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a b s t r a c t

An enhanced version of the spatial ecosystem and population dynamics model SEAPODYM is presented to
describe spatial dynamics of tuna and tuna-like species in the Pacific Ocean at monthly resolution over 1�
grid-boxes. The simulations are driven by a bio-physical environment predicted from a coupled ocean
physical–biogeochemical model. This new version of SEAPODYM includes expanded definitions of habitat
indices, movements, and natural mortality based on empirical evidences. A thermal habitat of tuna spe-
cies is derived from an individual heat budget model. The feeding habitat is computed according to the
accessibility of tuna predator cohorts to different vertically migrating and non-migrating micronekton
(mid-trophic) functional groups. The spawning habitat is based on temperature and the coincidence of
spawning fish with presence or absence of predators and food for larvae. The successful larval recruit-
ment is linked to spawning stock biomass. Larvae drift with currents, while immature and adult tuna
can move of their own volition, in addition to being advected by currents. A food requirement index is
computed to adjust locally the natural mortality of cohorts based on food demand and accessibility to
available forage components. Together these mechanisms induce bottom-up and top-down effects, and
intra- (i.e. between cohorts) and inter-species interactions. The model is now fully operational for run-
ning multi-species, multi-fisheries simulations, and the structure of the model allows a validation from
multiple data sources. An application with two tuna species showing different biological characteristics,
skipjack (Katsuwonus pelamis) and bigeye (Thunnus obesus), is presented to illustrate the capacity of the
model to capture many important features of spatial dynamics of these two different tuna species in the
Pacific Ocean. The actual validation is presented in a companion paper describing the approach to have a
rigorous mathematical parameter optimization [Senina, I., Sibert, J., Lehodey, P., 2008. Parameter estima-
tion for basin-scale ecosystem-linked population models of large pelagic predators: application to
skipjack tuna. Progress in Oceanography]. Once this evaluation and parameterization is complete, it
may be possible to use the model for management of tuna stocks in the context of climate and ecosystem
variability, and to investigate potential changes due to anthropogenic activities including global warming
and fisheries pressures and management scenarios.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The last two decades have shown a fundamental change at the
international level to address marine exploitation issues from an
ecosystem perspective. However, ecosystem models adapted to
an ecosystem-based management approach are at an early stage
of development, and all the basic stock assessment works done
by Regional Fisheries Organisations (RFOs) are still based on a spe-
cies by species analytical stock assessment using population
dynamics models, statistically fitted to fishing data. Ecosystem-
based approach implies the integration of spatio-temporal and
multi-population dynamics of at least, exploited and protected
ll rights reserved.

: +33 561 393 782.
species. It requires also the consideration of interactions between
populations and their physical and biological environment. These
end-to-end ecosystem models should finally include a representa-
tion of the spatially-distributed effect of fisheries on the modeled
population(s) to investigate impacts due to both fishing and envi-
ronmental changes.

One advantage of this approach compared to the standard one
currently used for stock assessment is that environmentally-con-
strained, spatially-explicit models allow investigation of the mech-
anisms that lead to observed fluctuations through the detailed
spatio-temporal prediction of all age-classes. In addition, once
the model parameterization is achieved for a given species, the
model can be used to produce hindcast and forecast simulations
to explore long-term scale variability or impacts of global warm-
ing. Taking advantage of the large fishing datasets for these
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exploited species, the parameterization can be largely facilitated
using data assimilation methodologies.

Briefly, models including movement and behavior of animals
can be described either from a Lagrangian or Eulerian approach.
While Lagrangian models focus on individual movements, the
Eulerian approach considers the flux in time of density or number
of individuals on a point in space. Individual-Based Models (IBMs)
are typical examples of Lagrangian approach (see e.g., the model
Nemuro.Fish in Megrey et al. (2007)). They can describe move-
ment, physiology and behavior of individuals from deterministic
and very detailed mechanisms, but at a high computational cost
making it difficult to consider multi-species and multi-fisheries
applications at Ocean basin-scale. The Eulerian approach includes
the class of models based on diffusion and advection–diffusion-
reaction (ADR) equations (e.g., Sibert et al., 1999). They rely on
less detailed behavioral or energetic assumptions and less param-
eters than IBMs and appear more suited to describe population
dynamics at large spatial and temporal scales. In these models
the equations are numerically solved using a network of regularly
spaced grid points and a discrete time step (for instance, 1�
square �month). Using continuous functions, these models are
also ideal for implementing parameter optimization techniques
(Sibert et al., 1999; Senina et al., 2008).

