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An improved version of the spatial ecosystem and population dynamics model SEAPODYM was used to
investigate the potential impacts of global warming on tuna populations. The model included an enhanced
definition of habitat indices, movements, and accessibility of tuna predators to different vertically migrant
and non-migrant micronekton functional groups. The simulations covered the Pacific basin (model domain)
at a 2� � 2� geographic resolution. The structure of the model allows an evaluation from multiple data
sources, and parameterization can be optimized by adjoint techniques and maximum likelihood using fish-
ing data. A first such optimized parameterization was obtained for bigeye tuna (Thunnus obesus) in the
Pacific Ocean using historical catch data for the last 50 years and a hindcast from a coupled physical–
biogeochemical model driven by the NCEP atmospheric reanalysis. The parameterization provided very
plausible biological parameter values and a good fit to fishing data from the different fisheries, both within
and outside the time period used for optimization. We then employed this model to forecast the future of
bigeye tuna populations in the Pacific Ocean. The simulation was driven by the physical–biogeochemical
fields predicted from a global marine biogeochemistry – climate simulation. This global simulation was
performed with the IPSL climate model version 4 (IPSL–CM4) coupled to the oceanic biogeochemical model
PISCES and forced by atmospheric CO2, from historical records over 1860–2000, and under the SRES A2 IPCC
scenario for the 21st century (i.e. atmospheric CO2 concentration reaching 850 ppm in the year 2100).
Potential future changes in distribution and abundance under the IPCC scenario are presented but without
taking into account any fishing effort. The simulation showed an improvement in bigeye tuna spawning
habitat both in subtropical latitudes and in the eastern tropical Pacific (ETP) where the surface temperature
becomes optimal for bigeye tuna spawning. The adult feeding habitat also improved in the ETP due to the
increase of dissolved oxygen concentration in the sub-surface allowing adults to access deeper forage.
Conversely, in the Western Central Pacific the temperature becomes too warm for bigeye tuna spawning.
The decrease in spawning is compensated by an increase of larvae biomass in subtropical regions. However,
natural mortality of older stages increased due to lower habitat values (too warm surface temperatures,
decreasing oxygen concentration in the sub-surface and less food). This increased mortality and the dis-
placement of surviving fish to the eastern region led to stable then declining adult biomass at the end of
the century.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Climate warming simulations have been conducted for more
than a decade using different coupled Atmosphere–Ocean General
Circulation Models (AOGCMs) to investigate the response of the
physical atmosphere–ocean system to increased greenhouse gases
and aerosols (Cubasch et al., 2001; IPCC, 2007). Physical changes
ll rights reserved.

: +33 561 393 770.
predicted from these simulations, i.e., warming, changes in cloud-
iness and mixed layer thickness, and increased vertical stratifica-
tion, very likely will cause significant adjustments in the biology
of the oceans (Denman et al., 1996; Cox et al., 2000; Bopp et al.,
2001; Boyd and Doney, 2002). In particular, higher stratification
is predicted to reduce nutrient supply while warming and changes
in cloudiness affect photosynthesis directly. Nevertheless, global
warming impacts would result in large regional variability.

Using six of these AOGCM simulations, Sarmiento et al. (2004)
investigated the ocean biological response to global warming,
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between the beginning of industrial period and 2050, with a diag-
nostic model of primary production (PP) based on the definition of
large ocean biomes. At global scales, the simulations predict an in-
crease in primary production in the range of 0.7–8.1%. This high le-
vel of aggregation integrates large regional differences: a
contraction of the highly productive marginal sea ice biome
(�42% in the Northern Hemisphere and �17% in the Southern
Hemisphere), an expansion of the low productivity permanently
stratified subtropical gyre biome (+4.0% in the Northern Hemi-
sphere and +9.4% in the Southern Hemisphere), a spatial expansion
of the subpolar gyre biome (+16% in the Northern Hemisphere
and +7% in the Southern Hemisphere), and a contraction of the sea-
sonally stratified subtropical gyres (�11% in both hemispheres).
The low-latitude (mostly coastal) upwelling biome area changes
only modestly.

Another approach to explore the impact of global warming on
ocean primary productivity is to couple AOGCMs to mechanistic
biogeochemical models (e.g. Fasham et al., 1990; Sarmiento
et al., 1993; Aumont et al., 1999; Bopp et al., 2001; Christian
et al., 2002). A recent comparison of observations with simula-
tion outputs from three of such coupled models (IPSL, MPIM,
NCAR) showed good agreement between independent estimates
from coupled models and satellite observations (Schneider
et al., 2008), providing increased confidence that such models
can help in studying the impact of global warming on marine
productivity and carbon export. Results from these coupled
models reproduce the chain of cause and effect leading from
stratification through nutrient concentrations to primary produc-
tion. They confirmed the role of the low-latitude, permanently
stratified ocean for global primary production anomalies
(Behrenfeld et al., 2006). In particular, the IPSL model is able
to reproduce the observed relationship between interannual var-
iability in climate (e.g., change in stratification and SST) and pri-
mary production. It predicts that the PP would decrease under
the possible more El Niño-like conditions with surface warming
and stronger stratification in the equatorial region. For example,
an increase of the average SST of 1.6 �C between 2000 and 2100
under the IPCC A2 scenario would reduce PP in the equatorial
region by 9%.

Here, we used outputs from this IPSL coupled model as the forc-
ing of an improved version of the spatial ecosystem and population
dynamics model SEAPODYM (Lehodey et al., 2008; Senina et al.,
2008). We employed this model to forecast the future of bigeye
tuna (Thunnus obesus) populations in the Pacific Ocean under the
SRES A2 IPCC scenario for the 21st century (i.e., atmospheric CO2

concentrations reaching 850 ppm in the year 2100, and historical
data between 1860 and 2000).

