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ABSTRACT 

A simple dynamic model is proposed to illustrate the multidecadal oscillation of the Atlantic 

thermohaline circulation. The proposed oscillation relies on alternating actions of positive and 

negative feedbacks, which are operated by a slow adjustment of the baroclinic ocean circulation 

and the associated delayed advection in response to a meridional density gradient. For a 

sufficiently long delay time, the solution becomes unstable and oscillates with a period of about 

twice the delay. For a shorter delay time, large amplitude of weather noise can sustain an active 

delayed advective oscillation of an otherwise stable damped oscillation. 
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1. Introduction 

The objective of this note is to propose a simple dynamic model for the multidecadal 

oscillation of the Atlantic thermohaline circulation, also known as the Atlantic Meridional 

Overturning Oscillation (AMOC), simulated in general circulation models (e.g., Delworth et al. 

1993; Knight et al. 2005). The proposed oscillation relies on alternating actions of positive and 

negative feedbacks, which are operated by a delayed advection of meridional density gradient. 

The key element of the delayed density advection originates from a slow adjustment of the 

baroclinic ocean circulation in response to a meridional density gradient (Killworth, 1985). Here, 

a four-box model is used to illustrate the delayed advective oscillator.  

 

2. The four-box model 

The North Atlantic Ocean is simplified with four boxes with two-layer structures in the high- 

and low-latitudes, as shown in Figure 1. The meridional density gradient is always positive, thus 

the volume transport must be northward in the upper layer and southward in the lower layer. 

Conservation of mass dictates that the volume transport at the mid-depth is downward in the 

high-latitude and upward in the low-latitude. Therefore, volume integration of the density 

conservation equation for each box yields  
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where ρ1, ρ2, ρ3 and ρ4 are densities of the upper low-latitude box, upper high-latitude box, lower 

high-latitude box, and lower low-latitude box, respectively; V is the volume transport per unit 

volume in response to the meridional density gradient; q is density flux into the upper high-

latitude box (or out of the upper low-latitude box); r is a damping coefficient; kv is a vertical 

diffusion coefficient; H is the model ocean depth divided by 2; F1, F2, F3 and F4 represent other 

forcing terms such as horizontal diffusion and convective mixing.  

Now, a separate equation for V is required to solve the equations (1)-(4). Using the 

geostrophic balance and hydrostatic relation, the zonal baroclinic (i.e., upper - lower layer) 

velocity in the mid-latitude corresponding to the north-south density gradient can be written as  

( 1423ˆ ρρ
ρ

−=
yoo Lf

gHu ) ,                                                      (5) 

where g is the gravitational acceleration; ρo is a reference density; fo is the planetary vorticity in 

the mid-latitude; Ly is the meridional length of the model domain divided by 2; ρ14 = (ρ1 + ρ4)/2, 

and ρ23 = (ρ2 + ρ3)/2. See Killworth (1985) for a detailed derivation of the equation (5). As 

discussed in Killworth (1985), the baroclinic meridional motions establish after the adjustment 

time, which depends on the basin-crossing time of long baroclinic Rossby wave. Therefore, in 

this study, the meridional volume transport (per unit volume) is represented by using the 

equation (5) with a time delay: 
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where α is a constant on the order of 1; and δ is the time delay, which is about the basin-crossing 

time of long Rossby wave.  
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Scaling time by , ρ by )/(2 2 HgLf yo ′ )2/( 2
yoLrfHg′ , and q by 321 )]2/([ yoLfHgr ′− , the 

following non-dimensional equations can be derived: 
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where the non-dimensional vertical diffusivity ko = .  )/(2 32 HgLfk yov ′

 

3. The one-equation model 

In order to gain some insights on the behavior of the nonlinear system of equations (7)-(10), 

a simplified one-equation model is derived and evaluated here. Specifically, it is assumed that ρ2, 

ρ3, and ρ4 are close to each other enough to be represented as a single variable 

. This is not an unreasonable assumption because the convective process 

maintains ρ

3/)( 432
*
2 ρρρρ ++=

3 as close to ρ2, and the advective flux from the box-3 to box-4 also keeps ρ4 close to 

ρ3 for a sufficiently small value of ko. Then, the density budget equations (7)-(11) can be 

simplified to a single equation: 
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where , and the nonlinear dissipation term is slightly modified from its original form.  