The spatial ecosystem and population dynamics model (SEAPO-
DYM) is an implementation of an ADR formulation that focuses on
tuna spatial population dynamics. Since its early development in
1995, SEAPODYM has been continuously enhanced to provide a
general framework allowing integration of the biological and eco-
logical knowledge of tuna species, and potentially other oceanic
top-predator species, within a comprehensive description of the
pelagic ecosystem (Bertignac et al., 1998; Lehodey et al., 1998;
Lehodey, 2001; Lehodey et al., 2003). It includes a forage (prey)
sub-model describing the transfer of energy of stored biomass
through functional groups of mid-trophic levels and an age-struc-
tured population sub-model of tuna predator species and their
multi-fisheries. The dynamics of forage and predators are driven
by environmental forcing (temperature, currents, oxygen, and
primary production) that can be predicted from coupled physi-
cal–biogeochemical models.

Pursuing this development, we present here an update of the
modeling approach including substantial improvements in the rep-
resentation of the mid-trophic level functional groups (Lehodey,
2004) and more realistic definitions of habitats, movements,
and mortality functions. Flexibility of the updated model will be
illustrated with an application to two tuna species in the Pacific
Ocean, skipjack and bigeye which have very different biological
characteristics.

Skipjack (Katsuwonus pelamis) is a fast growing species, with a
short lifespan (4–5 years for most of the individuals; Langley
et al., 2005). They mature at an early age (9–10 months), and have
relatively high natural mortality rates (Langley et al., 2005). Bigeye
(Thunnus obesus) has longer lifespan (>10 years), older age at matu-
rity (after 2 years), and lower natural mortality rates than skipjack
(Hampton et al., 1998). They have both high fecundity and exhibit
year-round spawning, though seasonal peaks are observed for big-
eye. Juveniles of bigeye (Thunnus obesus) are frequently found to-
gether with skipjack in the surface layer, especially around
drifting logs that aggregate many epipelagic species. As they be-
come older and larger, bigeye tuna explore deeper (>600 m) layers
than skipjack; the latter are usually confined to the upper mixed-
layer, though occasionally able to dive below 200 m. Tuna can ther-
moregulate using a specialized counterflow heat exchange system
(the rete mirabile). This system is particularly well-developed in
bigeye tuna, allowing the species to have extended temperature
range and hence a larger latitudinal and vertical habitat tempera-
ture. Adult bigeye tuna are thus exploited by the sub-surface long-
line fishery throughout the tropical and sub-tropical oceans. As
other tuna species, skipjack and bigeye have highly opportunistic
feeding behavior resulting in a very large spectrum of micronek-
tonic prey species from a few millimeters (e.g., euphausids and
amphipods) to several centimeters (shrimps, squids and fish,
including their own juveniles) in size. Their diets reflect their abil-
ity to capture prey at different depths and periods of the day (i.e.,
daytime, nighttime, and twilight hours). Thus differences in verti-
cal behavior can be identified through detailed stomach contents
analyses; e.g., adult bigeye tuna accessing deeper micronekton
species (Brill et al., 2005).

While the present paper focuses on the description of new
developments in the model and illustration of its capacity to
capture important features of spatial dynamics of different tuna
species in the Pacific Ocean, the actual validation is presented in
a companion paper describing the approach to have a rigorous
mathematical parameter optimization (Senina et al., 2008).

2. Modeling approach

The model domain covers the Pacific Ocean at a spatial resolu-
tion of 1� and a one-month time resolution for the period 1948–
2005. Forcing fields of these simulations (temperature, currents,
dissolved oxygen concentration, primary production) are provided
by a coupled biogeochemical–physical ocean model that repro-
duces ecosystem dynamics and biogeochemical fields at seasonal
to interannual time scales ((Murtugudde et al., 1996; Christian
et al., 2002; Wang et al., 2005). Temperature, current, and oxygen
variables are averaged in three vertical layers: epipelagic (0–
100 m), mesopelagic (100–400 m) and bathypelagic (400–
1000 m). They are also used to predict the biomass distributions
of the six functional mid-trophic groups (Lehodey, 2004) that are
potential prey of young and adult tuna and predator of their larvae.