Bigeye tuna has an extended habitat in the three oceans, from
the equator to temperate regions. The species has a life-
span >10 years, age at first maturity between 2 and 3 years and
spawning occurs in tropical warm waters. While young fish are
found in surface schools with other tuna species (skipjack [Katsuw-
onus pelamis] and yellowfin [Thunnus albacares]), the adults explore
deeper layers where they can find mesopelagic prey species. These
deep excursions are made possible by their highly specialized
physiology. In particular, they have a well developed ‘rete mirabile’,
that is a counter-current heat exchange system in the red muscle,
and a good tolerance to low dissolved oxygen concentration. Big-
eye tuna is a very valuable species and is facing high fishing pres-
sure from the longline sub-surface fisheries, but also as by-catch of
purse seine surface tuna fisheries.

Here, we present the approach that was followed to parameter-
ize and evaluate the model using historical fishing data. Then, a
simulation was conducted with the IPSL forcing to forecast the
physical and biogeochemical changes in the Pacific Ocean under
the A2 IPCC scenario.
2. Materials and methods

To establish confidence in the forecast of the model SEAPODYM
under the IPCC climate change forcing, our first objective was to
evaluate the prediction of the model for the historical and present
periods. Thus, existing data and independent estimates of species
biomass can be used to assess the model outputs. In addition, it
was essential to check the model prediction outside of the time
window used for the parameters optimization, to verify that the
mechanisms included in the model are robust and sufficient to pre-
dict species dynamics and the observed historical catch. Therefore,
the analysis consisted of three steps: (i) model parameters optimi-
zation using fishing data for the recent period (1985–2000), (ii)
hindcast simulation for the period 1965–1985 with the estimated
parameters and (iii) the forecast experiment (2001–2100). The
forcing fields used for these different experiments were obtained
from the ESSIC-coupled ocean-biogeochemical model driven by
the atmospheric NCEP reanalysis, and the IPSL Earth Climate
change simulation.
2.1. SEAPODYM

SEAPODYM is a model developed initially for investigating spa-
tial tuna population dynamics under the influence of both fishing
and environmental effects (Lehodey et al., 2003). The model is
based on advection–diffusion-reaction equations. The main fea-
tures of this model are: (i) forcing by environmental data (temper-
ature, currents, primary production and dissolved oxygen
concentration), (ii) prediction of both temporal and spatial distribu-
tion of mid-trophic (micronektonic tuna forage) functional groups,
(iii) prediction of both temporal and spatial distribution of age-
structured predator (tuna) populations, (iv) prediction of total catch
and size frequency of catch by fleet when fishing data (catch and ef-
fort) are available, and (v) parameter estimation based on fishing
data assimilation techniques (see below, and Senina et al., 2008).

A recent enhanced version (Lehodey et al., 2008) has been
developed that includes a better definition of habitat indices,
movements, and accessibility of tuna and tuna-like predators to
different vertically migrant and non-migrant micronekton func-
tional groups (Lehodey et al., 2010). These groups are represented
in a three-layer vertical environment delineated using predicted
euphotic depth that is used to achieve a more realistic vertical
structure of pelagic ecosystem. Thus, the epipelagic layer is be-
tween surface and 1� euphotic depth, the mesopelagic layer be-
tween 1� and 3� the euphotic depth and the bathypelagic layer
between 3� the euphotic depth and 1000 m. Temperature, zonal
(u) and meridional (v) currents and dissolved oxygen predicted
from ocean physical–biogeochemical simulations are averaged fol-
lowing this definition of layers while total primary production is
integrated over the entire vertical layer. This new definition of
vertical layers was used with the IPSL simulation, while the param-
eter estimation for bigeye tuna using ESSIC hindcast followed the
same model configuration as the one used for Pacific skipjack tuna
as described in Senina et al. (2008), i.e. constant depth layers.
2.2. NCEP–ESSIC Pacific Ocean simulation

Forcing fields derived from the NCEP–ESSIC simulation covering
the period 1948–2004 on a monthly 2� � 2� resolution were de-
scribed in Lehodey et al. (2008), Senina et al. (2008) and Lehodey
et al. (2010), where they were used to drive simulations of skipjack
and bigeye tunas and their mid-trophic level prey organisms. The
ESSIC model simulation is driven by 2D atmospheric fields (NCEP)
and provides reasonable predictions of interannual and interdeca-
dal variability. In particular, all ENSO events are well reproduced as
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well as the mid-1970s regime shift (Wang et al., 2005, 2006). How-
ever, the model was developed and parameterized for tropical
oceans and the seasonality at high latitudes presents some bias
(see Section 2.3.). In addition, the model did not predict dissolved
oxygen concentration so we used quarterly climatological data
(Garcia et al., 2006).

2.3. IPSL–PISCES Earth Climate simulation

The IPSL–PISCES Earth Climate simulation provided physical–
biogeochemical fields used to drive SEAPODYM and to investigate
the responses of bigeye tuna population dynamics to global
warming. The IPSL climate model (Marti et al., 2006) is composed
of an oceanic physical component OPA, a sea ice component LIM,
an atmospheric component LMDZ, and a land surface component
ORCHIDEE, coupled through the OASIS coupler. The global climate
simulation starts with climatological conditions and the only var-
iable forcing is the change in atmospheric CO2 concentration. The
simulation uses the historical atmospheric CO2 concentration be-
tween 1860 and 2000, which then increases according to the SRES
A2 IPCC scenario for the 21st century, i.e., atmospheric CO2 con-
centrations reaching 850 ppm in the year 2100. Physical forcing
fields from the climate simulation have then been used to force
an offline version of the oceanic biogeochemical model PISCES
(for Pelagic Interactions Scheme for Carbon and Ecosystem Stud-
ies; Aumont and Bopp, 2006) over a similar period (1860–2100)
and for the global ocean. PISCES incorporates both multi-nutrient
limitation (NO3, NH4, PO4, SiO3 and Fe) and a description of the
plankton community structure with four plankton functional
groups (diatoms, nano-phytoplankton, micro-zooplankton and
meso-zooplankton). A detailed description and evaluation of those
simulations is provided in Bopp et al. (2005) and Schneider et al.
(2008).

