall season in the Gulf of
Mexico, the Caribbean Sea region, and over the western
tropical Atlantic Ocean [Wang and Enfield, 2001]. The
AWP has received growing attention with the detection of
its possible influence on the interannual variations of
summertime precipitation over the Great Plains, the Carib-
bean region, Mexico, and Central America [Wang et al.,
2008a, 2006; Wang and Enfield, 2003, 2001]. The relation-
ship between the AWP area variability and Atlantic tropical
cyclone activity is also well documented [Wang et al.,
2008b, 2006]. The AWP therefore offers a potential source

of seasonal predictability in the western hemisphere during
the boreal summer season [Wang and Enfield, 2003; Wang
et al., 2006]. It is a well-known fact that the boreal summer
season precipitation variability and predictability is a very
challenging problem [Kang et al., 2004]. In addition, it
appears that the interannual variation of the AWP area is
independent of El Niño Southern Oscillation (ENSO) var-
iability in the eastern Pacific Ocean [Wang et al., 2006].
This feature also encourages exploration of the AWP as a
potential independent source of boreal summer season
predictability in the western hemisphere.
[3] This study is aimed at understanding the seasonal

predictability of the AWP in coupled-ocean atmosphere
climate forecast systems. The National Centers for Envi-
ronmental Prediction (NCEP) has provided the community
with an extensive set of seasonal hindcasts from its Climate
Forecast System (CFS) [Saha et al., 2006], which provides
an ideal opportunity to investigate the predictability of the
AWP. Misra et al. [2009] showed that the NCEP CFS has a
reasonable climatology of the AWP. In contrast, many of the
Intergovernmental Panel on Climate Change Fourth Assess-
ment Report (IPCC AR4) models was found to have some
significant cold bias in the AWP region, which made even
defining the AWP difficult [Misra et al., 2009]. Given that
the NCEP CFS is the US operational dynamical climate
forecast system and is able to simulate the AWP, it is
pertinent to examine whether there is skill in the NCEP
CFS in predicting anomalous AWP events, whether initial-
ization errors are grave to AWP prediction, and how the
predictability of the AWP changes with lead time.

2. Data

[4] The NCEP CFS hindcast dataset is an extensive set of
seasonal hindcasts (SHs) [Saha et al., 2006]. In this study
we used 23 years of data covering the period between 1981
and 2003. A SH consists of 15 ensemble members (readers
are referred to Saha et al. [2006] for details on how they are
generated), which are launched in the beginning of each
month of the year. The length of each SH is 9 months. We
specifically examine the SHs that start in the months of
January, February, March, April, May, June, and July,
because the AWP matures in the July–August–September
(JAS) season [Wang and Enfield, 2001]. These SHs corre-
spond to lead times of 6, 5, 4, 3, 2, 1, and 0 month for the
JAS season. We also make use of the long-term NCEP CFS
integrations that consist of 4 ensemble members, each
integrated to a period of 32 years (hereinafter referred as
LT; a brief outline of this integration is available in the
auxiliary material).3 For observations, we use the NOAA
Extended Reynolds SST version 3 following Smith et al.

3Auxiliary materials are available in the HTML. doi:10.1029/
2009GL039762.
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[2008]. When we compare SH with observations, then we
match the observation period with the SH. But in comparing
with the LT integration we use the modern era of 1958–
2008 for observations.

3. Results
3.1. AWP Climatology and Annual Cycle

[5] The AWP climatology as determined by the mean
climatology of the JAS SST (!28.5!C) is shown from

observations in Figure S1a and from the SH at lead-time
0 (for example) in Figure S1b. At lead-time 0, the SH
integrations show reasonable agreement with observations
in terms of spatial extent. This feature of the model is quite
encouraging in light of the fact that many of the coupled
climate models are unable to even define an AWP [Misra et
al., 2009]. However, the CFS displays seasonal errors of
over 1!C (0.5!C) in the Gulf of Mexico (the Caribbean Sea
and northwest tropical Atlantic). The seasonal AWP evolu-
tion in the observations and in the LT integrations is

Figure 1. The JAS seasonal mean errors of the AWP computed relative to (a) observed SST and (b) high pass filtered
observed SST, to remove variability greater than 8 years.
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comparable (Figure S2). The appearance of the 28.5!C
contour in the eastern Pacific in the boreal spring and its
extension into the western Atlantic Ocean in the boreal
summer is well represented in the NCEP CFS. Likewise, the
observed extension of the AWP into the Caribbean Sea in
the early boreal autumn and the subsequent demise of the
AWP in boreal winter are also simulated in the NCEP CFS.