The model simulates tuna age-structured populations with one
length and one weight coefficient by cohort obtained from inde-
pendent studies (see previous references and Appendix). At each
time step, survival relationships describe ageing processes for the
cohorts while advection–diffusion-reaction equations describe
migrations, recruitment and mortality. Different life stages are
considered: larvae, juveniles and (immature and mature) adults.
The age structure is defined with one monthly age class for larvae,
two monthly age-classes for juveniles, and then quarterly age-clas-
ses for immature (from second quarter of age to age at first matu-
rity) and mature adults (after age at first maturity). The last age
class is a ‘‘plus class” where all oldest individuals are accumulated.
All temporal dynamics are computed at the time step of the simu-
lation, i.e., one-month in the present case. Note that for simplicity,
we will omit the notations of species, space and time in the follow-
ing model description.

2.1. Fish thermal habitat (Ua)

In Holland and Brill’s heat budget model of tuna (Holland et al.,
1992; Brill, 1994), the difference between body temperature and
ambient water temperature is shown to be linked to the whole-
body heat-transfer coefficient, the rate of temperature change
due to internal heat production, the ambient water temperature
and the body temperature (Tb). Maury (2005) provided a more gen-
eral equation of the size-dependent tuna body temperature
dynamics, showing that at steady state, body temperature in-
creases linearly with size. Similarly, it can be shown that the ther-
mal inertia (the gradual change of the heat flux under a rapid
change of the temperature gradient), is inversely proportional to
the fish weight.

At the scale of a population, we consider that the thermal hab-
itat of a given cohort (defined by an average size) can be repre-
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sented by a Gaussian distribution with an average temperature
linked to the size-dependent body temperature at steady state,
and by a standard error of the distribution linked to the thermal
inertia of the fish. Here, we assume that for a given species, there
is an optimal intrinsic temperature (Ti) that remains constant,
whatever the age/size, and that this temperature is a target tem-
perature for any individual of the species (e.g., due to genetic
and physiological adaptation during species evolution). It follows
from the heat budget model above that when becoming larger,
the fish will have to search for colder habitat temperature to com-
pensate their increasing body temperature at steady state. But they
will have also larger temperature range due to their increasing
thermal inertia. Therefore, we can define a population size-depen-
dent habitat temperature by a Gaussian distribution N(Ta,ra) with
linearly decreasing functions with size for T�a and linearly increas-
ing function with weight for ra (Fig. 1).

A consequence of this definition of the species thermal habitat
is that the maximal average temperature used for the Gaussian dis-
tribution occurs at age 0, i.e., spawning. We assume that the spe-
cies’ intrinsic temperature Ti is equivalent to the average
temperature of the first cohort, i.e., that species’ intrinsic temper-
ature is defined as the optimal spawning temperature ðTi ¼ T�0Þ.

2.2. Feeding habitat index HF

The feeding habitat index expresses, through a value between 0
and 1, how a particular place and time are favorable for feeding on
n prey (forage) components, based on the accessibility to each of
them considering both the physical ability of the predator (differ-
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Fig. 1. Change in temperature function used to define the habitat temperature of
the population based on a Gaussian distribution with linearly decreasing average
temperature with size and increasing standard error with weight. Example of
parameterization used for skipjack and bigeye. The average size of the latest cohort
for these two species is 80.15 cm and 175.08 cm, respectively, with corresponding
weights of 10.61 kg and 113.93 kg.
ent by species and by age) and the physical conditions in the water
layer inhabited by the forage component. To define this feeding
habitat index HF for a given cohort a, first an accessibility coeffi-
cient (Ha,n) is calculated for each forage component, based on
the relationships with two critical parameters for tuna, tempera-
ture (U) and dissolved oxygen content (W)

Ha;n ¼ Ua;n �Wn ð1Þ

The temperature function follows a Gaussian distribution NðT�a;raÞ
as described above in Section 2.1 (Fig. 1). For oxygen, a sigmoidal
function is used (Fig. 2) since only minimum values constrain the
accessibility to the water layer associated to the forage component:

