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a b s t r a c t 

We study the production and dissipation of the eddy kinetic energy (EKE) in a submesoscale eddy field 

forced with downfront winds using the Process Study Ocean Model (PSOM) with a horizontal grid resolu- 

tion of 0.5 km. We simulate an idealized 100 m deep mixed-layer front initially in geostrophic balance 

with a jet in a domain that permits eddies within a range of O(1 km–100 km). The vertical eddy viscosi- 

ties and the dissipation are parameterized using four different subgrid vertical mixing parameterizations: 

the k − ε, the KPP, and two different constant eddy viscosity and diffusivity profiles with a magnitude 

of O(10 −2 m 

2 s −1 ) in the mixed layer. Our study shows that strong vertical eddy viscosities near the sur- 

face reduce the parameterized dissipation, whereas strong vertical eddy diffusivities reduce the lateral 

buoyancy gradients and consequently the rate of restratification by mixed-layer instabilities (MLI). 

Our simulations show that near the surface, the spatial variability of the dissipation along the periph- 

ery of the eddies depends on the relative alignment of the ageostrophic and geostrophic shear. Analysis of 

the resolved EKE budgets in the frontal region from the simulations show important similarities between 

the vertical structure of the EKE budget produced by the k − ε and KPP parameterizations, and earlier LES 

studies. Such an agreement is absent in the simulations using constant eddy-viscosity parameterizations. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Fronts in the upper ocean are prone to mixed-layer instabili-

ties (MLI) that spawn O(1–10 km) submesoscale eddies ( Boccaletti

et al., 2007 ). These eddies are characterized by O(1) Rossby num-

bers and O(1) Richardson numbers, implying a departure from

quasi-geostrophic dynamics ( Charney, 1971; Stone, 1966, 1970 ).

The MLI extracts available potential energy (APE) associated with

the lateral buoyancy gradients and converts it to eddy kinetic

energy (EKE) forming ageostrophic circulations that restratify the

mixed layer by slumping of the isopycnals ( Boccaletti et al., 2007;

Capet et al., 2008a,b; Fox-Kemper et al., 2008; Fox-Kemper and

Ferrari, 2008; Klein et al., 2008; Mahadevan, 2006; Mahadevan and

Tandon, 2006; Thomas et al., 2008 ). The increase in stratification

by the MLI over a few days can be as high as an order of mag-

nitude larger than that achieved by geostrophic adjustment alone

( Boccaletti et al., 2007; Tandon and Garrett, 1994a,b ). 
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Recent studies have shown several processes across a wide

pectrum of scales O(1 m–10 km) to be active at mixed-layer

ronts. These processes include ageostrophic baroclinic instabilities

ABI) ( Boccaletti et al., 2007; Stone, 1966, 1970 ), symmetric insta-

ility (SI) ( D’Asaro et al., 2011; Nagai et al., 2012; Taylor and Fer-

ari, 2009, 2010, 2011; Thomas and Taylor, 2010; Thomas et al.,

013 ) and other types of MLI ( Molemaker et al., 2005 ). 

ABI and SI extract the APE associated with the lateral buoyancy

radients and convert it to EKE ( Bachman and Taylor, 2014; D’Asaro

t al., 2011; Taylor and Ferrari, 2010; Thomas and Taylor, 2010;

homas et al., 2013 ) which is cascaded to smaller scales. SI also

xtracts the geostrophic kinetic energy associated with lateral den-

ity gradients and cascades it to smaller scales by secondary shear

nstabilities ( Taylor and Ferrari, 2009 ). Observations show that the

orward cascade of EKE initiated by SI leads to enhanced dissipa-

ion at density fronts ( D’Asaro et al., 2011; Thomas et al., 2013 ).

maller scale processes include turbulence driven by winds, con-

ection and surface waves ( Grant and Belcher, 2009; Hamlington

t al., 2014; Haney et al., 2015 ). Due to computational limits, it is

rohibitive to resolve these O(1 m–10 km) processes simultane-

usly in one simulation, although there have been studies using

arge Eddy Simulations (LES) that resolve both 3-dimensional (3D)

urbulence and submesoscale motions ( Hamlington et al., 2014;
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r  
aney et al., 2015 ). For non-LES studies that focus on the evolution

f O(1–10 km) eddies, it is necessary to parameterize the mixing

ssociated with these smaller-scale processes. 

Numerical simulations of mixed-layer fronts have shown that

he submesoscale eddy field is subject to active frontogenesis near

he surface and exhibits O( f ) vertical relative vorticities ( f is the

oriolis frequency) and O(100 m/day) vertical velocities within the

ixed layer ( Capet et al., 2008a,b; Lapeyre et al., 2006; Mahadevan

nd Tandon, 2006; Shakespeare and Taylor, 2013; Thomas, 2008;

homas et al., 2008 ). Frontogenesis occurs through the follow-

ng processes: (i) horizontal deformation by a confluent mesoscale

ow ( Capet et al., 2008b; Hoskins and Bretherton, 1972 ), (ii)

geostrophic cross-frontal circulation driven by downfront winds

 Thomas and Lee, 2005 ), and (iii) baroclinic waves that cause sub-

esoscale frontogenesis ( Shakespeare and Taylor, 2013 ). 

Non-LES simulations with O(1 km) grid resolution have shown

hat MLI other than SI can convert the APE in the lateral gradients

o EKE and cascade it to smaller scales ( Capet et al., 2008c ). Ear-

ier non-LES submesoscale resolving simulations have used a hor-

zontal grid resolution ranging from 0.5 km to 1 km and verti-

al resolution of O(1–10 m) ( Capet et al., 20 08a,b; 20 08c; Fox-

emper et al., 2008; Fox-Kemper and Ferrari, 2008; Fox-Kemper

t al., 2011; Mahadevan, 2006; Mahadevan and Tandon, 2006; Ra-

achandran et al., 2013 ). As these simulations do not resolve 3D

urbulence, the dissipation of EKE at the smallest scales in these

imulations must be inferred from subgrid-scale parameterizations

or vertical mixing ( Capet et al., 2008a,b,c; Fox-Kemper et al.,

008,2011; Fox-Kemper and Ferrari, 2008; Marques and Özgökmen,

014; Ramachandran et al., 2013 ). 

Parameterizing the mixing in earlier non-LES submesoscale re-

olving simulations has been done using the following methods:

i) prescribing constant eddy viscosities and eddy diffusivities for

ertical and horizontal mixing ( Fox-Kemper et al., 2008 ), (ii) pre-

cribing a vertically varying eddy viscosity profile that depends on

he Ekman-layer depth ( Mahadevan, 2006; Mahadevan and Tan-

on, 2006; Mahadevan et al., 2010 ), (iii) implementing the turbu-

ence closure parameterizations k − ε ( Gibson and Launder, 1976;

odi, 1976 ), k − kL ( Mellor and Yamada, 1982 ) and the K-profile

arameterization (KPP) ( Large et al., 1994 ). The KPP and turbu-

ence closure parameterizations estimate vertical eddy viscosities

nd diffusivities as functions of the water-column characteristics

nd surface forcing ( Capet et al., 2008a; Marques and Özgökmen,

014 ). The k − ε parameterization is composed of two prognostic

quations for the subgrid EKE and its dissipation rate ε ( Burchard

nd Bolding, 2001; Gibson and Launder, 1976; Rodi, 1976; Umlauf

nd Burchard, 2005 ). The KPP prescribes a vertical eddy viscosity

rofile using a cubic polynomial shape function within the surface

oundary layer whose depth is estimated based on a threshold of

he Bulk Richardson number ( Large et al., 1994 ). While the dissi-

ation in the k − ε parameterization is obtained through a separate

rognostic equation for ε, the inferred dissipation in other param-

terizations that provide only the eddy viscosity, such as the KPP,

an be approximated from the eddy viscosity and the resolved-

cale vertical shear. 

The sensitivity of submesoscale-resolving simulations to dif-

erent subgrid mixing parameterizations has been demonstrated

n earlier studies ( Marques and Özgökmen, 2014; Ramachandran

t al., 2013 ). These studies have shown that high horizontal and

ertical eddy viscosities (and diffusivities) diminish the growth

ate of the MLI. Unforced simulations of a mixed-layer front

 Marques and Özgökmen, 2014 ) using the KPP have shown that the

PP produces insufficient vertical mixing during the MLI adjust-

ent in unforced conditions. On the other hand, wind-forced non-

ES simulations ( Ramachandran et al., 2013 ) have shown that at re-

olved scales, the EKE budget averaged over the eddy field shows

wo distinct characteristics: (i) a shear-driven layer near the sur-
ace where the ageostrophic shear production and the dissipation

f EKE form a leading order balance, and (ii) a buoyancy-driven

ayer below the shear-driven layer where the leading order term

s the buoyancy flux associated with the ABI induced restratifica-

ion. This vertical structure differs from that seen in the LES simu-

ations of a mixed-layer front with surface cooling ( Taylor and Fer-

ari, 2010 ) where a convective layer with negative PV forms near

he surface, overlying a forced SI layer with near-zero PV. Taylor

nd Ferrari (2010) have further shown that the addition of a wind-

nduced buoyancy flux further divides the low-PV region near the

urface into a shear-driven layer where turbulence is dominated by

he wind stress, a convective layer and a forced SI layer. 