These simulations reproduce the seasonal cycle reasonably well
and the atmosphere–ocean coupled system generates internal var-
iability at interannual to interdecadal frequencies. However, while
ocean simulations that are forced by observation-derived wind
fields (e.g. NCEP atmospheric reanalysis) lead to realistic interan-
nual to decadal variability, the ones produced by climate models
are not expected to be in phase with the actual observed variabil-
ity. To illustrate these differences, we compared the predicted out-
puts of the ESSIC simulation with the IPSL–PISCES simulation and
observations.

2.4. Parameter estimation

The parameter optimization method is fully described in Senina
et al. (2008) and will only be briefly mentioned here. SEAPODYM
produces estimates of total catch and catch by size based on model
calculations of age-structured population abundance and other
variables and observed data on fishing effort. The maximum-
likelihood approach uses a joint-likelihood function consisting of
contributions from discrepancies in total catches and catches by
size (see Appendix A). The maximum is found by minimizing the
negative logarithm of likelihood using a quasi-Newton numerical
function minimization algorithm and gradients computed using
adjoint functions. The standard deviations of all estimated param-
eters were computed in the vicinity of the optimum from the in-
verse Hessian matrix (Bard, 1974). The Hessian matrix was
approximated by central finite differences using first derivatives
exactly evaluated by adjoint calculations.

The parameterization that has been obtained from the ESSIC
simulation cannot be applied directly to the IPSL simulation be-
cause of significant differences in the forcing fields. The ESSIC hind-
cast was based on a previous definition of vertical layers, with fixed
boundaries of 0–100 m, 100–400 m and 400–1000 m for epipe-
lagic, mesopelagic and bathypelagic layers respectively, while in
the new version used with IPSL climate simulation, the vertical
boundaries were defined in relation to the euphotic depth. In addi-
tion, dissolved oxygen fields used with the ESSIC forcing fields
were those from the seasonal Levitus climatology (Garcia et al.,
2006), while in the IPSL–PISCES experiment the concentration of
oxygen is directly computed in the model.

Because of these differences in the configuration of simulations,
it was necessary to test the sensitivity of parameters estimated
with the first optimization experiment (i.e. forced by ESSIC) to
the new forcing field of the IPSL simulation. Thus, we conducted
a series of simulations with optimal parameters estimated from
actual fishing data in the Pacific Ocean for the recent period
1985–2000 and the physical–biogeochemical fields of the IPSL sim-
ulation, and compared results with those of the ESSIC-based
optimization.

To evaluate the model’s ability to capture the essential features
of the dynamics of the bigeye tuna population, we carried out a
hindcast simulation back to the early 1960s, i.e. the beginning of
industrial fishing, with the fixed ‘‘best-parameterization” achieved
from optimization experiments, and compared predicted catches
conditioned on the observed fishing effort and observed catches.
Bigeye tuna biomass trends were also compared to those estimated
from a state-of-the-art standard stock-assessment model used by
the Western Central Pacific Fisheries Commission. Then we used
the model framework for the entire period (1860–2100), without
fishing effort, to investigate the general trends of biomass and spa-
tial distributions associated with environmental changes under the
increasing forcing of atmospheric CO2.
3. Results

3.1. Forcing fields

Before comparing the results of the two optimization experi-
ments, it was critical to examine differences in the forcing fields
of the two simulations. The euphotic depth was of particular
importance since it defines the three vertical layers in the en-
hanced version of SEAPODYM used in IPSL-forced experiments,
and within which physical variables (temperature, currents) and
oxygen content were averaged. While the epipelagic layer coin-
cides with the euphotic depth in the IPSL-forced experiment, it
was fixed to 100 m in the previous ESSIC-forced experiment.

Euphotic depth is strongly inversely correlated with primary
production and can be empirically deduced from chlorophyll-a sa-
tellite data (Morel and Berthon, 1989). Euphotic depth calculated
from SeaWiFS chlorophyll data1 is shown on Fig. 1 for three large
geographical regions influenced by the main climate variability of
the period used for optimization, i.e. seasonal and interannual
(ENSO) signals. On average, the values of Zeu of both satellite-derived
(VGPM) and model (IPSL) series are in the same range in the equato-
rial regions (cold tongue and warm pool), i.e. �80–100 m, but the
IPSL simulation predicted a stronger seasonal variability at higher
latitudes (North Pacific) with a shallower depth peaking in May–June
(�50 m) while shallowest SeaWiFS-derived euphotic depth (80 m)
occurred in April.

Average series of temperature in the epipelagic layers and ver-
tically integrated PP predicted by the ESSIC hindcast and IPSL cli-
mate simulation (Fig. 2) are compared to the temperature
predicted by the SODA reanalysis using data assimilation (Carton
et al., 2000), and SeaWiFS-derived PP calculated following the
VGPM model of Behrenfeld and Falkowski (1997). Temperature
si

http://science.oregonstate.edu/ocean.productivity/


Fig. 1. Comparison of average euphotic depth, Zeu (m), in three geographical
regions: the North Pacific (40�N–40�S; 160�E–150�W), the Cold Tongue (10�N–10�S;
180�W–70oW) and the Warm Pool (10�N–10�S; 130�E–165�E), between predictions
from the IPSL Earth Climate simulation and the VGPM SeaWiFS-derived euphotic
depth (Morel and Berthon, 1989; Behrenfeld and Falkowski, 1997).
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differences between IPSL and SODA series do not exceed 1 �C in the
warm pool and cold tongue. Primary production is also in the same
range in VGPM (SeaWiFS-derived) and IPSL series but higher in
ESSIC series, roughly by a factor of two. The ESSIC simulation cor-
rectly predicted ENSO-related temperature and primary produc-
tion variability in the tropical region. IPSL simulation also
predicts an ENSO-type variability, with coherent changes between
physics and biogeochemistry (Schneider et al., 2008). Though the
climate model is not simulating ENSO events coinciding with real
ones, the period used for the parameter estimation experiment
(1985–2000) included an El Niño-like episode coinciding with
the strong event observed in 1997–1998 (Figs. 2 and 3). This El
Niño-like event is characterized by an expansion of warm waters
in the eastern equatorial Pacific, a decrease in intensity of the
equatorial upwelling, especially in the west, and a less oxygen-
depleted upper layer in the east (Fig. 3).