If δ = 0, this equation has a positive steady state solution. By neglecting the nonlinear dissipation 

term for the sake of illustration, the positive steady solution 
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The linear stability of oρ̂  in the equation (11) can be studied by replacing )(ˆ tρ  in (11) with the 

sum of the stationary solution oρ̂  and the perturbation )(ˆ tρ′ . Retaining only the linear terms, the 

perturbation equation can be written as  
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Seeking solutions of the form )exp(ˆ tσρ ∝′  with ir iσσσ += , the following equations can be 

derived: 
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If σr is positive, the first term in the RHS of (14) is always larger than the second term, thus the 

equation (14) cannot be satisfied. Therefore, σr is negative regardless of σi. This means that the 

simplified density budget equation (11) is always stable around oρ̂ . However, it is shown in the 

next section that the nonlinear system of equations (7)-(10) is unstable for a sufficiently large 

value of δ. This suggests that the density budgets in the lower layers (box-3 and -4) must be fully 

incorporated to resolve the delayed advective oscillation of the AMOC.  

 

4. Numerical solutions 

 6



The behavior of the nonlinear equations (7) - (10) is explored numerically using a fourth-

order Runge-Kutta scheme. When the upper layer is heavier than the layer below, the convective 

mixing is achieved by completely mixing the two layers. Horizontal diffusion is turned off for 

simplicity. Figure 2 shows three model solutions for δ = 0, 7 and 20, when α, q and ko are set to 

2.0, 0.1 and 0.2, respectively. The dashed lines are the statistical equilibrium values. For small 

values of δ, the solution achieves a stable state. For a larger value of δ, on the other hand, the 

solution oscillates with a period of about twice the delay. 

Obviously, at issue is why the solution oscillates when the advective delay is sufficiently 

long. To answer this question, the equation for the density difference between the high-latitude 

boxes and low-latitude boxes is diagnosed here: 
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Figure 3 shows [ρ23 - ρ14](t) and [ρ23 - ρ14](t-δ) in the upper panel. The storage term in the LHS 

of equation (16) and the advective flux divergence, surface flux and dissipation terms in the RHS 

of equation (16) are shown in the lower panel. In this case, α, q and ko are set to 2.0, 0.1 and 0.2, 

respectively, and the time delay δ is set to 20.  

At (A), the density difference (ρ23 - ρ14) is at the statistical equilibrium point of about 0.2. 

However, the advective flux divergence is minimized because the meridional transport, which is 

proportional to [ρ23 - ρ14](t-δ), is very small at this point. Since the dissipation is also very small, 

the sum of the advective flux divergence and dissipation cannot balance the surface flux. 

Therefore, the density difference increases after this point. Between (A) and (B), the sum of the 

advective flux divergence and the dissipation is still smaller than the surface flux, thus the 

density difference (ρ23 - ρ14) increases from its equilibrium to the maximum. Therefore, (A)-(B) 
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is a positive feedback period. At (B), the advective flux divergence is still weak, but the 

dissipation is at its maximum because the density difference (ρ23 - ρ14) is maximized at this 

point. The sum of advective flux divergence and dissipation exactly cancel out the surface flux 

terminating the increase of the density difference. Therefore, the positive feedback ends at this 

point. Between (B) and (C), the advective flux divergence increases very rapidly. The sum of 

advective flux divergence and dissipation is now larger than the surface flux, and thus the density 

difference (ρ23 - ρ14) swings back toward the statistical equilibrium point. Therefore, (B)-(C) is a 

negative feedback period.  

At (C), the density difference (ρ23 - ρ14) is once again at its statistical equilibrium point. 

However, the advective flux divergence is maximized and is much larger than the surface flux. 

Therefore, the density difference should further decrease beyond this point. It is interesting to 

note that both the meridional transport and the density difference are at their average values at 

this point, but the advective flux divergence is at its maximum. This is because if two signals are 

out-of-phase, their multiplication is maximized at crossing points. Imagine two functions that are 

out-of-phase, such as A=cos(x) and B=cos(x-π/2). The multiplication of the two functions will be 

always negative and the maximum is 0 at x=nπ/2 where n is an integer value.  