Non-LES submesoscale resolving simulations with O(1 km) grid

esolution do not resolve the entire range of scales spanning the

orward cascade of EKE. This implies a flux of EKE from the re-

olved to the subgrid scales, which is removed by the dissipation

nferred from the mixing parameterizations. While the resolved-

cale budget of EKE under wind-forced conditions have been ana-

yzed in earlier studies ( Capet et al., 2008c; Ramachandran et al.,

013 ), the vertical structure of the subgrid-scale EKE budget needs

o be explored. Unlike the KPP or the parameterizations using con-

tant eddy viscosities, the k − ε enables us to explore in greater

etail the mechanisms responsible for the production and destruc-

ion of EKE at subgrid scales. 

Analyses of the frontally averaged statistics have revealed im-

ortant differences between the intensity of turbulence near and

way from the mixed-layer fronts under different forcing condi-

ions. For instance, observations at the Kuroshio front have shown

hat the extraction of EKE by SI in the presence of downfront

inds leads to enhanced dissipation ( D’Asaro et al., 2011; Nagai

t al., 2012 ). Analysis of the wintertime surveys in the Gulf Stream

 Thomas et al., 2013 ) has shown that the extraction of APE by

geostrophic baroclinic instability is equivalent in magnitude to

he dissipation of EKE by symmetric instability ( Thomas et al.,

013 ). Dissipation caused by the forward cascade of EKE by ABI has

een noted in non-LES simulations ( Capet et al., 2008c ). At smaller

cales, surface waves have been observed to enhance the vertical

ixing and turbulent dissipation in the mixed layer, both with and

ithout density fronts ( Hamlington et al., 2014; Skyllingstad and

enbo, 1995 ). 

.1. Motivation 

Motivated by the discussions above, we aim to explore the fol-

owing questions in this study: 

• How do the properties of the resolved submesoscale eddy field

vary with different subgrid mixing parameterizations? 
• How does the dissipation of EKE vary spatially within a forced

submesoscale eddy field generated by a mixed-layer front?

What are the underlying causes for its spatial variation? 
• What is the vertical structure of the subgrid EKE budget in a

forced submesoscale eddy field, and what are the leading order

contributors? 

In this paper, we conduct submesoscale-resolving simulations

f a mixed-layer front forced with downfront winds. We use the

D Process Study Ocean Model (PSOM) ( Mahadevan, 2006 ) with

he following vertical mixing parameterizations: the Ekman-layer

ased parameterization ( Mahadevan et al., 2010 ), the k- ε ( Rodi,

976 ) and the KPP ( Large et al., 1994 ) for estimating the eddy vis-

osities and diffusivities. 

The remaining of the paper is outlined as follows: Section 2 de-

cribes the numerical model PSOM and the mixing parameteriza-

ions in detail. Section 3 describes the initial condition (3.1) , the

urface forcing (3.2) and the simulations (3.3) . Section 4 shows the

esults that include analysis of the instantaneous eddy fields (4.1) ,
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Table 1 

Simulation parameters. 

Domain size 96 × 192 × 0 . 5 km 

Zonal and meridional eddy viscosities 0 m 

2 s −1 

Maximum lateral buoyancy gradient 1 . 3 × 10 −7 s −2 

at t = 0 

Buoyancy frequency N 2 1 . 5 × 10 −6 s −2 

Time step 216 s 

Horizontal grid resolution 0.5 km 

Vertical grid resolution O(1 m) near surface, 

O(10 m) at the bottom 

Wind stress ( τ x ) 0 .1 N/m 

2 at y = 96 km, tapering 

sinusoidally towards the walls 

Coriolis parameter f 7 . 7 × 10 −5 s −1 

Mixed-layer depth ( t = 0 ) 100 m 
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1 Mohammadi-Aragh et al. (2015) show the influence of numerical dissipation in 

advection schemes on the restratification. The horizontal implicit numerical diffu- 

sivity for a canonical frontal jet, obtained from our simulations, is 10 −3 m 

2 s −1 as 

tested by dispersion of a passive tracer in an unforced simulation. 
contrasts between the different simulations (4.2) , the spatial vari-

ability of the parameterized dissipation with the flow properties

(4.3) , the variability of dissipation based on the frontal orienta-

tion (4.4) and the EKE budget at resolved and subgrid scales (4.5) .

Section 5 presents the conclusions of our process studies. 

2. Numerical model 

PSOM ( Mahadevan, 2006 ) is a three dimensional model

that uses Boussinesq equations numerically discretized using

the Quadratic Upstream Interpolation for Convective Kinematics

(QUICK) scheme ( Leonard, 1988 ). We use this model in a zonally

periodic re-entrant domain, which implies periodic boundary con-

ditions on the west and east boundaries and wall boundary con-

ditions along the south and north boundaries. The top-grid face is

the height of the free surface. The next section sets out the model

equations for the momentum and scalar transport. 

2.1. Model equations 

The model equations for the temperature, salinity and velocities

are given below ( Mahadevan, 2006 ). The resolved-scale quantities

are denoted with an overline. 

D t T = − ∂ 

∂x j 
F R j − ∂ 

∂x j 
τ T 

j , (1a)

D t S = − ∂ 

∂x j 
τ S 

j , (1b)

D t u + Ro 

−1 
( p x + λq x − f v + Ro δb w ) = − ∂ 

∂x j 
τi j ; i = 1 (1c)

D t v + Ro 

−1 
(

p y + λq y + f u 

)
= − ∂ 

∂x j 
τi j ; i = 2 (1d)

D t w + Ro 

−2 δ−1 

(
λ

δ
q z − b u 

)
= − ∂ 

∂x j 
τi j ; i = 3 (1e)

u x + v y + Ro w z = 0 , (1f)

where D t denotes the non-dimensional material derivative ex-

pressed as ∂ t + u ∂ x + v ∂ y + Ro w ∂ z. The variables T , S u , v and

w are the resolved components of temperature, salinity and the

non-dimensional velocities along the x (zonal), y (meridional) and

z (vertical) coordinates respectively. The variables p and q are the

resolved non-dimensional hydrostatic and non-hydrostatic compo-

nents of pressure respectively. The variable λ denotes the ratio of

the variations of q and p . The hydrostatic-pressure component p

satisfies ∂ 
∂z 

p + ρg = 0 where g is the acceleration due to gravity.

The model can be used in both hydrostatic and non-hydrostatic

mode by setting λ to either 0 or the aspect ratio δ. The variables

F R 
j 
, τ T 

j 
, τ S 

j 
and τ ij on the right hand side are non-dimensional and

denote the penetrative solar heat flux, the subgrid flux for temper-

ature, salinity and momentum respectively. 

The relevant scaling parameters for the distances are the hor-

izontal and vertical length-scales L and D . Scaling parameters for

the velocities are the horizontal and vertical velocity scales U and

W respectively. The variables δ = D/L and Ro = U/ (2�L ) are the

aspect ratio and the Rossby number respectively, where � is the

angular velocity of the Earth’s rotation. In the Eqs. 1c –1e , the com-

ponents of the Coriolis acceleration, non-dimensionalized with �,

are f = 2 sin (θ ) and b = 2 cos (θ ) where θ is the latitude. 