At higher latitudes (North Pacific), the IPSL simulation better
predicts the seasonal peaks than the ESSIC hindcast when com-
pared to satellite-derived VGPM series (Fig. 2). The seasonal cycles
of temperature of the three series (ESSIC, SODA and IPSL) are sim-
ilar but present important discrepancies in the range of values: ES-
SIC being 4 �C above the SODA series and IPSL 4 �C below. The cold
bias in the IPSL series is all the more surprising because the pre-
dicted euphotic depth used to average values in the epipelagic
layer is shallower (�50–80 m) than the one based on satellite chlo-
rophyll-a data to average the values of the SODA reanalysis. In-
deed, this cold bias occurs in middle and high latitudes in all
basins and is a permanent feature of the IPSL (and some other) cli-
mate simulations. The bias is partly due to a shift of atmospheric
structures (winds) towards the equator, and decreases when high-
er resolutions of the atmospheric model are tested. On the other
hand, the warmer temperature predicted by the ESSIC simulation
are likely due to the lack of a sea-ice model.

In summary, for the time period 1985–2000 that were used for
parameter estimation, the ESSIC hindcast presents some biases in
mid to high latitudes (seasonal signal and too warm temperatures
at high latitudes), but works reasonably well in the tropics to sim-
ulate ENSO variability. However, this interannual signal is missing
for oxygen concentration since we used climatology, and the verti-
cal structure has been fixed and is constant over time in both east
and west. The IPSL climate simulation has a good seasonal cycle at
high latitudes, internally generated interannual variability close to
observed ENSO variability in the tropics but not coinciding with
observed events, a good coherence between changes in the vertical
structure, primary production and dissolved oxygen concentration,
but a strong cold temperature anomaly in the mid to high latitudes.

3.2. Optimization experiments

The parameter estimation of the SEAPODYM model for bigeye
tuna was conducted using historical fishing data over the period
1985–2004 with the ESSIC hindcast and 1985–2000 with the IPSL
climate simulation. Fishing data included spatially disaggregated
monthly catch data for four purse-seine fisheries and two pole-
and-line fisheries at an original resolution of 1� � 1� and 15 long-
line fisheries (5� � 5� resolution) with quarterly length frequency
data associated with each fishery over the historical fishing period
(data provided by the Secretariat of the Pacific Community and the
Inter-American Tropical Tuna Commission). All together, these
data represented 360,720 pairs of catch/effort observation and
1499 size-frequency distributions used in the parameter optimiza-
tion. Fisheries from the Philippines–Indonesia region were in-
cluded to account for total fishing mortality but were not used
for optimization due to lack of spatial accuracy (Table 1).

Final estimates of the parameters in both experiments with ES-
SIC and IPSL data are presented in Table 2. The two experiments
showed a generally good fit to these fishing data both for monthly
catch time series and length–frequency distribution of catch
(Fig. 4), and estimated parameter values were biologically plausi-
ble. The uncertainties of parameter estimates were provided by
the diagonal elements of error-covariance matrix calculated as
the inverse of the Hessian. For some parameters, particularly for
the optimal temperatures T0 and Ta (see Table 2), the uncertainties
seem to be very small, hence the likelihood profiles for these
parameters (within their boundaries) were computed and plotted
to assure that its nearly quadratic shape permits local
linearization.

Examples of spatial distribution of predicted biomass of young
and adults are presented in Fig. 5 for two typical periods marked
by El Niño and La Niña phases. As expected, results based on ESSIC
hindcast forced by observed atmospheric fields (NCEP) were the
most realistic, especially for the simulation of ENSO variability
(Fig. 2). However, in this configuration, the biomass of adult bigeye
tuna during the El Niño event in the eastern equatorial region was
low while the catch was high. This is not the case in the experi-
ment based on IPSL forcing that finally gives a better fit than the
ESSIC-based experiment for longline fishing data in the equatorial
region. This result can be attributed mostly to the use of climatol-
ogy as a measure of oxygen in ESSIC experiment, which did not in-
clude prognostic oxygen in this version and does not represent the
enhanced oxygen habitat in the eastern equatorial Pacific during
an El Niño event, as in the IPSL experiment (Fig. 3). The second rea-



Fig. 2. Comparison of average vertically integrated primary production (left, in mmole C d�1 m�2) and temperature (right, in �C) in the epipelagic layer of three geographical
regions: the North Pacific (40�N–40�S; 160�E–150�W), the Cold Tongue (10�N–10�S; 180�W–70�W) and the Warm Pool (10�N–10�S; 130�E–165�E). The series are from ESSIC
hindcast, IPSL Earth Climate simulation, the SODA reanalysis with data assimilation (Carton et al., 2000) and satellite-derived primary production calculated according to the
VGPM model of Behrenfeld and Falkowski (1997). For temperature, the average in the epipelagic layer was based on the SeaWiFS-derived euphotic depth (Morel and Berthon,
1989; Behrenfeld and Falkowski, 1997) for SODA and IPSL, and the first 100 m for ESSIC.
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son is the introduction of variable vertical boundary layers, related
to the euphotic depth, in the version used with IPSL forcing. This
change was introduced to have a better representation of the var-
iability in vertical structure of the ocean. In particular, there is a
well observed deepening of the thermocline in the east equatorial
Pacific (cold tongue) during El Niño events, and conversely a shal-
lowing in the west (warm pool), that can lead to substantial differ-
ences in mean fields of temperature, oxygen and currents by layer,
as well as in the predicted prey (micronekton) distribution. At high
latitudes, however, the ESSIC experiment provides the best fit to
fishing data, mainly because the cold temperature bias of the
IPSL-based experiment led to limited movement of adult fish and
thus, lower biomass in these regions (Fig. 5).