3.2. Seasonal Errors

[6] The Root Mean Square Error (RMSE) and the
Anomaly Correlation Coefficient (ACC) of the mean JAS
AWP area as a function of lead time from the CFS SH as a
function of lead time are shown in Figures S5a and S5b,
respectively. Figures S5a and S5b show that neither RMSE
nor ACC shows a systematic linear relation with lead time

Figure 2. (a) The ratio of the ensemble mean (hAWPi) of the area of the AWP to its ensemble spread (sAWP) and (b) the
ensemble spread of SH as a function of lead time and year.
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in the CFS SH. Alternatively, the seasonal AWP error in
the SH is shown as a function of lead-time and year in
Figure 1a. Figure 1a shows that in many years the seasonal
AWP error grows with lead-time. Also, in the period from
1997 to 2003, the SH displayed an under representation of
the AWP area that is largely unprecedented (Figure 1a).
This change in sign of the seasonal errors is, we contend, a
result of the Atlantic Multi-decadal Oscillation (AMO)
[Kerr, 2000; Enfield et al., 2001] not being properly
simulated or initialized in the SH.
[7] The evidence of such a decadal oscillation in the

observed SST in the region is clearly evident from Figure
S3. Figure S3 indicates that the linear trend from 1950 to
2003 is relatively small compared to the changing slope of
the decadal trends from 1950 to 1981 and 1982 to 2003 in
the region, which is also confirmed in other studies [Enfield
et al., 2001; Kerr, 2000]. The mean JAS SST climatologies
for the periods 1982–1996 and 1997–2003 from the
observations and the SHs (at 0 lead time, for example) are
shown in Figure S4. Clearly, the mean observed SST for the
two periods shows significant differences in Figures S4a
and S4b. In contrast, the SH shows insignificant differences
in the seasonal mean climatology between the two periods
(Figures S4c and S4d). The climatological seasonal mean
errors of the SH reflect this difference in observations in
Figures S4e and S4f, which indicates positive SST bias in
the 1982–1996 period compared to the negative bias in the
1997–2003 period. This is consistent with Wang et al.

[2008b], who show that the AMO manifestation is also
visible in the AWP variations on decadal time scales.
[8] Having shown the evidence for the presence of the

decadal variations in the JAS seasonal mean observed SST
and its absence in the corresponding SH SST over the AWP
region, we now re-compute the errors shown in Figure 1a
after passing the observed SST through an 8-year high -pass
(4th order Butterworth) filter to remove variability longer
than interannual time scales, which is dominated by ENSO
time scales (2–7 years; Figure 1b). The signs of the
seasonal errors are nearly uniform in Figure 1b, clearly
indicating the influence of the observed decadal oscillation
on the diagnosis of the AWP seasonal errors of the SH.

3.3. Interannual Variability

[9] A measure of the deterministic signal to noise ratio
(defined in the auxiliary material) as a function of lead-time
of the SH is shown in Figure S6. It is apparent from Figure
S6 that the ratio decreases with lead time, suggesting the
growth of the internal variations over the AWP area in the
CFS as it moves farther away from the initial time. We have
also plotted in Figure 2a the ratio of the ensemble mean of
the AWP area to its ensemble spread (standard deviation
about the ensemble mean) as a function of lead time and
year of the SH. Here it is seen that for a majority of the
years, at short lead times (0 and 1) the ratio is relatively
larger than at longer lead times. This is consistent with
Figure S6. In 1983, 1987 and 1998, this ratio is relatively
large at all lead times, indicating the possible influence of
the ENSO variations in the eastern equatorial Pacific Ocean.
The ensemble spread (noise) about the ensemble mean in
Figure 2b clearly indicates that it increases with an increase
in lead-time. In 1983, 1987 and 1998, the relative increase
of this noise with lead-time is less compared to the other
years. In Figures 3a and 3b, the correlations of the JAS
seasonal mean AWP area with the previous DJF global SST
correlations are shown for the CFS LT integration and
observations. The CFS clearly shows the stronger influence
of ENSO variations over the AWP region in Figure 3a,
which is unsubstantiated in the observations (Figure 3b).
Given such an ENSO teleconnection pattern, it is not
surprising to observe ENSO’s influence on the seasonal
predictability of the AWP in the NCEP CFS seasonal
hindcasts.
[10] The concept of ensemble integrations for seasonal