Since the magnitudes of the subgrid-scale flux divergence are

not known, a parameterization is necessary in order to address the
ux-divergence terms and close the model equations to numeri-

ally solve for the resolved quantities. The stress divergence terms

n the Eqs. 1a –1e are parameterized as 

∂ 

∂x j 
τ T 

j = (UL ) −1 ∂ 

∂x j 

(
k hs 

∂ 

∂x j 
T 

)
j=1 , 2 

+ (UL ) −1 δ−2 ∂ 

∂x j 

(
νs 

∂ 

∂x j 
T 

)
j=3 

, (2a)

∂ 

∂x j 
τ S 

j = (UL ) −1 ∂ 

∂x j 

(
k hs 

∂ 

∂x j 
S 

)
j=1 , 2 

+ (UL ) −1 δ−2 ∂ 

∂x j 

(
νs 

∂ 

∂x j 
S 

)
j=3 

, (2b)

∂ 

∂x j 
τi j = (UL ) −1 ∂ 

∂x j 

(
k h 

∂ 

∂x j 
u i 

)
j=1 , 2 

+ (UL ) −1 δ−2 ∂ 

∂x j 

(
νm 

∂ 

∂x j 
u i 

)
j=3 

, (2c)

here k h and k hs are the horizontal eddy viscosities and eddy dif-

usivities in dimensional form respectively. The variables νm 

and νs 

re the vertical eddy viscosities and eddy diffusivities respectively. 

In submesoscale-resolving simulations, lateral density gradients

hich are reservoirs of APE, get diffused by the prescribed hori-

ontal eddy diffusivities. In our studies, since we intend to explore

he influence of only the vertical mixing parameterizations on the

esolved flow field, we prescribe zero horizontal eddy viscosities

nd diffusivities 1 in our simulations. The vertical eddy viscosities

nd diffusivities are obtained using the following mixing parame-

erizations discussed below. 

.2. Vertical mixing parameterizations 

To estimate the eddy viscosities, we choose three different ver-

ical mixing schemes: (i) a parameterization based on the Ekman-

ayer depth ( Ekman, 1905; Mahadevan et al., 2010 ); (ii) the k − ε
odel ( Rodi, 1976 ) and (iii) the K profile parameterization (KPP)

 Large et al., 1994 ). 

.2.1. Parameterization based on the Ekman-layer depth 

Here, the eddy viscosities (and diffusivities) are estimated ex-

licitly as a hyperbolic tangent function of the depth ( z ) and the
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Table 2 

Simulation types. 

Simulation Mixing parameterization 

CONST1 Ekman parameterization, γ1 = 1 . 68 , γ2 = 0 . 6 , 

kz max = 0 . 035 m 

2 s −1 

CONST2 EKman parameterization, γ1 = 1 . 68 , γ2 = 0 . 6 , 

meridionally varying kz max with a maximum of 

0 . 035 m 

2 s −1 at y = 96 km. 

KEPS k − ε mixing parameterization 

KPP KPP mixing parameterization 
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kman-layer depth ( D ek ) ( Ekman, 1905; Mahadevan et al., 2010 )

s 

 ek = 0 . 4 

u ∗
f 

, (3a) 

m 

= νs = max 

(
νmax 

[
1 

2 

(
1 + tanh 

(
z − γ1 D ek 

γ2 D ek 

))]
, 10 

−5 

)
, 

(3b) 

here u ∗ = 

√ 

τ/ρ0 and νmax are the dimensional friction velocity

nd maximum eddy viscosity within the Ekman layer respectively.

e modify the diffusivity expression used by Mahadevan et al.

2010) by adding the variables γ 1 and γ 2 in order to adjust the

hape of the diffusivity profile such that it transitions smoothly

rom a background value of 10 −5 m 

2 s −1 in the interior to the max-

mum value νmax ( Table 2 ) within the Ekman layer. 

.2.2. k − ε parameterization 

The k − ε is a one-dimensional mixing model that evolves the

urbulent kinetic energy k and its rate of dissipation ( ε) ( Rodi,

976 ). The parameterized equation for k is 

D 

Dt 
k = 

∂ 

∂z 

(
νm 

σk 

∂ 

∂z 
k 

)
︸ ︷︷ ︸ 

Downgradient transfer D k 

+ νm 

S 2 ︸ ︷︷ ︸ 
Shear production P 

−νs N 

2 ︸ ︷︷ ︸ 
Buoyancy production B 

− ε︸︷︷︸ 
Dissipation 

, (4) 

here D 
Dt is the (dimensional) material derivative and σk = 1 is

he Schmidt number ( Burchard and Bolding, 2001 ) for k . The shear

roduction term P and buoyancy production term B are parame-

erized as P = νm 

S 2 and B = −νs N 

2 where S and N 

2 are the vertical

hear and the Brunt–Väisälä frequency respectively. The term D k 

s a downgradient parameterization for the triple-order turbulent

ransport terms in the k budget ( Burchard et al., 1999; Rodi, 1976 ).

he variable ε represents the removal of k at the smallest scale by

iscous destruction. 

The evolution of ε is parameterized by the following equation

 Rodi, 1976 ): 

D 

Dt 
ε = 

∂ 

∂z 

(
νm 

σe 

∂ε

∂z 

)
Downgradient transfer D ε

+ ε/k ( c e 1 P + c e 3 B − c e 2 ε) , (5) 

here D ε is a downgradient parameterization analogous to the one

n Eq. 4 and σe = 1 . 3 is the Schmidt number for ε ( Burchard and

olding, 2001 ). The remaining terms on the right represent the

ources and sinks of ε. The parameters c e 1 , c e 2 and c e 3 are em-

irically determined coefficients ( Rodi, 1976 ). The coefficients c e 1 
nd c e 2 are set to 1.44 and 1.92 respectively, whereas c e 3 varies be-

ween −0.62 and 1.0 for stable and unstable stratification respec-

ively ( Burchard et al., 1999 ). 

The eddy viscosities and eddy diffusivities are estimated as

unctions of k and ε as 

m 

= c μ
k 2 

, (6a) 

ε

s = c ′ μ
k 2 

ε
. (6b) 

The variables c μ and c ′ μ are empirically derived non-

imensional functions of the shear number αM 

= (k 2 /ε2 ) S 2 and

uoyancy number αN = (k 2 /ε2 ) N 

2 ( Rodi, 1976 ). Following the clo-

ure assumptions of Canuto et al. (2001) , the stability functions are

xpressed as 

 μ = 

0 . 1070 + 0 . 01741 αN − 0 . 0 0 012 αM 

A 

, (7a) 

 

′ 
μ = 

0 . 1120 + 0 . 004519 αN + 0 . 00088 αM 

A 

, (7b) 

here A = 1 + 0 . 26 αN + 0 . 029 αM 

+ 0 . 0087 α2 
N 

+ 0 . 005 αN αM 

−
 . 0 0 0 034 α2 

M 

. 

.2.3. K-profile parameterization (KPP) 

This parameterization calculates a surface boundary-layer depth

 bl based on a threshold magnitude of the Bulk Richardson number,

nd estimates the eddy viscosity νm 

as 

m 

= z bl w s H(σ ) , (8)

here 

(σ ) = σ [1 + σ ((σ − 2) 

+ (3 − 2 σ ) H(1) + (σ − 1) H 

′ (1))] (9) 

s a dimensionless cubic shape function of the non-dimensional

epth σ = z/z bl . The variable w s is the turbulent velocity scale for

omentum and buoyancy, given as 

w s = 

κu ∗
�(ξ ) 

, (10) 

here κ is the Von Kármán constant of 0.4, and � is a non-

imensional function of a stability parameter ξ which varies based

n the stability of the boundary-layer forcing ( Durski et al., 2004;

arge et al., 1994 ). When there is no surface buoyancy flux, � = 1 .

Apart from mixing within the boundary layer, the KPP im-

lements simplistic schemes for interior mixing associated with

hear-driven turbulence, double diffusion and internal waves

 Large et al., 1994 ) below the boundary layer. The eddy viscosity

orresponding to shear-driven mixing is parameterized as 

sh = 

{ 

ν0 Ri g < 0 , 

ν0 [1 − (Ri g / 0 . 7) 2 ] 3 , 0 < Ri g < 0 . 7 

0 Ri g > 0 . 7 , 

(11) 

here ν0 = 5 × 10 −3 m 

2 s −1 and Ri g = N 

2 /S 2 is the gradient

ichardson number at the base of the boundary layer. The mix-

ng corresponding to double diffusion and internal waves is turned

ff in our simulations. 