Between (C) and (D), the meridional transport increases, but the density difference is very 

small, thus the advective flux divergence decreases. Nevertheless, the advective flux divergence 

is still larger than the surface flux. Therefore, the density difference further decreases beyond its 

equilibrium value. This is a positive feedback period. At (D), the density difference is at its 

minimum. The sum of advective flux divergence and dissipation exactly cancel out the surface 

flux terminating the decrease of the density difference. Therefore, the positive feedback ends at 

this point. Between (D) and (E), the advective flux divergence decreases. Since the surface flux 
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is now larger than the advective flux divergence, the density difference (ρ23 - ρ14) swings back 

from its minimum toward the equilibrium value. Therefore, (D)-(E) is a negative feedback 

period. At (E), the cycle restarts as in (A).  

In summary, the delayed advective oscillator is maintained by alternating actions of 

amplification (i.e., positive feedback) and stabilization (i.e., negative feedback) through the 

oscillation of advective flux divergence. In one cycle of the delayed advective oscillator, there 

are two periods of amplification separated by two periods of stabilization. The first amplification 

occurs when the meridional density difference increases beyond the equilibrium point because 

the surface flux wins the competition with the advective flux divergence. The second 

amplification occurs when the meridional density difference decreases beyond the equilibrium 

point because the advective flux divergence becomes larger than the surface flux. During the 

stabilization periods, the density difference swings back from either its minimum or maximum 

point toward the equilibrium point through the competing effects of the surface flux and 

advective flux divergence.  

To have an idea about the actual time scale of the delayed advective oscillator, let us consider 

typical parameter values for the North Atlantic: Lx = 5×106m; Ly=2.0×106m; g′ = 1×10-2m s-1; fo 

= 10-4 s-1; β = 2×10-11 m-1 s-1; and H = 2000m. The basin-crossing time can be estimate by Lx/c, 

where c (= ) is the long baroclinic Rossby wave speed. It is about 8 years in this 

case. Assuming that about 2~3 cycles of the basin-crossing time are required for the adjustment 

of density-driven gyre, the delay time is about 16 ~ 24 years. Since the time scale,  

= 1.3 years, δ = 12 ~ 18 for the North Atlantic case. Then, the AMOC cycle is about 30 to 50 

years because the period of delayed advective oscillator is about 2δ.  

)2/( 2
ofHg β′

)/(2 2 HgLf yo ′
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5. Impacts of external forcing 

Now, the responses of delayed advective oscillator to low frequency external forcing 

patterns, such as freshwater flux into the high-latitude North Atlantic associated with 

deglaciation periods (or with the anthropogenic global warming), and to high frequency external 

forcing patterns, such as weather noise related to the North Atlantic Oscillation (NAO), are 

explored here. Three low-frequency forcing experiments are performed, i.e., (a) deglaciation (or 

anthropogenic global warming), (b) complete shutdown of AMOC during Heinrich events, and 

(c) a cooing in the high-latitude North Atlantic. For each experiment, the following form of fresh 

water flux is used only in the high-latitude (i.e., box-2): 

2*

2 20
40exp ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+=

tqqq o  ,                                                 (17) 

where t* = t/δ, and qo is set to -q/2, -2q, and q/2 for the deglaciation experiment, Heinrich mode 

experiment, and high-latitude North Atlantic cooling experiment, respectively. Note that the 

surface flux in the low-latitude is kept constant.  

Figure 4 shows that the AMOC may slow down due to the fresh water flux in the high-

latitude, but recovery is quite fast. This result is consistent with the externally forced model 

simulations for the 21st century used in the Intergovernmental Panel for Climate Change - 4th 

Assessment report (IPCC-AR4). An interesting point is that the amplitude of the delayed 

advective oscillator is reduced substantially and its recovery is extremely slow. As shown in the 

second panel of Figure 4, the AMOC can completely shut down if the surface flux becomes 

identical in the low- and high-latitude boxes. The AMOC recovers quickly when the external 

forcing is removed. However, the delayed advective oscillator is completely disrupted. The high-

latitude North Atlantic cooling has a minor impact on the AMOC strength as shown in the third 
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panel of Figure 4. However, the delayed advective oscillator is weakened and slowly recovers 

when the external forcing is removed. 

Next, the impact of high frequency forcing on the delayed advective oscillator is explored. It 

is widely believed that the high frequency portion of NAO originates from weather noise. 

Nevertheless, the NAO has a coherent spatial structure with a dipole-like meridional pattern of 

the sea level pressure. Due to this coherent spatial pattern, if the high-latitude is cooled, the mid-

latitude is warmed, and vice versa. Therefore, the high frequency forcing of NAO is represented 

here as a random noise surface flux with anti-symmetric meridional pattern; that is, the sine of 

random forcing is opposite in the two latitudes boxes but with the same amplitude. Note that the 

random noise forcing does not produce a net surface flux into or out of the system. The 

amplitude of the random forcing is set to q/2.  