Optimal spawning temperature was estimated to be 26.2 �C
with narrow standard deviation of the Gaussian function (0.8 �C
and 0.9 �C) for both simulations. This range of temperature values
corresponds typically to those observed at sea for mature and
spawning bigeye tuna. For example, Schaefer et al. (2005) noted
that in the eastern Pacific Ocean, bigeye tuna were spawning in
water with sea surface temperature (SST) between 24 �C and
30 �C, with considerable numbers of mature females collected at
SST between 24 �C and 27 �C, and the highest proportion of spawn-
ing at SST greater than 28 �C. It should be noted here that temper-
ature used in the model was an average of the epipelagic layer,
thus lower than SST values. Optimal habitat temperature of the
oldest cohort was estimated to be 13 �C with 2.16 �C standard devi-
ation using the ESSIC hindcast but a much lower value (8 �C) with a
large standard deviation (5 �C) was estimated using the IPSL forc-
ing fields. In fact, in the latter simulation both temperature param-
eters of adult’s thermal habitat approached the imposed boundary
values and hence were fixed in the final minimization experiment
(and as such, it was impossible to compute SE for these parame-
ters; see Table 2). This result was due to the strong cold tempera-
ture bias of the IPSL simulation in the temperate and subtemperate
regions where longline fleets catch a substantial amount of adult
bigeye tuna. Despite a much lower optimal temperature over a lar-
ger distribution, the model had difficulties fitting these observa-
tions. The resulting thermal habitat by age, based on the ESSIC
hindcast, is shown in Fig. 6. The parameter a that scales the contri-
bution of the prey-predator larvae trade-off mechanism in the
spawning index was lower for the IPSL-based experiment. It means
that the higher contribution of temperature in defining the habitat
gives a more diffuse and extended spawning area. In other words,
the environmental forcing is not realistic enough to allow the mod-
el to predict more concentrated but highly favourable spawning
zones combining abundance of prey and low biomass of predators
for larvae. Since the spawning activity occurs in the warm waters
of the tropical region, this result could be logically attributed to
the less realistic prediction of the interannual (ENSO) variability
in the climate simulation.



Pr
im

ar
y 

pr
od

uc
tio

n 

Fig. 3. El Niño-type event in IPSL Earth Climate model simulation. Left: 1st semester 1998 ‘‘El Niño”, and right: 1st semester 1999 ‘‘La Niña”. From top to bottom: temperature
and dissolved oxygen concentration in the epipelagic layer, and vertically integrated primary production.
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Physiological experiments suggest that bigeye tuna are more
tolerant to low ambient oxygen than other tuna species (Brill,
1994; Lowe et al., 2000), with tolerance ranging between 0.5 and
1.0 mL O2 L�1 (Sharp, 1978; Sund et al., 1980). The estimated oxy-
gen threshold parameter increased from 0.46 to 1.02 mL L�1 be-
tween ESSIC- and IPSL-based experiments respectively (Table 2;
Fig. 6). This change was associated with the use of climatological
oxygen fields in the ESSIC experiment and with prognostic
monthly oxygen fields in IPSL. The latter however, is coherent with
seasonal and interannual variability of other environmental factors
(especially temperature and primary production).

Natural mortality rates are the most difficult parameters to esti-
mate in population dynamic models. For bigeye tuna, the mortality
rate was estimated to be 0.03 month�1 by analysis of catch-at-age
data for the longline fishery, i.e., for large fish (Suda and Kume,
1967). Other estimates obtained from analyses of tagging data in
the western Pacific Ocean range from 0.56 month�1 for small fish
(20–40 cm) to 0.04 month�1 for 60–110 cm fish (Hampton et al.,
1998). In SEAPODYM, natural mortality is defined by the combina-
tion of two functions (Fig. 6) allowing mortality rates to vary with
age (size) but also spatially and temporally within a range of values
related to the habitat index. Parameters estimated for the functions
in both experiments produced reasonable natural mortality coeffi-
cients-at-age comparable to other studies (Fig. 6) but with higher
values for the oldest cohorts. The parameter bs that constrains this
part of the curve however, is the most difficult to estimate by the
model (Table 2).

The asymptote value of the Beverton–Holt relationship, Rs is
also difficult to estimate in population dynamics models. The
SEAPODYM optimizer estimated Rs with relatively large uncer-
tainty. This parameter defines the number of larvae released in
each cell of the grid in relation to spawning biomass and weighted
by the spawning index (Fig. 6). This value, together with mortality
rates, determines the total population size.

Estimated diffusion (Dmax) gives diffusion rates ranging on
average from 560 nmi2 day�1 (1037 km2 day�1) for young cohorts



Table 1
Definition of fisheries for the Pacific bigeye tuna SEAPODYM parameters optimization experiments.

Fishery Number Nationality Gear Sub-region Code

1 Japan, Korea, Chinese Taipei Longline 1 LLI
2 Japan, Korea, Chinese Taipei Longline 2 LL2
3 United States (Hawaii) Longline 2 LL3
4 All Longline 3 LL4–5
5 Papua New Guinea Longline 4 LL6
6 Japan, Korea, Chinese Taipei and China Longline 4 LL7–8
7 United States (Hawaii) Longline 4 LL9
8 All excl. Australia Longline 5 LL10
9 Australia Longline 5 LL11

10 Japan, Korea, Chinese Taipei Longline 6 LL12
11 Pacific Island Countries/Territories Longline 6 LL13
12 All excl. Chinese Taipei and China Longline 7 LL21
13 Chinese Taipei and China Longline 7 LL22
14 Japan, Korea, Chinese Taipei Longline 8 LL23
15 Japan, Korea, Chinese Taipei Longline 9 LL24
16 All Purse seine, log/FAD sets 3 WPSASS
17 All Purse seine, school sets 3 WPSUNA
18 All Purse seine, log/FAD sets, nearshore and central area 8 EPSASS
19 All Purse seine, school, dolphin sets, log/FAD sets, offshore area 8 EPSUNA
20 Japan Pole-and-line 1,2 PLSUB
21 All Pole-and-line 3,4 PLTRO
22 Philippines, Indonesia Handline (large fish) 3 COMMHL
23 Philippines, Indonesia Miscellaneous (small fish) 3 ARTSURF

Table 2
Estimated values of model parameters based on optimization with ESSIC hindcast and IPSL climate change simulation (relative uncertainty is calculated as the ratio between
standard deviation and the parameter value). Bold values highlight where are the largest uncertainties.