.3. General Ocean Turbulence Model 

The General Ocean Turbulence Model (GOTM) is a 1D model

ramework that contains a suite of vertical mixing parameteriza-

ions for the 1D water column including the k − ε and the KPP

 Burchard et al., 1999 ). GOTM can be used either in a standalone

ode where it solves the 1D momentum and scalar transport

quations, or in the form of a module that can be accessed by

D ocean models for estimating the eddy viscosities. We modify

he k − ε parameterization embedded in the GOTM by including

he resolved advection of k and ε by the horizontal velocities ob-

ained from PSOM. In our simulations, GOTM is used as a module

ccessed by PSOM to estimate the mixing coefficients at each time

tep, as outlined below. 
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Fig. 1. (a) Meridional transect at x = 48 km showing the zonal velocity due to thermal wind balance, with isopycnals (white lines). (b) Surface snapshot of the potential 

density ( σ θ ) with the meridionally varying wind stress (white arrows) that tapers near the south and north walls. (c) Profile of buoyancy frequency N 2 averaged over the 

mixed-layer front. (d) Meridional buoyancy gradient in the mixed layer. 
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ters. 
• At every time step PSOM provides the stratification N 

2 ( z ), shear

squared S 2 ( z ), the cell thickness and surface wind stress at ev-

ery ( x , y ) to GOTM. 
• Using these inputs, the vertical mixing parameterization in

GOTM estimates profiles of eddy viscosities and diffusivities at

each ( x , y ) which are then passed back to PSOM. 
• PSOM uses these eddy viscosities and diffusivities to update the

momentum and scalar quantities using their prognostic equa-

tions. 

3. Model setup 

3.1. Initial condition 

We initialize the 3D model with an idealized mixed-layer front

in thermal wind balance with a frontal jet, a configuration used in

earlier submesoscale process studies ( Mahadevan, 2006; Mahade-

van and Tandon, 2006; Ramachandran et al., 2013 ). The front is

prescribed within the mixed layer as a hyperbolic tangent function

of the temperature along the meridional axis as follows: 

T (y ) = 20 + 0 . 6 

[ 
1 − tanh 

(
y − L y / 2 

10 

)] 
(12)

where L y = 192 km is the meridional extent of the domain. The

front is oriented in the zonal direction and is located at a latitude

of 32 °N corresponding to a 22 h inertial period. The meridional
uoyancy gradient is 1 . 3 × 10 −7 s −2 ( Fig. 1 ), similar to typical val-

es observed in the Atlantic Ocean mixed layer ( Mahadevan et al.,

012 ). We prescribe a spatially varying sea-surface elevation such

hat the barotropic pressure gradient balances the baroclinic pres-

ure gradient at 100 m depth. The zonal velocity formed by ther-

al wind balance is 0.2 m/s at the surface. The initialized mixed-

ayer depth in our simulations is 100 m. We define the mixed-

ayer depth (MLD) as the depth where the density is 0.03 kg/m 

3 

arger than the surface density. The vertical stratification within

he mixed layer is 1 . 5 × 10 −7 s −2 . This initial configuration makes

he PV in the mixed layer negative over a 12 km wide zonal strip

n the frontal region. To nudge the onset of the instabilities, we

erturb the initial state by applying a sinusoidal wiggle to the tem-

erature in the frontal region of amplitude 0.005 °C and a wave-

ength equal to the zonal extent ( Table 1 ) of the domain. 

The length-scale and time-scale corresponding to the fastest

rowing mode of non-geostrophic baroclinic instability are given

y L s = 

2 πU 
| f | 

√ 

(1+ Ri ) 
5 / 2 and t s = 

√ 

54 
5 

√ 

1+ Ri 
| f | ( Stone, 1966, 1970 ) where

 is a typical velocity scale of the geostrophic flow. Using a repre-

entative jet velocity of 0.1 m/s (the mean of the geostrophic veloc-

ty over the mixed layer), the mixed-layer Ri = 0.5 and Coriolis pa-

ameter f = 7 . 7 × 10 −5 s −1 , we obtain a length-scale of 7 km and

 time-scale of 16 h. The horizontal grid resolution in our simula-

ions is 0.5 km. Table 1 presents the different simulation parame-
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Fig. 2. (a) Profiles of eddy viscosity νm spatially averaged over the mixed-layer front for KEPS, KPP and CONST2. Plot (b) shows νm averaged zonally and vertically from the 

surface to 70 m for KEPS, KPP and CONST2. Plots (c), (d) and (e) are zonally averaged transects of νm for KEPS, KPP and CONST2 respectively. All plots are shown at inertial 

period 7. 
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2 We interpret the eddying region as the region containing the eddies formed 

by the MLI. To estimate the meridional width of this region, we perform the fol- 

lowing steps. We choose a certain flow parameter, the normalized relative vorticity 

ζ / f , and obtain its probability density function (PDF) over a surface strip having a 
.2. Surface forcing 

Wind stress is a source of turbulent kinetic energy which

esults in turbulent mixing of the water column and entrain-

ent of deeper water into the mixed-layer ( Kato and Phillips,

969 ). For a zonal front with buoyancy reducing from south to

orth, winds blowing towards the east advect the denser water

ear the surface towards the lighter water by Ekman advection

 Mahadevan et al., 2010 ). The resulting destratification by this ad-

ection counters the restratification due to the MLI ( Mahadevan

t al., 2010 ). To assess the relative influence of the wind-driven de-

tratification and the eddy-driven restratification, Mahadevan et al.

2010) introduced a parameter r , the ratio of ψ / ψ e where ψ 

s a stream function for the wind-driven circulation and ψ e is

 stream function that characterizes the MLI induced circulation

 Fox-Kemper et al., 2008, 2011; Fox-Kemper and Ferrari, 2008 ). The

xpressions for ψ , ψ e and r are as follows: 

 = −τ0 /ρ0 f, (13a) 

 e = 0 . 06 H 

2 ∇B/ f, (13b) 

 = 

∣∣∣∣ ψ 

ψ e 

∣∣∣∣, (13c) 

here τ 0 , ρ0 , H and ∇B are the wind stress, reference den-

ity, mixed-layer depth and frontal buoyancy gradient respectively.

hen r ≥ 1, the isopycnal slumping is arrested by the downfront

ind and the growth of MLI and restratification is inhibited. When

 < 1, the eddy-driven restratification dominates over the wind-

nduced destratification ( Mahadevan et al., 2010 ). 

We impose a westerly wind stress that varies sinusoidally from

he South to North with a maximum magnitude of 0 . 1 Nm 

−2 at

 = 96 km ( Fig. 1 ) as follows: 

x (y ) = max [(0 . 13 sin (πy/L y ) − 0 . 03) , 0] . (14)
he chosen magnitude of τx = 0 . 1 Nm 

−2 at y = 96 km corresponds

o r ∼ 1. The resulting wind stress tapers to 0 N/m 

2 at a distance

f 20 km near the north and south walls. We refer to the axis

long the direction of the wind as the wind-axis. 

.3. Prescribing eddy viscosity in the simulations 

We conduct four different hydrostatic simulations using the

hree mixing parameterizations discussed earlier. The simulation

etails are provided in Table 2 . In order to have a meaningful com-

arison between the simulations, we ensure all simulations have

omparable vertical eddy viscosities within the mixed layer. We

se the simulations with k − ε and KPP to obtain our prescribed

hoice of eddy viscosities in the other two simulations CONST1 and

ONST2. At inertial period 7 (the time-scale for the ageostrophic

aroclinic instability), when the front goes unstable, the simula-

ions KEPS and KPP yield O(10 −2 m 

2 s −1 ) eddy viscosities within

he mixed layer. Profiles of eddy viscosities show a subsurface

aximum at 40 m and minima at the surface and mixed-layer

ase ( Fig. 2 ). For the k − ε parameterization, such a profile of mix-

ng coefficients is due to the turbulent length scale reaching a min-

mum near the surface and the base of the mixed layer ( Burchard

nd Bolding, 2001 ). For the KPP, the shape of the eddy viscosity

rofile is determined by a cubic polynomial that is a minimum

t the surface and at the boundary-layer base ( Section 2.2.3 ), but

 maximum at an intermediate depth within the boundary layer

 Large et al., 1994 ). The eddy viscosity from KEPS, averaged over

he top 70 m, yields a value of 0 . 035 m 

2 s −1 at y = 96 km. Based

n these results, we prescribe the value for νmax ( Eq. 3 ) in the sim-

lation CONST1. 

The eddy viscosities in both KEPS and KPP vary meridionally

ith maximum values in the eddying region. 2 This variability re-
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Fig. 3. Evolution of vertical velocity (m/day) at a depth of 10 m, shown as snapshots with isopycnal lines (red) at inertial periods 7, 10 and 13. From the top to the bottom 

panels, the results are from the simulations CONST1, CONST2, KEPS and KPP respectively. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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flects the spatially varying turbulent mixing due to the wind stress

( Eq. 14 ). To reproduce such a meridional variability of the eddy vis-

cosity, we allow νmax in CONST2 to vary with the wind stress as

νmax (y ) = 0 . 035(τx (y ) /max (τx )) . 