Figure 5 shows the model solutions (a) with and (b) without the random forcing, and (c) with 

both the low- and high-frequency forcing for α=1.2, q=0.1, ko=0.2, and δ=20. In the last case, the 

low frequency forcing is added only in the high-latitude (i.e., box-2) using the equation (17) with 

qo = -1.5q. As shown in the mid panel, the delayed advection oscillation is damped out without 

the weather noise for given parameter values. Interestingly, if the weather noise is introduced, 

the delayed advective oscillator with the period of ~2δ can sustain its amplitude of up to 36% of 

the mean. It is also interesting to note that the solution with the weather noise forcing contains a 

very low-frequency variation on the order of 10~30 times the delayed advective oscillation 

period. Using realistic parameter values for the North Atlantic, it amounts to the centennial time 

scale. Figure 5(c) shows that even when the external forcing is large enough to nearly shutdown 

the AMOC, the weather noise can invigorate the delayed advective oscillator once the external 

forcing is removed. 
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In summary, the AMOC is remarkably stable because it always swings back to its original 

state once an external forcing is removed. This is true even when the AMOC is completely shut 

down as in during Heinrich events. The delayed advective oscillator is, on the other hand, very 

fragile. If an external forcing is large enough, it can virtually wipe out the delayed advective 

oscillator. The recovery of the delayed advective oscillator is extremely sluggish. However, that 

these are characteristics of the delayed advective oscillator in its pure form. If weather noise 

forcing is added to the system, the behavior of the delayed advective oscillator is drastically 

changed. In particular, relatively large amplitude of weather noise can sustain an active delayed 

advective oscillation of an otherwise stable system. The AMOC can still shut down if the 

external forcing is large enough. However, the weather noise can quickly invigorate the delayed 

advective oscillator once the external forcing is removed. Finally the weather noise can also 

produces a very low-frequency fluctuation at the centennial time scale.  

An important question is why the delayed advective oscillator is excited by weather noise. 

The simple stochastic climate model of Hesselmann (1976) provides a plausible explanation for 

this question. It is well known since Hesselmann (1976) that a random noise atmospheric forcing 

produces a red noise spectrum of ocean temperature via ocean memory. If this theory is applied 

to the four-box model, it means that a random surface forcing produces large amplitude of signal 

in the meridional density difference field, (ρ23 - ρ14), at low frequencies including at the 

frequency of delayed advective oscillator, ω ~ 0.5δ-1. Therefore, the delayed advective 

oscillation can be excited and maintained by weather noise even if it is a damped oscillation as 

shown in Figure 5(a).  

 

6. Linear stability analysis 
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To better understand how the four parameters, α, q, ko, and δ influence the delayed advective 

oscillator, a linear stability analysis of the nonlinear system of equations (7)-(10) is performed. 

First, the stationary solutions with δ=0 are obtained by numerically integrating the equations (7)-

(10). Replacing the solutions with the sum of stationary solution and perturbation, and retaining 

only the linear terms can derive the perturbation equations (not shown). Seeking solutions of the 

form )exp( tckk σρ =′  with k=1, 2, 3 and 4, and ir iσσσ += , a matrix equation can be derived: 
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The determinant of the matrix A must vanish in order for nontrivial eigenfunctions to exist: this 

yields an equation for the calculation of the complex eigenvalue σ for chosen values of α, δ, ko 

and q. Since the matrix A contains the eigenvalue σ and its exponential form, exp(-σδ), an 

iterative Muller’s method is used to obtain the eigenvalue σ.   

Figure 6 shows the neutral curves (a) on the α-δ plane for q=0.1 and ko=0.2, (b) on the ko-δ 

plane for α=2.0 and q=0.1, and (c) on the q-δ plane for α=2.0 and ko=0.2. For a given value of δ, 

increasing α and decreasing ko destabilize the system. These results are not surprising since α is 

proportional to the meridional volume transport, which provides the positive feedback required 

to maintain the delayed advective oscillation, thus serves as a growth rate, and ko serves as a 

damping rate. It is important to note that the neutral curve on the q-δ plane is not monotonic. For 

a given value of δ, the system is unstable only when q is within a certain range. This strongly 

supports an idea that the delayed advective oscillator exists via a delicate balance of various 
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terms, and also nicely explains why the delayed advective oscillator (in its pure form) is so 

fragile under the impacts of external forcing as shown in Figure 4.  