WnðOzÞ ¼
1

1þ ec�ðOz�bOÞ ð2Þ

with Oz, the dissolved oxygen concentration in layer z, bO, the oxy-
gen value for W = 0.5 and c, a curvature coefficient. For prey compo-
nents that migrate at night to upper layers with different physical
conditions, we calculate the mean temperature and oxygen concen-
tration weighted by the day and night length. The feeding habitat
index for n forage (F) components is then:

HFa ¼
X

n

Ha;n
Fn

Fmax
ð3Þ

and Fmax is used for standardizing F between 0 and 1.

2.3. Spawning habitat index HS

A spawning habitat index (HS) is used to constrain the spawning
success to environmental conditions and to drive the movement of
mature fish towards favorable spawning grounds. Spawning habi-
tat and larvae dynamics are defined to represent four mechanisms
that are assumed to control the survival of larvae and the subse-
quent recruitment:

(1) changes in the spatial extent of the spawning habitat with
temperature;

(2) coincidence of spawning with presence or absence of food
for larvae, i.e., the match/mismatch mechanism proposed
by Cushing (1975);

(3) coincidence of spawning with presence or absence of preda-
tors of larvae;

(4) redistribution of larvae by the oceanic circulation that can
create retention of larvae in favorable areas with lower nat-
ural mortality or conversely move the larvae in unfavorable
zones where the natural mortality will be higher.
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Fig. 2. Change in oxygen function used to compute accessibility coefficient to
forage components. Example of parameterization used for skipjack and bigeye.
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Thus HS is given by the following equation with U0(T0), the
spawning temperature index in epipelagic layer (see above), and
K, the ratio between food abundance of larvae (micro-zooplankton
approximated by primary production) and predator density of lar-
vae, i.e., the sum of biomass of mid-trophic groups present in the
epipelagic layer during day-time and sunrise and sunset periods:

HS ¼ U0ðT0Þ �
K

aþK
ð4Þ

The amplitude of the trade-off effect between food and predator of
larvae is proportional to a coefficient a, so that if a = 0, only temper-
ature has an effect on the spawning, while the trade-off effect be-
tween densities of food and predators increases relative to the
temperature effect with increasing a. Finally, the number of larvae
recruited in each cell of the grid at a given time is the product be-
tween HS and a number RS, with the primary condition that adult
fish, i.e., potentially mature, are present in this cell. RS can be fixed
or linked to the adult spawning biomass, e.g., with a Beverton–Holt
relationship. After spawning, currents in the surface layer redistrib-
ute larvae, and a natural mortality coefficient is applied before
entering in the juvenile cohorts.

2.4. Movement

In the model, surface currents passively transport tuna larvae
and juveniles, while young and adult tuna can direct their own
movements, in addition to being advected by currents. For both
types of movements, the displacement per time unit is obviously
directly dependent on the size of the individuals. Therefore, for a
given size, the movement is linked to a maximum sustainable
speed (VM) expressed in Body Lengths per second. VM can be de-
fined as the average speed that an individual can maintain for a
long period of time (e.g., over several days). In addition, we can ex-
pect that individuals will tend to stay longer in the presence of
favorable conditions (low diffusion) but will want to escape
quickly from unfavorable habitats (high diffusion), so that diffusion
values should be linked to habitat condition. Finally there is a
trade-off between advection and diffusion, which can be stipulated
according to a few realistic hypotheses. They are best illustrated
with extreme conditions (see Table 1):

1. if habitat is null and there is no gradient, all displacement is due
to diffusion with individuals escaping at VM in any straight-line
direction. Population diffusion is maximal and there is no
advection;

2. if habitat is null and there is a maximum positive gradient,
there is (almost) no diffusion and advection is maximum (posi-
tive in sign);

3. if habitat is maximal and there is no gradient, all displacement
is due to diffusion, but the diffusion is low since individuals stay
in this favorable area: there is (almost) no diffusion and no
advection;

4. if habitat is maximal and there is a maximum negative gradi-
ent: there is (almost) no diffusion and advection is maximum
(negative in sign).
Table 1
Advection (A) and diffusion (D) terms in extreme conditions of habitat (I) and habitat
gradient (G), using Eq. (5)

I G D A

0 0 Dmax 0
0 Gmax 0 VM

1 0 �0 0
1 �Gmax 0 VM
For directed movements, we assume that VM is the maximal
sustainable speed of fish, which can be reached when the gradient
of the habitat (standardized between 0 and 1) is maximal (Gmax).
The taxis coefficient v is then given by equation:

va ¼
1

Gmax
� VM � la ð5Þ

with la being the fish size (fork length) in cohort of age a, and Gmax,
the maximum gradient of the standardized habitat. Fig. 3 illustrates
the change of advective movement according to size and habitat
gradient.