4. Results 

4.1. Instantaneous fields 

The front goes unstable to MLI by the inertial period 7 and

forms O(4–10 km) meanders ( Fig. 3 ). The average size of the

meanders is similar to the length-scale corresponding to an
small meridional width, centered at the initial location of the front ( y = 96 km). 

We then gradually increase the width of the strip such that its center remains at 

y = 96 km, until the PDF converges. For instance at inertial period 13, the above 

procedure yields a width of approximately 40 km in all the simulations. 

o  

s  

r  

o  
geostrophic baroclinic instability ( Section 3.1 ). An ageostrophic

ross-frontal circulation forms with O(100 m/day) upwelling and

ownwelling along the edges of the meanders. The range of ver-

ical velocities are similar in the four simulations with stronger

eak downwelling compared to peak upwelling, which is consis-

ent with earlier model results ( Mahadevan and Tandon, 2006 ). By

nertial period 13, the eddying region spans a meridional range of

pproximately 70–110 km with the largest eddies being O(10 km)

n diameter ( Fig. 3 ). 

The periphery of these eddies show sharp density gradients due

o active frontogenesis with the vertical component of the relative

orticity ( ζ ) being cyclonic on the denser side and anti-cyclonic

n the lighter side of the fronts ( Fig. 4 ). The rate of frontogene-

is is expressed as D 
Dt (| 

−→ ∇ h B | 2 ) where | −→ ∇ h B | 2 is the square of the

esultant horizontal gradient of buoyancy ( B ). Considering the rate

f change of the buoyancy gradient due to the horizontal strain
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Fig. 4. Snapshots at 10 m depth showing the flow properties (top to bottom) ζ , Ertel PV, frontogenesis by the strain rate ( F a ) and ε from the simulations CONST1, CONST2, KEPS and KPP at inertial period 13. 
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( Capet et al., 2008b; Hoskins, 1982 ) ( F a ), we get 

F a = −[(∂ x u∂ x B + ∂ x v ∂ y B ) ̂ i + (∂ y u∂ x B + ∂ y v ∂ y B ) ̂ j ] ︸ ︷︷ ︸ 
−→ 

Q 

. (∂ x B ̂

 i + ∂ y B ̂

 j ) ︸ ︷︷ ︸ 
−→ ∇ h B 

, 

(15)

where ˆ i and 

ˆ j are unit vectors along the x and y directions in the

domain. 

At the 10th inertial period, the top-view plots from all simula-

tions ( Fig. 4 ) show negative Ertel PV = ( f ̂  k + 

−→ 

ζ ) . ∇B along the pe-

riphery of the eddies at 10 m below the surface. While the ini-

tial condition in our simulations have negative PV to begin with,

downfront winds further reduce the PV near the surface by the up-

ward flux of PV through the surface ( Thomas, 2005; Thomas and

Lee, 2005 ). The surface boundary layer with negative PV is unsta-

ble to SI as shown by observations in the wintertime Gulf Stream

( Thomas et al., 2013 ) and the Kuroshio front ( D’Asaro et al., 2011;

Nagai et al., 2012 ). Our analysis shows that our simulations re-

solve some of the SI modes (plot not shown), which is consistent

with earlier studies that show SI can be potentially resolved even

at non-LES resolutions ( Bachman and Taylor, 2014 ). This raises the

question whether SI can explain the enhanced dissipation occur-

ring in our simulations. 

The top-view plots from the four simulations ( Fig. 4 ) show

strong dissipation ( ε) in localized regions on the periphery of

the eddies where the PV is negative. However, other regions with

strongly negative PV show weak dissipation, implying that SI alone

cannot explain the spatial variability in the dissipation. Moreover,

unlike LES where the turbulent cascade is resolved explicitly, our

simulations do not capture all the downstream consequences of

SI even though they have the resolution to resolve some of the

SI modes. Hence, the interpretation of any existing spatial corre-

lation between negative PV and ε in our simulations must nec-

essarily differ from one explaining such a correlation in an LES.

In Section 4.4 we show that the spatial variability of ε results

from variations in the relative alignment of the geostrophic and

ageostrophic shear vectors, variations which themselves do not re-

quire the presence of negative PV. 

4.2. Contrasts between the instantaneous fields from the simulations 

Near the surface, the prescribed eddy viscosities and diffusivi-

ties in the simulations CONST1 and CONST2 are stronger than the

ones in KEPS and KPP ( Fig. 10 d). Stronger eddy viscosity reduces

the vertical shear ( S 2 ) within the mixed layer, whereas stronger

eddy diffusivity reduces the vertical and horizontal buoyancy gra-

dients by the following mechanisms: (i) strong diffusivity weakens

the stratification N 

2 by turbulent mixing, and (ii) weakens the lat-

eral buoyancy gradients ∂ x B and ∂ y B by a continuous process of

isopycnal slumping followed by vertical mixing ( Rudnick and Mar-

tin, 2002 ). 

Compared to KEPS and KPP, the simulations CONST1 and

CONST2 show a narrower range of S 2 , N 

2 ( Fig. 5 i–l), lateral buoy-

ancy gradients ∂ x B and ∂ y B ( Fig. 5 e–h) and weaker horizontal de-

formation rate (not shown). Weaker buoyancy gradients reduce the

rate of frontogenesis ( F a ), whereas weaker stratification and buoy-

ancy gradients reduce the range of PV in the simulations CONST1

and CONST2 as noted in the top-view plots ( Fig. 4 ). While the

contrast between the results from CONST1 and CONST2 are mini-

mal, CONST2 yields slightly more negative PV compared to CONST1

along the periphery of the meanders, as well as slightly stronger

frontogenetic rates and stronger dissipation compared to CONST1.

This subtle difference between CONST1 and CONST2 is due to

the meridional variability in the mixing coefficients in CONST2

( Section 3.3 ), which makes the effective vertical viscosity (and dif-

fusivity) in CONST2 less than CONST1 in the eddying region. The
imulation KEPS yields both stronger frontogenetic rates and a

arger range of PV compared to KPP due to weaker eddy viscosi-

ies and diffusivities in KEPS at a depth of 10 m. 

The peak dissipation in the simulation KEPS is stronger than

hat in CONST1 and CONST2 but weaker than that in KPP. This rel-

tive magnitude of the peak dissipation in KEPS, however, cannot

e explained solely in terms of the relative magnitude of the shear

quared since the parameterized ε in KEPS (2.2.2) is not equal to

m 

S 2 as it is in the other simulations. Rather, the parameterized ε
n KEPS is slightly less than νm 

S 2 near the surface, as shown later

n the subgrid EKE budget ( Section 4.5.2 ). 

In the next section, we explore the spatial variability of ε in

reater detail to characterize its variability. 

.3. Spatial variability of the dissipation with flow properties 

The four simulations show a marked difference in the mag-

itudes of ε, N 

2 and S 2 at a depth of 10 m ( Fig. 5 i–l). As the

ertical shear stress at the surface has to match the wind stress,

he surface shear is inversely proportional to the eddy viscosity

ue to the downgradient parameterization of the stress-divergence

erm ( Eq. 2c ). This inverse proportionality at the surface is ap-

roximately valid at an intermediate depth within the shear-driven

ayer near the surface. Since the prescribed eddy viscosities in

ONST1 and CONST2 near the surface are stronger than that in

EPS and KPP, stronger diffusion of momentum leads to reduced

ertical shear in CONST1 and CONST2, and consequently weaker ε
ompared to KEPS and KPP ( Fig. 5 i–l). 

Regardless of the type of the subgrid mixing parameterization,

ll simulations show certain similar trends in the scatter plots of ε
ith ζ , PV, ∂ x B , ∂ y B , N 

2 and S 2 , which are discussed below. 

The scatter plot of ζ with PV, color coded with ε ( Fig. 5 a–d)

hows that enhanced dissipation occurs mostly in the 4th quad-

ant characterized by cyclonic ζ and negative PV. The formation

f cyclonic ζ and negative PV occurs due to the following mech-

nisms. In a submesoscale eddy field, the cyclonic ζ occurs on

he denser side of the front and is associated with downwelling

 Capet et al., 2008a; Mahadevan and Tandon, 2006; Thomas and

ee, 2005; Thomas et al., 2008 ). Cyclonic ζ is further intensified by

n enhancement in the along-front jet induced by the ageostrophic

econdary circulation (ASC) during frontogenesis ( Hoskins and

retherton, 1972; Shakespeare and Taylor, 2013; Thomas and Lee,

005 ), and vortex stretching by downwelling ( Capet et al., 2008b;

oskins and Bretherton, 1972 ). Negative PV is intensified along the

eriphery of the eddies by the upward flux of PV by downfront

inds ( Thomas and Lee, 2005; D’Asaro et al., 2011 ). The 4th quad-

ant in the scatter plots of PV and ζ ( Fig. 5 a–d) show enhanced

issipation at a few regions, but it also shows weak dissipation at

ther regions. This reaffirms our earlier inference ( Section 4.1 ) that

I alone cannot explain the occurrence of the enhanced dissipation

een in our simulations. 