h Description of parameter ESSIC IPSL

Parameter ± SD Relative
uncertainty

Parameter ± SD Relative
uncertainty

T0 Spawning Optimal temperature for spawning (�C) 26.2 ± 0.013 5 � 10�4 26.2 ± 0.002 7 � 10�5

r0 Standard deviation in spawning temperature Gaussian function 0.82 ± 0.012 0.015 0.9 ± 0.008 0.009
a Half saturation constant for the food to predator ratio in the spawning

index
0.63 ± 0.02 0.03 0.34 ± 0.01 0.03

Rs Maximal number of larvae at large spawning biomass of adults 0.0045 ± 6 10�4 0.130 0.017 ± 9 10�4 0.053

Ta Feeding
habitat

Optimal habitat temperature for largest bigeye tuna (�C) 13 ± 0.004 3 � 10�4 8
ra Standard deviation in adult habitat temperature Gaussian function 2.16 ± 0.003 0.002 5
O Threshold oxygen value for optimal habitat (ml/l) 0.46 ± 0.0006 0.001 1.02 ± 0.002 0.002

bp Natural
mortality

Slope coefficient in predation mortality 0.073 ± 0.0006 0.008 0.088 ± 0.001 0.012
Mmax Maximal mortality rate due to predation (month�1) 0.25 ± 0.003 0.012 0.39 ± 0.006 0.015
bs Slope coefficient in senescence mortality �0.097 ± 0.008 0.082 �0.067 ± 0.007 0.100
A Threshold age of tuna senescence mortality (month) 80.6 ± 0.008 10�4 87.55 ± 0.013 1.4 � 10�4

Dmax Movement Diffusion parameter (0.22 gives maximal 8209 nmi2d�1 (15,203 km2 d�1)
diffusion for largest tuna in zero habitat)

0.22 ± 0.002 0.01 0.1 ± 0.001 0.013

Vmax Maximal velocity (body length) 0.32 ± 0.002 0.006 0.19 ± 0.004 0.019
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to 2830 nmi2 day�1 (5241 km2 day�1) for adult fish in ESSIC
simulation, and from 240 nmi2 day�1 (444 km2 day�1) to
1300 nmi2 day�1 (2408 km2 day�1) for IPSL. Parameters of direc-
ted movement (along positive gradient of habitat index) were
estimated to be lower in the IPSL-based experiment with maximal
velocity of 0.32 and 0.19 body lengths s�1, respectively (Table 2).
It should be noted that final movement velocities are computed as
the sum of directed (behavioural) and passive (currents)
components.

3.3. Hindcast and forecast simulations

Using the optimal parameters estimated by the maximum-like-
lihood approach described above, we ran the model starting in
1960 with initial conditions generated by a spin-up simulation
and excluding the first 5 years from our evaluation to reduce the
effect of initial conditions. Fig. 7 compares the estimates of adult
bigeye tuna biomass in the western-central (WCPO) and eastern
(EPO) Pacific Ocean for both the optimization period and hindcast
period with independent series from stock-assessment studies
using the model MULTIFAN-CL (Hampton and Fournier, 2001;
Hampton et al., 2006; Sibert et al., 2006). SEAPODYM estimates
from the two experiments were very similar in the WCPO but
the IPSL-based series predicts a constant higher biomass in the
EPO that, as discussed above, is likely due to both a better defini-
tion of vertical structure and more coherent variability in simu-
lated dissolved oxygen concentration. Despite the large
uncertainty on the Rs parameter (see Section 3.2.), the final bio-
mass predicted by SEAPODYM is of the same order as that obtained
by an independent stock-assessment model, MULTIFAN-CL (Fig. 7).
The latter, however, showed a higher variability and a stronger
decreasing slope in the initial period of the industrial fishery
(1965–1975). It is also worth noting that catch predictions in sim-
ulations based on ESSIC and IPSL forcing maintain a good fit out-
side of the time window used for optimization (Fig. 4).

The projection of the IPSL climate simulation under the A2 sce-
nario for the 21st century results in a general increase of temper-
ature. The average temperature of the first 100 m in the western
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central Pacific region 10�N–10�S is just below 29 �C before 2000
and reaches 31 �C at the end of the century (Fig. 8). In the east,
the increase leads to an average temperature of 26 �C, which is
the predicted optimal spawning temperature for bigeye tuna. Pri-
mary production is projected to decrease in the tropics (Fig. 8)
while euphotic depth increases in parallel. The decline of produc-
tivity in the tropical region is compensated by an increase in higher
latitudes (not shown) where a higher vertical stability increases
the length of the growing season for phytoplankton in the euphotic
depth. The decrease in primary productivity predicted over the
21st century is particularly strong in the western tropical Pacific.
Logically, the productivity of mid-trophic components follows sim-
ilar general trends (Fig. 8). The dissolved oxygen concentration, a
critical variable constraining tuna habitat, is also predicted to de-
crease almost everywhere under this A2 scenario, with the excep-
tion of the sub-surface eastern tropical Pacific where dissolved O2

is predicted to increase on average in the second half of the century
(Fig. 8), leading to a mean state similar to that predicted under El
Niño-like events (Fig. 3). Dissolved oxygen is controlled by temper-
ature and salinity that determine oxygen solubility, by horizontal
and vertical circulation controlling ocean ventilation, and by bio-
logical processes that produce oxygen in the euphotic layer
through photosynthesis or consume it by respiration of organic
matter in the mesopelagic layer. The primary reason for the simu-
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lated decrease in oxygen is thought to be the reduction of transport
to depth due to increased vertical stability and solubility changes
due to warmer waters (Matear et al., 2000; Bopp et al., 2002;
Plattner et al., 2002). The increase in the sub-surface eastern equa-
torial Pacific Ocean is likely to be a combination of biological
changes (decreasing primary productivity) and physical changes
(Gnanadesikan et al., 2007).