The total advection (A) is the algebraic sum of movements due
to currents and directed displacement (taxis):

Ax ¼ uþ v � Gx ð6Þ

with u, the zonal current and Gx, the gradient of habitat index in the
x-direction (in the y -direction, v, the meridional current, and Gy

replace u and Gx).
For movement by diffusion, assuming that fish are moving

according to simple (isotropic) random walk in two-dimensional
space (i.e. purely diffusively), the diffusion coefficient Dmax can
be expressed as D = V2t/4 (see, for example, Okubo (1980)), with
V, the maximal speed (equals to VM � l) and t being the computa-
tional time unit. This value is purely theoretical and does not con-
sider many factors which make animal dispersal biased in the
natural habitat. This maximum value decreases with the habitat
index I, and the trade-off between diffusion and advection is intro-
duced with the term (1–0.9q), where q is the ratio (in absolute va-
lue) between the current gradient value and the maximal gradient
Gmax. The factor 0.9 is added to avoid zero diffusion and therefore
prevent numerical instabilities in the PDE solver being used. Final-
ly, the equation of diffusion D in relation to the body size, the hab-
itat value, and the gradient is given as:

DðNÞ ¼ Dmax � 1� I
c þ I

� �� �
� 1� 0:9 � G

Gmax

����
����

� �
ð7Þ

with c, a curvature coefficient. We can verify that using this defini-
tion, the changes in diffusion with habitat and its gradient agree with
extreme conditions as summarized in Table 1. We were also inter-
ested in testing the effect of population heterogeneity on the diffusion
coefficient, i.e., in linking D to the density of the population N, which is
accounted for by multiplying Dmax by the term [1 � e(�gN)], withg > 0.
All movements, both advection and diffusion, are therefore linked to
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Fig. 3. Change in taxis coefficient v (nautical miles day�1) in relation with body size
(l) and habitat gradient (with VM = 1 body length s�1).
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body size and habitat and defined by three parameters (VM, c and g),
or only two if density dependence is not included.

2.5. Spawning and feeding migrations

The emergence of optimal seasonal spawning grounds is the re-
sult of natural selection and evolution of the species that need to
optimize reproductive efforts for the survival of the offspring under
the constraints of environmental variability. For many species, the
seasonal cycle of reproduction and its associated maturation pro-
cess is believed to be controlled by strong seasonal factors, e.g.,
changes in temperature and light (day length or its gradient, e.g.,
Okamura, 2008). Trying to reproduce the seasonal change between
feeding and spawning migrations, we made the following
assumptions:

(i) with the nearing of the seasonal spawning period, adult tuna
tend to direct their movements to locations with similar
environmental conditions as those during their own birth,
i.e., we postulate as Cury (1994), that ‘‘a newborn individual
memorizes early environmental cues, which later determine
the choice of its reproductive environment. Thus, the same
mechanism accounts for successive generations reproducing
at the same geographic location (philopatry) or aiming at a
moving target, i.e., a set of environmental conditions that
do not always have the same earth coordinates (dispersal)”;

(ii) these conditions are defined by the spawning habitat index
HS;

(iii) the seasonal effect is controlled by the day length and by its
gradient (i.e., varying with latitude);

(iv) the triggering effect for switching from the feeding habitat
to the spawning habitat is linked to a threshold in the rate
of increase of the day length.

Using a function based on the day-length, it is easy to change
the directed movement according to either the feeding or the
spawning habitat index. This switch occurs earlier for (mature) fish
that are in higher latitudes, and therefore far from their spawning
grounds in warm waters (Fig. 4). Note that in low latitudes, the gra-
dient of the day-length is too low to have any effect and adult hab-
itat is always driven by the feeding habitat, leading in that case to
opportunistic reproduction.