The 3rd quadrant ( Fig. 5 e–h), associated with negative ∂ x B
nd ∂ y B shows regions with both enhanced and weak dissipation,

hereas the other quadrants show weak dissipation only. Due to

hermal wind balance, negative ∂ x B and ∂ y B in our simulations

roduce a geostrophic shear directed towards the southeast. 

The range of S 2 in the simulations KEPS and KPP at 10 m

epth is nearly four times larger than that in CONST1 and CONST2

 Fig. 5 i–l), which is an outcome of weaker eddy viscosities in KEPS

nd KPP ( Section 4.2 ). Similarly, weaker eddy diffusivities in KEPS

nd KPP form stronger N 

2 compared to CONST1 and CONST2. In

ll the simulations, enhanced dissipation typically occurs in the

egions with stable stratification and strong S 2 , whereas the con-

ectively unstable regions show weak dissipation and weak S 2 

 Fig. 5 i–l). In KEPS, however, many regions with strong S 2 and sta-

le stratification with Ri < 0.25 show weak dissipation. This sub-
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Fig. 5. Scatter plots at 10 m depth over the eddying region at inertial period 10, color coded with log 10 ( ε). From top to bottom, the rows show the results from CONST1, 

CONST2, KEPS and KPP. The left column shows scatter plots of ζ and PV. The middle column shows scatter plots of B x and B y . The right column shows scatter plots of N 2 

and S 2 . The variables on the x and y axes are normalized to O(1) values by multiplying with integral powers of 10. The regions with enhanced dissipation are shown in 

larger markers compared to the other regions so that they can be distinctly spotted. (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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le difference in KEPS and the other three simulations is due to

he difference between how ε is parameterized in KEPS and in the

ther simulations. Since ε = νm 

S 2 in CONST1, CONST2 and KPP, it

s implicitly assumed in these simulations that ε is equal to the

ubgrid destruction of the resolved EKE. However in KEPS, the use

f a separate transport equation for ε ( Eq. 5 ) allows νm 

S 2 to be

ifferent from ε. Indeed, we show later ( Section 4.5.2 ) that the ε
ear the surface in KEPS is slightly smaller than νm 

S 2 . 

The spatial variability of ε with N 

2 , S 2 , ∂ x B , ∂ y B , ζ and PV

hows that enhanced dissipation in our simulations occurs at the

egions with cyclonic ζ , negative PV and a distinct frontal orienta-

ion such that the geostrophic shear is southeastward. In the next

e  
ection we explain the underlying mechanism for this variability

y examining the directions of the ageostrophic and geostrophic

hear at these regions. 

.4. Asymmetry in spatial variability of ε over the periphery of an 

ddy 

By the 10th inertial period, the O(10 km) eddies at a depth of

0 m ( Fig. 6 ) show enhanced dissipation in localized regions along

he edges characterized by strong lateral buoyancy gradients. The

egions with enhanced dissipation are mostly on the right edge

f the eddies where the stratification is stable, whereas the left

dge of the eddies show weak dissipation and unstable stratifica-
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Fig. 6. 3D contours from the KEPS simulation at inertial period 10, showing the 

zonal transect at y = 100 km and the plan view at a depth of 10 m for the prop- 

erties: (a) log 10 ( ε), (b) P total , and (c) N 2 . P total and N 2 are normalized to O(1) values 

by multiplying with 10 7 and 10 4 respectively. 

Fig. 7. 3D contours from the KEPS simulation at inertial period 10, showing the 

zonal transect at y = 100 km and the plan view at a depth of 10 m for the fol- 

lowing properties: (a) P geo , and (b) P cross . The variables are normalized to O(1) values 

by multiplying with 10 7 . 
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ion ( Fig. 6 a and c). We refer to the left and right edges as the

estratifying and restratifying edges respectively. In the following

aragraphs, we explain the mechanisms behind the spatial vari-

bility in the stratification and ε. 

The ageostrophic flow near the surface is composed of (i) the

ind-induced Ekman advection directed at an acute angle to the

ight of the wind-axis ( Ekman, 1905 ), and (ii) the cross-frontal

irculation leading to frontogenesis. At the destratifying edge, the

ross-frontal circulation is expected to be along the northwest due

o the frontal orientation. However, we observe a southeastward

ow at that edge ( Fig. 8 a1 and b1), implying that the Ekman ad-

ection dominates over the cross-frontal circulation and moves wa-

er from the heavier to the lighter side ( Fig. 8 a1 and b1). In con-

rast, at the restratifying edge, the direction of the Ekman advec-

ion is such that it is nearly orthogonal to the ageostrophic cross-

rontal circulation ( Fig. 8 a2 and b2). 

To further explore the variability of enhanced dissipation on the

rontal orientation, we discuss the individual components of the

otal subgrid shear production P total , given by 

 total = νm 

[(∂ z u a ) 
2 + (∂ z v a ) 2 ] ︸ ︷︷ ︸ 

P ageo 

+ νm 

[(∂ z u g ) 
2 + (∂ z v g ) 2 ] ︸ ︷︷ ︸ 
P geo 

+ 2 νm 

(∂ z u a .∂ z u g + ∂ z v a .∂ z v g ) ︸ ︷︷ ︸ 
P cross 

, (16)

here the subscripts a and g denote the ageostrophic and

eostrophic contributions respectively. The terms on the right hand

ide are the ageostrophic shear production ( P ageo ), geostrophic

hear production ( P geo ) and the cross term ( P cross ). We refer to P cross 

s the cross term because it contains products of the ageostrophic

nd geostrophic shear components. 

The term P geo does not change significantly along the periph-

ry of the eddies due to strong lateral gradients, but the term

 cross is more positive on the restratifying edge ( Fig. 7 ) compared

o the destratifying edge. This difference in the spatial variability

f P cross strengthens the total shear production on the restratifying

dge more compared to the destratifying edge. To explain this vari-

bility, we examine the relative alignment of the geostrophic and

geostrophic shear vectors at both edges of the eddy ( Fig. 8 ). 

The ageostrophic and geostrophic shear at both the edges of

he eddies are comparable in magnitude ( Fig. 8 a1, a2, b1 and b2).

he ageostrophic shear turns clockwise at the destratifying edge

nd opposes the geostrophic shear ( Fig. 8 a1 and b1), thus reducing

 total . In contrast, at the restratifying edge, the ageostrophic shear

urns clockwise and aligns with the geostrophic shear ( Fig. 8 a2 and

2). As a result, P total at the restratifying edge is enhanced. We see

 similar trend at the periphery of the other eddies in our simula-

ions. 

The parameterized ε is weaker at the destratifying edge de-

pite convective instability ( Fig. 8 a and b), which suggests that it

s set by the shear production of EKE at that depth (10 m). This

s consistent with the chosen depth lying within the shear-driven

ayer, as confirmed by further analysis of the resolved EKE budget

 Section 4.5 ). 

.5. EKE budgets at resolved and subgrid scales 

In this section we study the influence of different vertical mix-

ng parameterizations on the spatially averaged EKE budgets at

esolved and subgrid scales, where the averaging is done over

he eddying region. Since the averaged budgets in the simulations

ONST2 and CONST1 are similar, we present only the results from

ONST2, KEPS and KPP. 
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Fig. 8. Plots a) and b) show an O(10 km) eddy from the simulations CONST2 and KEPS respectively, with contours of log 10 ( ε) and isopycnals (red line) at 10 m depth and 

inertial period 10. a1) and a2) show the directions of the shear components on the destratifying and restratifying edges of the eddy in the CONST2 simulation respectively. 