prediction is not new [Moore and Kleeman, 1996]. In fact,
the indeterminate nature of seasonal predictability warrants
that sufficient ensemble integrations are performed so that
robust probabilistic forecast measures can be computed
[Palmer et al., 2000; Kirtman, 2003; Misra, 2004; Saha et
al., 2006]. Here, the probabilistic skill is evaluated using the
area under the Relative Operating Characteristic (ROC)
curves (explained in the auxiliary material) [Graham et
al., 2000; Hanley and McNeil, 1982]. Owing to decadal
variations in the seasonal errors, we compute the ROC
curves (Figure 4) for SH covering the whole period from
1981–2003 and for the period 1981–1996 (when the
decadal variations of the observed SST over the AWP area
are in one phase). In Figure 4a, it is apparent that the skill of
predicting the AWP area in the SH is rather disappointing,
when considering the whole period of 1981–2003. How-
ever when using the truncated period of the SH, Figure 4b

Figure 3. The lead-lag correlation of the JAS seasonal
mean area of the AWP with the previous DJF mean global
SST from (a) NCEP CFS LT integration and (b) observa-
tions [Smith et al., 2008]. Only significant values at 95%
confidence interval according to t-test are plotted. The
Niño3.4 region is outlined over the central Pacific.
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shows that the SH has skill (when area exceeds 0.6 for 90%
confidence interval) in predicting the large AWP events
(defined in the upper tercile) at all lead times. (Anomalous
AWP events including large, small, and normal are
explained in the auxiliary material.) For small (defined in
the lowest tercile) and normal (in between the upper and
lower tercile) AWP events, the significant probabilistic skill
at 90% confidence level is restricted to lead times of 0 and
1. This yet again shows that the observed robust decadal
variation in the AWP area is detrimental to the CFS SH
prediction skill of AWP.

4. Conclusions

[11] The NCEP CFS Seasonal Hindcasts (SH) produce a
reasonable climatology of the AWP. The SH lack the robust
decadal SST variations observed over the AWP region. This
points to a possible issue with model error (possibly with
the ocean model dynamics) and/or the inadequacy of the
ocean initialization procedure to capture the decadal varia-
tions in the sub-surface oceans. In majority of the years of
the SH, the ensemble spread of the area of the AWP
increases with lead time, with a consequent decrease in
signal to noise ratio with lead time. However such linear
relationship of the seasonal errors of the area of AWP with
lead time is found lacking in the SH. In contrast, the signal
to noise ratio decreases with lead time, which is most likely
a result of the noise (ensemble spread) increasing with the
lead time. However, in some of the major ENSO years, the
SH displays significant increases in signal to noise ratio at
all lead times relative to other years. This seems to suggest
that large ENSO events, as seen in 1998, 1987, and 1983,

may have some influence on the predictability of the AWP
events in the NCEP CFS. It is seen that the NCEP CFS
displays erroneously stronger influence of ENSO on the
interannual variation of the AWP area. The probabilistic
skill as measured by the area under the ROC curve clearly
indicates the absence of any useful skill in predicting the
modulation of the AWP area in the SH. However, it is found
that when we examine a truncated period of the SH (1981–
1996 when the observed SST is one phase of the prevalent
decadal variation) then some useful skill for the large AWP
events (that occur in the upper tercile) at all lead times of the
SH is noticed. But in this truncated period of the SH the
significant probabilistic skill for the small AWP events (that
occur in the lower tercile) and for normal AWP events (that
occur in between the lower and upper terciles) is restricted
to lead times of 0 and 1month. These results clearly suggest
the importance of decadal variations of Atlantic SST and its
lack of adequate representation in the NCEP CFS SH that
reflects in its prediction skill of the AWP modulation at
interannual scales.
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Signal to Noise Ratio 

 

The Signal to Noise Ratio (SNR) for a variable x is computed following Shukla et al. 