 

7. Discussions  

Perhaps, the four-box model presented here is the simplest dynamic model for explaining the 

results of general circulation models that produce the multidecadal oscillation of AMOC (e.g., 

Delworth et al. 1993;  Knight et al. 2005). Despite the overly simplified nature of the model, this 

minimum complexity model describes the important mechanism of the delayed advective 

oscillator, which appears to be the key for improving our understanding of the AMOC and its 

multidecadal oscillation. However, there are many remaining questions to be explored. One 

important issue is to estimate the realistic values for α, ko, and δ for the AMOC. A related 

question is if the AMOC is an unstable regime or is subject to a damped oscillation, which 

requires weather noise to maintain its multidecadal oscillation. These are apparently important 

issues, and should be the subjects of future studies. 

The delayed advective oscillator can be compared to the delayed action oscillator for ENSO 

(Suarez and Schopf 1988) because the key element in both cases is the oceanic Rossby wave 

transit effects. However, there is an important distinction between the two oscillation 

mechanisms. In the case of delayed action oscillator, the equatorial oceanic Rossby wave transit 

effects provide a negative delayed feedback to an otherwise linearly amplifying system. In the 

case of the delayed advective oscillator, the advective flux divergence delayed by the oceanic 

Rossby wave transit effects provide both the negative and positive feedbacks required to 

maintain the oscillation.  
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Finally, the four-box model can be modified or expanded for various thought experiments. 

For instance, the density equations (7)-(10) can be readily expanded to two sets of equations for 

salinity and temperature equations to explore the effects of external heat flux and freshwater 

flux, separately. The model domain can be also expanded to include the South Atlantic and 

Southern Ocean.  The four-box model with a weather noise forcing may be also used to improve 

our understanding of fundamental issues such as decadal predictability of the AMOC.  
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Figure 1. The North Atlantic Ocean is simplified with four boxes. Since the meridional density 

gradient is always positive, the volume transport (per unit volume) V is always northward in the 

upper layer and southward in the lower layer. ρ1, ρ2, ρ3 and ρ4 are densities of the upper low-

latitude box, upper high-latitude box, lower high-latitude box, and lower low-latitude box, 

respectively. q is density flux into the upper high-latitude box (or out of the upper low-latitude 

box).  
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Figure 2. Three model solutions, (ρ23 - ρ14), for (a) δ = 0, (b) δ = 7 and (c) δ = 20. α, q and ko are 

set to 2.0, 0.1, and 0.2, respectively. The dashed lines are the statistical equilibrium values. For 

small values of δ, the solution achieves a stable state. For a larger value of δ, on the other hand, 

the solution oscillates with a period of about twice the delay. 
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Figure 3. The model solutions [ρ23 - ρ14](t) and [ρ23 - ρ14](t-δ) are shown in the upper panel. The 

storage term in the LHS of equation (11) and the advective flux divergence, surface flux and 

dissipation terms in the RHS of equation (11) are shown in the lower panel. δ, α, q and ko are set 

to 20, 2.0, 0.1, and 0.2, respectively. The symbols (+) and (-) represent the period of positive and 

negative feedback, respectively. See text for the descriptions of density budgets at (A), (B), (C), 

(D) and (E).   
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Figure 4. The responses of the delayed advective oscillator to the external forcing of (a) 

deglaciation (or anthropogenic global warming), (b) complete shutdown of AMOC during 

Heinrich events, and (c) a cooing in the high-latitude North Atlantic. The amplitude of the 

external forcing qo is set to q/2, -2q, and q/2 for (a), (b) and (c), respectively. δ, α, q and ko are 

set to 20, 2.0, 0.1, and 0.2, respectively.  
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Figure 5. The behavior of delayed advective oscillator (a) with and (b) without the random noise 

forcing, and for (c) a case with both the low- and high-frequency forcing. The amplitude of the 

random forcing is set to q/2 for (a) and (c). For (c), qo = -1.5q. δ, α, q and ko are set to 20, 1.2, 

0.1, and 0.2, respectively.  
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Figure 6. Neutral stability curves (a) on the α-δ plane for q=0.1 and ko=0.2, (b) on the ko-δ plane 

for α=2.0 and q=0.1, and (c) on the q-δ plane for α=2.0 and ko=0.2. 
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