The parameterization derived for the IPSL simulation over the
period 1985–2000 was used for the entire period of the simulation
(1860–2100), without fishing effort, to investigate general trends
and the spatial distribution of biomass associated with environ-
mental changes under increasing forcing of atmospheric CO2. The
result is a clear expansion of the spawning habitat and density of
larvae (Fig. 9) from the tropics towards higher latitudes, correlated
with the temperature increase. Since production at low and mid-
trophic levels decreases in parallel, there is likely only limited
change to the spawning habitat ratio that represents the trade-off
between presence of food and absence of predators of larvae.

The eastern tropical Pacific also becomes much more favourable
for bigeye tuna spawning (Fig. 9) with a pronounced increase of lar-
val biomass during the century (Fig. 8). In this region, while the sur-
face temperature becomes optimal for bigeye tuna spawning, the
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adult habitat also improves due to the increase in dissolved oxygen
concentration allowing adults to access deeper forage. Because
there is a better habitat, the biomass of mature adults increases
and has a positive feedback on the local mechanism of stock recruit-
ment following the Beverton–Holt relationship.

In the Western Central Pacific, the situation is quite different.
The temperature becomes too warm in the equatorial region for
bigeye tuna spawning and if the total biomass of larvae still slowly
increases (Fig. 8), it is due to the increasing contribution of sub-
tropical areas to the spawning habitat (Fig. 9). Despite this slight
increase in larval density, the ensuing adult biomass remains sta-
ble and even declines at the end of the century (Fig. 8). The differ-
ential between these two trends can be explained by the increasing
mortality of older stages due to lower habitat values (too warm
temperatures in surface waters, decreasing oxygen concentration
in sub-surface waters, and less food), and to the displacement of
surviving fish to the eastern region.
4. Discussion

This study demonstrates that our model SEAPODYM can offer a
new component to be coupled to climate models and used to
investigate the potential impact of global warming on the upper
levels of the ocean ecosystem, to explore how the numerous and
complex physical and biogeochemical predicted changes can inter-
act with population dynamics of oceanic top predators.

The optimization approach and the evaluation based on histor-
ical fishing data are key steps to give confidence to the model esti-
mates. Optimization experiments provided reasonable values of
the biological parameters with narrow standard deviation and fully
consistent with existing knowledge. Despite the large uncertainty
in the Rs parameter, the level of biomass estimated with the two
optimization experiments are finally close to that obtained
through an independent approach with the stock-assessment mod-
el MULTIFAN-CL used by the Western Central Pacific Tuna Com-
mission. The biomass trend estimated by this latter model
diverged from the SEAPODYM hindcast estimates in the beginning
of the series, during the 1960s. There are potentially many reasons
for this divergence that we will continue to investigate, e.g. the
sensitivity to initial conditions, the underestimation of oceanic var-
iability by the models; or for the stock-assessment model, too few
data at the beginning of the fisheries to constrain the model. Nev-
ertheless, the capacity of the model to predict plausible responses
at a basin-scale level is an essential development given the signif-
icance of bigeye tuna both as an exploited species and as a top
predator in the pelagic ecosystem. The good fits between predicted
and observed catch and size frequencies fishing data, within and,
notably, outside the optimization time window increased the



Fig. 8. Trends (1900–2100) for temperature and dissolved oxygen in the epipelagic layer, vertically integrated primary production predicted by the IPSL–PISCES climate
simulation in the western (WTP: 20�N–20�S; 130�E–150�W) and eastern (ETP: 20�N–20�S; 150�W–80�W) tropical Pacific under the IPCC A2 scenario, and resulting
SEAPODYM predictions of epipelagic micronekton biomass, larvae and adult bigeye tuna in the western central (WCPO) and Eastern (EPO) Pacific Ocean.
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confidence in the model and simulation results, especially consid-
ering the small number of parameters used in the model to de-
scribe the spatial population dynamics at basin scale and for a
fully closed life cycle.

Due to important discrepancies between oceanic environments
from the hindcast and the Climate Earth experiments, it was nec-
essary to re-estimate parameter values obtained during optimiza-
tion experiments with the ESSIC hindcast to account for the new
‘‘IPSL environment”, especially since there were different vertical
layer definitions, different biases in temperature, and prognostic
versus climatological data for dissolved oxygen concentration.
Thus, we conducted a second series of optimization experiments
using IPSL climate model forcing and historical fishing data. The
natural variability in the bigeye tuna population can be explained
roughly by the sum of a mean state with seasonal and interannual
signals. Bigeye tuna have an extended habitat in regards to temper-
ate latitudes, at least for adults (Fig. 5), and hence under the sea-
sonal influence, that is well simulated by the IPSL model. The
interannual (ENSO) variability is the strongest in the tropical re-
gion and particularly in the upper layer where large changes in
currents, temperature, primary production, and consequently epi-
pelagic forage, control the larvae and juvenile habitats and dynam-
ics. But ENSO variability has less impact on adult fish that can
access deeper and more stable (meso- and bathypelagic) forage
biomass, or move seasonally to temperate latitudes. Therefore, it
was not surprising that optimization experiments with IPSL
climate simulation environment and historical fishing data, domi-
nated by longline catch of adult bigeye tuna, were able to capture
the main signals of population dynamics despite an interannual
signal not in phase with the observed one. In addition, in the time
period used for optimization (1985–2000) the IPSL simulation pre-
dicted (by chance) an El Niño-type event coinciding with the
strong event of 1997–1998.

Observed changes in parameter values between the two optimi-
zation experiments using ESSIC and IPSL forcing fields were consis-
tent and highlighted the sensitivity of the population dynamics to
the predicted oceanic environment. For example, the increase in
estimated values for the oxygen threshold parameter between
optimization experiments forced by ESSIC and IPSL is linked in
the latter experiment to the use of both a shallower vertical struc-
ture in the eastern tropical Pacific and predicted interannual vari-
ability in oxygen concentration showing an increase in the same
region during El Niño-type events. Obviously, this increase of oxy-
gen concentration does not appear in the monthly climatology.

A bias or anomaly in the oceanic environment is also quickly de-
tected through the optimization approach because the model can
not converge in estimating plausible parameters values. This was
the case for the optimization of adult thermal habitat, clearly be-
cause the IPSL experiment had a cold temperature anomaly in high
latitudes. Conversely, temperature was not biased in the tropical
region and the model successfully estimated a plausible optimal
temperature for spawning very close to the one obtained with ES-
SIC hindcast.