Practically, the habitat index (Ia) controlling the movements is
always the feeding habitat index for immature adult fish, but can
switch seasonally from feeding to spawning index for mature fish
following Eq. (8) below and illustrated in Fig. 5
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Ia ¼ HS �
1

1þ ej�ðGd�bGdÞ
þ HF;a �

1

1þ ej�ðbGd�GdÞ
ð8Þ

with Gd, the gradient of day-length, bGd, the threshold in the gradient
of day-length at which the switch occurs and j, a curvature
parameter.

Since feeding and spawning habitats can have opposite charac-
teristics (high forage biomass and relatively low temperature for
feeding, but low forage biomass, i.e., larvae predators, and higher
temperature for spawning), this definition can potentially lead to
drastic changes in the movement of fish feeding in high latitudes
at the time of spawning migration; a behavior that has been suc-
cessfully observed for example for bluefin tuna tagged with elec-
tronic tags (Block et al., 2005).

2.6. Food requirement index

Though the feeding habitat HF used to constrain the movement
of fish results directly from the spatio-temporal distribution of
prey species, it does not include a direct link between the available
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biomass of prey (forage) and the food requirement of the predators
(tuna), especially since oriented movements are based on the gra-
dient of the habitat index, not on absolute values. In this version of
the model, we have revised this aspect of the prey–predator rela-
tionship through the definition of a food requirement index IFR,a

that is used to adjust locally the natural mortality of the species,
based on intra- and inter-species competition.

For a given cohort of any of the predator species, we want to
calculate IFR with the following conditions: the index should be
linked to the total forage requirement by all explicitly described
predator populations (sum by cohort) as well as to the relative con-
tribution to this total food requirement by the cohort considered.
This index will vary from 0 (high contribution to a total forage
requirement that is much higher than available forage) to 1 (low
contribution to a total forage requirement that is much lower than
available forage).

To compute IFR, first we need to compute the total forage
requirement for each component n (FRn) which is the sum of con-
tributions from all cohorts (a) of predators (sp) FRn,sp,a:

FRn ¼
X
sp;a

FRn;sp;a

where

FRn;sp;a ¼ ðNsp;a �wsp;a � rsp � #n;sp;aÞ � t ð9Þ

with r, the average daily food ration, w, the weight-at-age coeffi-
cient and #n,sp,a the relative accessibility coefficient:

#n;sp;a ¼
Hn;sp;aP
nHn;sp;a

ð10Þ

We can define, for each forage component n, a measure of the total
forage requirement relative to the forage available Fn, i.e., the total
forage mortality x due to all predator cohorts:

xn ¼
FRn

Fn
ð11Þ

and the partial contribution to this value by each predator cohort:

xn;sp;a ¼
FRn;sp;a

Fn
ð12Þ

The index IFR,sp,a combines both the total and the partial measures of
forage mortality rates, i.e., the product (xn �xn,sp,a) to account for
the effects due to all predators cohorts together as well as the spe-
cific cohort for which the index is computed. Finally, the index IFR,-

sp,a is the sum over the n components of this product, standardized
between 0 and 1 using the function f(x) = 2�x:

IFR;sp;a ¼ 2
�q
P

n
xn �xn;sp;a

ð13Þ
2.7. Natural mortality

Average natural mortality by age Msp,a in the population (Fig. 6)
is described as the sum of two functions (Eq. (14)). An exponen-
tially decreasing function with age represents the mortality during
the early life history (mainly due to starvation and predation). An
increasing function with age characterizes natural mortality in
the adult phase, i.e., mainly senescence and diseases.

Msp;a ¼ MPmax ;sp � eð�s1bP Þ
� �

þ MSmax ;sp=ð1þ ebS �ðs�A0:5ÞÞ
� �

ð14Þ

with MPmax;sp and MSmax;sp , the maximal mortality values of predation
and senescence functions, bP and bS, the slope coefficients, and A0.5,
the age at which 1/2 of MSmax ;sp occurs.