Similarly, b1) and b2) show the shear components on the destratifying and restratifying edges on the eddy from the KEPS simulation respectively. Plots a1, a2, b1 and b2 

are color-coded with ζ / f . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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.5.1. Resolved EKE budget 

The following equation represents the different terms of the

esolved-scale EKE budget: 

∂(u 

′ 
i 
u 

′ 
i 
) 

∂t 
 ︷︷ ︸ 

˙ EKE 

= 

(
−u j 

∂ 

∂x j 
(u 

′ 
i u 

′ 
i ) 

)
︸ ︷︷ ︸ 

advection 

−
( 

(u 

′ 
i u 

′ 
j ) 

(
∂u i 

∂x j 

)
geo 

) 

−
( 

(u 

′ 
i u 

′ 
j ) 

(
∂u i 

∂x j 

)
ageo 

) 

︸ ︷︷ ︸ 
geo . shear production (P gr ) and ageo . shear production (P ar ) 

+ (B 

′ u 

′ 
i ) i =3 ︸ ︷︷ ︸ 

buoyancy production B r 

− 1 

ρ0 

∂ 

∂x i 
(p ′ u 

′ 
i ) ︸ ︷︷ ︸ 

pressure transport 

+ 

(
τi j 

∂u i 

∂x j 

)
︸ ︷︷ ︸ 

interscale transfer (εI ) 

, (17) 
here u i is the velocity along the direction i . The primed quantities

re fluctuations from the zonally averaged quantities. The terms

n the RHS are the advection, geostrophic shear production of re-

olved EKE ( P gr ), ageostrophic shear production of resolved EKE

 P ar ), buoyancy production of resolved EKE ( B r ), pressure trans-

ort and interscale transfer ( εI ). The interscale transfer, defined as

he contraction of the subgrid-scale stress tensor with the resolved

train-rate tensor, is the rate at which EKE is transferred from the

esolved to the subgrid scales. While this term is a sink for the re-

olved EKE, it appears as a source in the subgrid EKE budget in the

orm of the subgrid shear production ( Eq. 18 ). 

In a horizontally homogenous flow, Monin-Obukhov (MO) scal-

ng ( Lombardo and Gregg, 1989; Shay and Gregg, 1984; Thorpe,

007 ) predicts the shear production within the shear-driven layer

or MO layer) as P = u 3 ∗/ (κz) , where u ∗ ≈ √ 

τ0 /ρ is the surface

riction velocity. The depth of the MO layer (MO depth) is L MO =
 

3 ∗/κB c where B c is the buoyancy flux by atmospheric cooling.

ince the dissipation and shear production are in leading order

alance within the MO layer, the dissipation ε scales as u 3 ∗/ (κz) .

or mixed-layer fronts forced with a downfront wind stress but no

tmospheric cooling, earlier studies have raised the possibility to

ubstitute the Ekman buoyancy flux (EBF) for the cooling flux B c in
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Fig. 9. Resolved EKE budgets for the simulations CONST2, KEPS and KPP at inertial period 13, averaged over the eddying region. The top panel shows the budget within the 

top 30 m of the mixed layer. Since the averaged EKE budget in CONST1 is similar to that in CONST2, we show only the results from CONST2, KEPS and KPP. 
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the expression for L MO ( Ramachandran et al., 2013; Thomas, 2005 ),

such that L MO = u 3 ∗/ (κEBF ) where EBF = | ∂ y B | τ 0 / ρf ( Thomas, 2005 ).

The full implications of replacing B c by EBF for similarity-scaling

theory are beyond the scope of the present study. Here we only

seek to determine whether such a replacement helps to explain

the vertical structure of the resolved EKE budgets. 

Using a representative value of wind stress τ0 = 0 . 1 N / m 

2 , we

obtain u ∗ = 10 −2 m / s within the eddy field. Using a representa-

tive value of | ∂ y B | ≈ 10 −7 s −2 within the eddying region, we get

EBF ≈ 10 −7 m 

2 s −3 and L MO ≈ 26 m. The resolved EKE budgets in

the simulations KEPS and KPP show a leading order balance be-

tween P ar and εI within the upper 25 m ( Fig. 9 ), which is consis-

tent with the above calculation for L MO . However, such a balance is

not observed in CONST1 and CONST2 since stronger eddy viscosi-

ties near the surface ( Fig. 10 d) lead to considerably reduced verti-

cal shear, thereby reducing the magnitudes of P ar and εI . This re-

sults in all the terms of the resolved EKE budget to have the same

order of magnitude, which disrupts the leading order balance be-

tween P ar and εI seen in the other simulations. The resulting verti-

cal structure in CONST1 and CONST2 does not have a well-defined

shear layer and a corresponding MO depth. 

The resolved EKE budget from CONST2 is markedly different

from that in KEPS and KPP ( Fig. 9 ). Near the surface, the terms

P ar and εI are in a leading order balance in the simulations KEPS

and KPP. But in CONST2, these two terms are an order of mag-

nitude smaller than those in KEPS and KPP, forming a three-way

balance along with the vertical pressure transport near the surface

( Fig. 9 a). There is also an additional but minor contribution from

the geostrophic shear production. This contrast between CONST2

and KEPS or KPP is due to the influence of stronger eddy viscosi-

ties and diffusivities in CONST2 within the top 20 m ( Fig. 9 a–c). 

Below 20 m ( Fig. 9 d–f), the buoyancy production B r in CONST2

is an order of magnitude weaker than that in KEPS and KPP, and

hence not the dominant source term. A positive B r represents the
estratification associated with the conversion of APE to EKE by the

LI. In CONST2 (and CONST1), the eddy diffusivity does not change

ith time, which has the following consequences: (i) vertical dif-

usion of buoyancy by strong eddy diffusivities ( Fig. 10 d) slows

he rate of shallowing of the mixed layer by the MLI induced re-

tratification, and (ii) the repeated isopycnal slumping and vertical

ixing due to strong eddy diffusivity reduces the lateral buoyancy

radients in the eddying region ( Rudnick and Martin, 2002 ) which

re reservoirs of APE. The outcome is reduced rate of restratifica-

ion in CONST1 and CONST2. On the other hand, the shallowing of

he mixed layer by MLI-induced restratification in KEPS and KPP

educe the eddy diffusivities ( Fig. 10 d), which facilitate further re-

tratification and mixed-layer shallowing at later times ( Fig. 10 a–c).

ince the eddy diffusivity is influential in the reduction of the lat-

ral buoyancy gradients ( Rudnick and Martin, 2002 ), weaker eddy

iffusivity leads to stronger lateral gradients and thereby higher

PE in KEPS and KPP. Higher APE results in a stronger restratifi-

ation rate and consequently larger production of the resolved EKE

y B r ( Fig. 9 e and f). Due to larger EKE production, the summation

f the EKE-budget terms show a net increase in the EKE in KEPS

nd KPP, whereas in CONST1 and CONST2 the EKE reduces due to

I and the vertical pressure transport ( Fig. 9 a). 

There are important similarities between the vertical structures

f the resolved EKE budget in KEPS and KPP, and the TKE bud-

et in LES simulations of a mixed-layer front forced with down-

ront winds ( Taylor and Ferrari, 2010 ). In their simulations, they

ote a shear-driven layer near the surface overlying a buoyancy-

riven layer and a forced SI layer at the bottom of the stratified

oundary layer. The KEPS and KPP simulations in our studies show

he shear-driven layer atop the buoyancy-driven layer as discussed

arlier, but not a forced SI layer. It is perhaps likely that in order

o observe the kind of well-defined forced-SI layer seen in the LES

tudy ( Taylor and Ferrari, 2010 ), we would require LES-like grid

esolutions. Hence, based on the above qualitative comparison, we
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Fig. 10. Plots a), b) and c) show the zonally averaged mixed-layer depth (MLD) (solid lines) at inertial periods 10, 13 and 15 from simulations CONST2, KEPS and KPP. The 

MLD averaged spatially over the eddying region is shown in dashed lines. Plot d) shows the spatially averaged vertical eddy viscosity at inertial periods 10, 13 and 15 from 

KEPS and KPP alongside the prescribed eddy viscosity in CONST2. 

Fig. 11. (a) Subgrid-scale EKE budget at inertial period 13 from KEPS. (b) Subgrid buoyancy production for CONST2, KEPS and KPP, spatially averaged over the eddying region. 
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nfer that the simulations KEPS and KPP produce more realistic EKE

udgets compared to CONST1 and CONST2. 