A cold temperature anomaly in IPSL simulation is a major issue
given the key effects of temperature on the dynamics of both mid-
trophic components and tuna populations. It is essential to reduce
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this bias to improve further analyses of climate change impacts on
tuna. The cause of this bias has been identified and is partly due to
a too coarse spatial resolution of the atmospheric model, leading to
a shift of the storm tracks towards the Equator. Simulation tests
have effectively shown that the bias is reduced with increasing res-
olution. This would mean however, that this cold anomaly is also
associated with other biases (currents, primary production, oxy-
gen, etc.). Therefore, since storage and computing capacity are lim-
iting factors when running Earth Climate models that are coupling
many components of the system, a solution could be to consider
simulations over several shorter periods (e.g., 20–30 years) with
higher resolution, and at regular intervals in historical and pro-
jected time series. More generally, a high resolution experiment
limited to a projection for the coming two or three decades and
with a realistic interannual variability in the historical period,
would be of major interest for investigating climate change im-
pacts on marine species.

Results from this study also highlight the intricacy of the im-
pacts of global climate change on marine pelagic populations.
The model prediction suggests complex patterns, with different
mechanisms (i.e. advection, natural mortality, stock–recruitment
relationship) that can lead to multiple nonlinear processes and
different responses of adult populations. While the projected cli-
mate change impact leads to expansion of favourable spawning
habitat toward subtemperate latitudes, an effect that can be ex-
pected given the temperature increase and the tropical affinities
of the species, it is the eastern tropical Pacific that becomes more
favourable for bigeye tuna spawning. However, latitudinal expan-
sion in this simulation experiment is limited by the cold anom-
aly, and could be even more important without this bias. In
the western Pacific, the warm pool becomes really too warm
for favourable bigeye tuna spawning (optimal temperature is
26.2 �C), but increasing contribution of subtropical areas to the
spawning habitat results in a slight increasing trend in total lar-
vae biomass. Without considering fishing impact, the adult bio-
mass in this Pacific region remains stable and starts to
decrease at the end of the century, likely by the increasing mor-
tality associated with lower habitat values and with displace-
ment of surviving fish to the eastern and temperate region. The
declining habitat is a result of the combination of too warm tem-
peratures near the surface, decreasing oxygen concentration in
sub-surface waters, and a decrease of prey biomass that were
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already at relatively low levels in this region. In the eastern Pacific,
the situation is becoming more favourable both for spawning and
for feeding habitat. Even if prey biomass decreases there is still
high productivity, and deep forage becomes more accessible
due to increased oxygen concentration.

Recent observations have shown evidence for a decrease in oxy-
gen concentrations, which is likely driven by reduced rates of
water renewal in the thermocline (100–1000 m) in most ocean ba-
sins from the early 1970s to the late 1990s (IPCC, 2007). This de-
crease is attributed to seawater warming and to reduced
ventilation of water masses in the ocean. An increase in the car-
bon-to-nitrogen ratio of organic matter formed at higher CO2 levels
and to the respiration of this excess organic carbon could also con-
tribute to this reduction (Oschlies et al., 2008). Consistent with
these recent observations, the IPSL A2 simulation showed de-
creased oxygen concentrations in the thermocline at mid and high
latitudes, particularly in the North Pacific between 40�N and 60�N,
driven by increased vertical stratification and reduced rates of
water formation. However, the significant increase of oxygen con-
centration in the eastern equatorial ocean predicted by the IPSL
simulation would need to be confirmed by long-term observations
and other models results. Given the critical impact that dissolved
oxygen concentration can have on the habitat and thus distribution
of bigeye tuna and other fish species in the eastern Pacific, a partic-
ular focus should be given to this issue and dissolved oxygen con-
centration should be carefully monitored in this region.

Finally, applications of SEAPODYM to other tuna species with
different biological characteristics (e.g. skipjack and yellowfin tu-
nas) and analyses of predictions obtained in other oceans should
provide further independent evaluations of the model. SEAPODYM
has the potential to be a powerful tool for evaluating the relative
impacts of different human activities on populations of large pred-
atory fish. Once plausible forcing fields are established, it is a rela-
tively straightforward task to estimate the relative impacts of
fishing and climate change on tuna populations over the last half
century because measures of fishing effort are already available.
However, projection of fishing impact to the end of the century will
require some means to project fishing mortality into the future.
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Appendix A

For parameter estimation, the catch and size data were used to
construct the cost function. The predicted catch Cpred is computed
in the model as follows:

Cpred
tfij ¼ qf Etfij

XK

a¼1

sfaxaNtaijDxDy;
where indices t, f, i, j denote time, fishery and space correspond-
ingly, qf – catchability coefficient intrinsic to each fishery, Etfij –
spatially distributed fishing effort at monthly time step t for all
fisheries f, sfa– are selectivity coefficients computed as functions
of length at age a (two types of functions we used– sigmoid and
non-symmetric Gaussian), xa – average weight in ath cohort, Ntaij

– population density that is computed for each cohort and spatial
position of the domain.

To utilize size data we constructed relative variables:

Qpred
tfar ¼

sfa
P

ij2rEtfijNtaijDxDy
PK

a¼1sfa
P

ij2rEtfijNtaijDxDy
;

where r is the index for region for which the size data were sam-
pled. Note that depending on data availability we used different
time stratification for catch and size data, i.e., catch terms contrib-
uted to the likelihood every month while length frequencies terms
were aggregated over quarter.

Hence, the cost function, which is specified as the sum of log-
negative Poisson likelihood for catch data and normal likelihood
component for size data is computed as

J ¼ � ln LðhjCobs;QobsÞ

¼
X

tfij

ðCpred
tfij � Cobs

tfij ln Cpred
tfij þ ln CðCobs

tfij ÞÞ þ
1

2r2
Q

X

tfar

ðQ pred
tfar � Q obs

tfarÞ
2

and minimized using quasi-Newton method.
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