(2000): 
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Brief outline of the NCEP CFS LT integration: 

 

The CFS LT integration are 32 years long with 4 ensemble members conducted at the 

same resolution as the SH i.e., T62 horizontal resolution and 64 levels. These runs follow 

from Wang et al. (2005) and the documentation of the data from this integration is 

available at http://cfs.ncep.noaa.gov/menu/doc/. 

 

Relative operating characteristic curve: 

 

The ROC curve is based on a contingency table that is developed for each event that is 

defined. In the paper we define three events that correspond to large, normal and small 

AWP events. These three categories correspond to lower, middle, and upper tercile of the 

ranked time series based on the area of the Atlantic Warm Pool computed separately for 

observations and the NCEP CFS Seasonal Hindcasts (SH). Since robust decadal SST 

variations are detected in the observations over the AWP region, we limit the ROC 

calculations from 1981-1996 when the seasonal errors of the AWP in the NCEP CFS SH 

have a uniform positive sign at all lead times after which, the sign uniformly changes to 

negative sign. The contingency table is defined below. 

Table A1: Contingency table for ROC curves 



Does ensemble probability for the event exceed 

threshold X? 

  

  

Is the event observed? Yes No 

Yes Hit (H) Miss (M) 

No False Alarm (FA) Correct Rejection (CR) 

ROC curves are obtained by plotting hit rates (HR) against false alarm rates (FAR). They 

are defined as follows: 

HR =
H

[H + m]
 

and 

 

FAR =
FA

[FA + CR]
 

 

Then we apply the trapezoidal rule to compute the Area Under the (ROC) Curve (AUC). 

 

Defining anomalous AWP events 

 

These anomalous AWP events are defined to conduct the probabilistic skill analysis of 

the NCEP CFS SH. The observed time series of the mean JAS AWP area over the period 

of 1981-2003 is sorted and ranked. We then define small AWP for the lowest tercile. 

Similarly the large AWP is defined for the upper tercile while the normal AWP is defined 

for the tercile between the small and large AWP. The occurrence of the anomalous AWP 

events in the observed time series is shown in Fig. A7.  A similar classification is made 

for the CFS SH.  
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!

Fig. A1: The climatological July-August-September (JAS) mean SST from a) 

observations, b) SH at lead time 0 (computed over the time period from 1981-1996), and 

c) difference between b and c.!



!

Figure A2: The monthly mean climatology at intervals of two months from 

the a, b, c, d, e, f) NCEP CFS multi-decadal integrations (CMIP) averaged 

over four ensemble members and g, h, i, j, k, l) observations. 



Figure A3: The observed linear trend (per decade) in the July-August 

September SST over the period of a) 1950-2003, b) 1950-1981, and c) 

1982-2003. 



 

Figure A4: Climatological July-August-September (JAS) seasonal mean SST from 

observations computed over the period of a) 1982-1996, and b) 1997-2003. Similarly, 

climatological JAS seasonal mean SST from the SH at 0 lead time computed over a 

period of c) 1982-1996, and d) 1997-2003. Climatological JAS seasonal mean SH 

errors computed over a period of e) 1982-1996, and f) 1997-2003. 



a b 

Figure A5: a) Root Mean Square Error (RMSE) and b) Anomaly correlation 

coefficient (ACC) of the NCEP CFS seasonal hindcasts as a function of lead time 

covering a period of 1981-2003 . 



 

Figure A6: The Signal to Noise Ratio (SNR) of the NCEP CFS seasonal hindcasts for 

the AWP area as a function of lead time covering a period of 1981-2003 . 



 

Figure A7: The area of the AWP from observations over a period of 1981-2003, 

showing the years when anomalously small (lower 1/3), large (upper 1/3) and normal 

AWP events occur.  