.5.2. Subgrid EKE budget 

Among the different subgrid mixing parameterizations consid-

red in this study, only the k − ε allows us to explore the subgrid

KE budget since it has a transport equation for the parameterized

ubgrid EKE ( k ). The terms governing the evolution of k are shown

elow: 

∂ 

∂t 
k = 

∂ 

∂x i 

(
νm 

σk 

∂ 

∂x i 
k 

)
i =3 ︸ ︷︷ ︸ 

downgradient transfer D k 

−
(

u i 

∂ 

∂x i 
k 

)
i =1 , 2 ︸ ︷︷ ︸ 

Horizontal advection A h (
−u i 

∂ 

∂x i 
k 

)
i =3 ︸ ︷︷ ︸ 

Vertical advection A v 

(
−τi j 

∂u i 

∂x j 

)
i =1 , 2 ; j=3 ︸ ︷︷ ︸ 

shear production P s = νm S 2 

+ 

(
τ B 

i 

)
i =3 ︸ ︷︷ ︸ 

buoyancy production B s = −νs N 2 

− ε︸︷︷︸ 
subgrid dissipation 

, (18) 
here u i is the resolved velocity and τ B 
i 

is the subgrid buoyancy

roduction. The terms A h and A v are the horizontal and vertical ad-

ection of k by the resolved-scale velocities respectively. The term

 s denotes the production of k at subgrid scales through the con-

raction of the subgrid stress and the resolved-scale shear. Note

hat P s is identical in magnitude but opposite in sign to the in-

erscale transfer term εI ( Eq. 17 ), the sink in the resolved EKE bud-

et. The term B s is a downgradient parameterization for the sub-

rid buoyancy flux ( Burchard et al., 1999; Rodi, 1976 ). The term ε
enotes the dissipation of EKE at the smallest scales, which is pa-

ameterized in KEPS through a separate Eq. (5) . The terms P s and

 s are parameterized based on the resolved shear and stratifica-

ion respectively, and can be obtained in the other subgrid mixing

arameterizations as well. 

The subgrid EKE budget for KEPS averaged over the eddying re-

ion shows a leading order balance between P s and ε within the

ntire mixed layer ( Fig. 11 a). The term P s is larger than ε near

he surface, implying a net increase of k in the mixed layer. The

owngradient transport term D k is negligible except within the top

0 m where the vertical gradient of k is the largest. It, however,

s still smaller than the leading-order terms by an order of mag-

itude. The horizontal and vertical advection of EKE are negligible.
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The subgrid buoyancy production B s is negative within the entire

mixed layer, and is smaller than the leading order terms by an or-

der of magnitude ( Fig. 11 a). A comparison of the magnitudes of B s 
from the subgrid EKE budget and B r from the resolved EKE bud-

get in the buoyancy-driven layer reveals that B s is almost an or-

der of magnitude less than B r . This difference is qualitatively sim-

ilar to the LES results from a wind-forced mixed-layer front with-

out Stokes-drift ( Hamlington et al., 2014 ). In their studies, they

split their resolved buoyancy flux into a high-pass ( 9 . 6 m − 400 m )

component which represents the small-scale buoyancy flux, and a

low pass ( 400 m − 20 km ) component which represents the subme-

soscale buoyancy flux. They found that the low-pass buoyancy flux

which represents the eddy-induced restratification, is positive and

can be 4 times larger than the high-pass buoyancy flux which is

negative and represents the small-scale processes. We infer that

the ratio of the resolved to the subgrid buoyancy flux in the KEPS

simulation is qualitatively similar but not identical to that seen in

the LES study. 

At O(1 − 10 km) or larger scales where the ABI is resolved, pos-

itive buoyancy flux in KEPS ( Fig. 9 ) reflects eddy-induced restrati-

fication due to the conversion of APE to EKE. However at subgrid

scales, the downgradient parameterization for the buoyancy flux

( Eq. 18 ) makes it a sink (negative) of k during stable stratification

and a source (positive) of k during unstable stratification. A com-

parison of B s from the four simulations averaged over the eddy-

ing region shows that it is the most negative for the simulation

CONST2 ( Fig. 11 b). In CONST2 and CONST1, since the eddy diffusiv-

ity does not change with time, the increase in N 

2 due to the ABI

results in the intensification of the negative subgrid buoyancy flux.

However, in KEPS and KPP, the increase in stratification due to ABI

is compensated by the reduction in the eddy diffusivity, resulting

in a negligible change in the subgrid buoyancy flux at later times. 

5. Conclusion 

This study has explored: (i) the influence of different verti-

cal eddy viscosity parameterizations on the resolved submesoscale

eddy field forced with downfront winds, (ii) the spatial variabil-

ity of the dissipation in a submesoscale eddy field and the mecha-

nisms that enhance the dissipation in localized regions within the

eddy field, and (iii) the vertical structure of the subgrid EKE bud-

get. We use the 3D ocean model PSOM and estimate the vertical

eddy viscosities and diffusivities using three different types of 1D

vertical mixing parameterizations: (i) k − ε, (ii) KPP and (iii) an

Ekman-layer based parameterization. 

Our study shows that the magnitude of the parameterized dis-

sipation, averaged over the eddy field, varies with the type of the

subgrid mixing parameterization. For the models that prescribe

constant vertical eddy viscosities, stronger eddy viscosity leads to

weaker dissipation. However for the models that dynamically es-

timate eddy viscosities based on the water column properties, the

ABI induced restratification reduces the eddy viscosities within the

mixed layer, resulting in stronger dissipation. 

Our simulations show that the rate of restratification by MLI

in a resolved submesoscale eddy field depends on the type of the

chosen subgrid mixing parameterization. Constant eddy-viscosity

parameterizations with O( 10 −2 m 

2 s −1 ) values weaken the lateral

buoyancy gradients by repeated slumping of the isopycnals and

vertical mixing ( Rudnick and Martin, 2002 ), thus weakening the

restratification by MLI. For mixing parameterizations that dynami-

cally estimate the turbulent mixing coefficients based on the wa-

ter column properties, the MLI induced restratification reduces the

eddy diffusivities, which further facilitates the restratification and

shallowing of the mixed layer at later times. Since the k − ε param-

eterization yields weaker eddy diffusivities than the KPP, the mixed

layer in KEPS shallows more rapidly than that in KPP. In contrast,
ince the O( 10 −2 m 

2 s −1 ) eddy diffusivities prescribed in CONST1

nd CONST2 remain unaffected by the restratification, the mixed

ayer in CONST1 and CONST2 shallows less rapidly compared to

EPS and KPP. 

Our study further shows a spatial variability in the parameter-

zed dissipation in a submesoscale eddy field forced with down-

ront winds. The dissipation is enhanced at the restratifying edge

ut weak at the destratifying edge. This spatial variability is the

onsequence of the relative alignment of the shear vectors at the

wo edges of the eddies. At the restratifying edge, the ageostrophic

hear turns clockwise and aligns with the geostrophic shear, re-

ulting in stronger shear production. In contrast, at the destratify-

ng edge, the two shear vectors oppose each other, which weakens

he shear production. The outcome is enhanced dissipation at the

estratifying edge and weak dissipation at the destratifying edge

ince the magnitude of the parameterized dissipation is set by the

hear production within the shear-driven layer irrespective of sta-

le or unstable stratification. 

Near the surface the dissipation and ageostrophic shear pro-

uction in the simulations KEPS and KPP are an order of magni-

ude larger than those in CONST1 and CONST2. This difference is

he consequence of the diffusion of the vertical shear by stronger

ddy viscosities in CONST1 and CONST2 than those generated by

he k − ε and KPP mixing models. The consequence of weakened

ertical shear is observed in the resolved EKE budget for the sim-

lations CONST1 and CONST2 where the leading order balance

s between the ageostrophic shear production, subgrid dissipation

nd vertical pressure transport with a minor contribution from

he geostrophic shear production. This balance differs from that in

EPS and KPP where the EKE budget shows a shear-driven layer

ithin the top 25 m and a buoyancy-driven layer underneath. The

epth where the buoyancy production balances the shear produc-

ion is approximately equal to the MO layer depth obtained by re-

lacing the cooling flux by the Ekman buoyancy flux due to down-

ront winds ( Thomas, 2005 ). 

The subgrid EKE budget in KEPS shows a leading order balance

etween the subgrid shear production and the subgrid dissipation.

hile this leading order balance exists throughout the mixed layer,

here is a net increase in the production of subgrid EKE near the

urface since the subgrid shear production exceeds the dissipation.

he magnitude of the parameterized subgrid buoyancy production

n the buoyancy-driven region is an order of magnitude smaller

han the resolved buoyancy production of EKE. 

The parameterizations used in this study for vertical mixing

onsider the surface momentum flux, the depth of the mixed

ayer and the vertical shear and stratification for estimating the

ddy viscosities. However, other sources of small-scale turbulence

ike breaking waves ( Craig and Banner, 1994 ) and Stokes shear

ue to surface waves ( Haney et al., 2015 ), also influence the

ubgrid momentum and buoyancy parameterizations for the re-

olved flow field. The inclusion of these effects into existing mix-

ng parameterizations may have a potential influence on the larger

( 1 km − 100 km ) scale processes. It is of interest to explore how

hese effects influence the spatial variability of the parameterized

issipation and the EKE budget in a submesoscale eddy field. 
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