The average natural mortality-at-age coefficients Msp,a can be
modulated in space and time based on local conditions expressed
through any standardized index I between 0 and 1. We use a sim-
ple linear relationship:
Msp;a;i;j ¼ Msp;að1� Ii;j þ eÞ ð15Þ

where the local natural mortality coefficient is lower than average
value if the index is above e and higher if below e. The food require-
ment index IFR calculated for immature and mature adults is used,
allowing us to take into account a competition effect between co-
horts and between species.
3. Results

Our aim in this study was to illustrate the capability of the
model to reproduce a large range of realistic spatio-temporal
dynamics using test simulations with a plausible parameteriza-
tion defined for two tuna species, skipjack and bigeye tuna (cf.
Appendix), both from the literature review and the parameter
optimization method described in the companion paper (Senina
et al., 2008).

3.1. Spawning habitat

The distribution of spawning habitat predicted for the two spe-
cies is shown in Fig. 7 for two different months. The parameteriza-
tion differs between species through the optimum spawning
temperature, 28 �C and 26 �C for skipjack and bigeye, respectively,
and the value of the a larvae food–predator trade-off coefficient,
increasing from 1 for skipjack to 3 for bigeye. These simple changes
in parameterization create very different patterns in spatial distri-
bution of the spawning index, with reasonable comparison to ob-
served concentration areas of larvae (Fig. 7c). Based on this
spawning index, the final larval distributions (Fig. 7d) also integrate
the presence of mature fish for spawning and the drift due to cur-
rents in the surface layer. The model produces highly dynamic pre-
dictions of larval distributions that include shifted peaks in
different regions of the Pacific and interannual (ENSO) changes with
abundance increases during El Niño events (Lehodey et al., 2003).
Additionally, it also shows stable patterns like seasonal peaks in
the northern and southwestern tropical regions during summer,
and relatively constant favorable areas, e.g., Philippines–Indonesia
regions for skipjack, or the central Pacific and a portion of the Kuro-
shio between Taiwan and Okinawa Islands for bigeye.

3.2. Feeding habitat

The physical constraints due to temperature and oxygen for
skipjack and bigeye are illustrated in Fig. 8. Average values are pre-
sented for skipjack in the surface layer and for bigeye in the meso-
pelagic layer, because this latter species is known to spend a large



Fig. 7. Predicted distribution of the spawning index in January (a) and July (b) 2004 for skipjack (left) and bigeye (right) larvae in the Pacific Ocean, and comparison between
(c) observed densities of larvae (redrawn from Nishikawa et al., 1985) and (d) predicted average annual distribution of larvae for each species, respectively. Density of larvae
in (c) increases from grey to black, while dots indicate no larvae in the sampling.
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part of its time in deep layers. The temperature index is given for
one cohort corresponding to a size of 45 cm and 105 cm for skip-
jack and bigeye respectively since as described above, the habitat
temperature changes with size/age (see Section 2.1). Though oxy-
gen requirement is likely to also change with age, we use a con-
stant parameterization with age in the absence of detailed
information. Based on experimental evidence, tolerance of skipjack
to low dissolved oxygen concentration is known to be much lower
than for bigeye, and while dissolved oxygen concentration in the
range 0.5–1.0 ml l�1 seems to be a limit for bigeye (Sharp, 1978;
Sund et al., 1980), values above 2–3 ml l�1 are needed for skipjack
(Brill, 1994). We therefore used the values 3 and 1 ml l�1 to param-
eterize the oxygen function for skipjack and bigeye, respectively.

The superimposition of oxygen habitat index isopleths on the
habitat temperature index for the selected cohort (Fig. 8a) shows
a wide region (35�N–35�S) of favorable habitat temperature in
the surface layer for skipjack where oxygen is not a limiting factor
except in the far eastern Pacific. In the sub-surface layer, very low
oxygen concentrations also create unfavorable conditions for big-
eye, despite its better tolerance to lower concentration. But this



Fig. 8. Average distributions of (top) temperature index on which are superimposed isopleths of oxygen index for skipjack (left) and bigeye (right); (middle) daytime biomass
(g m�2) of epipelagic (left) and mesopelagic (right) mid-trophic functional groups (Lehodey, 2004), and (bottom) feeding index for skipjack (left) and bigeye (right) based on
the different abilities by the species to access the different mid-trophic groups (i.e., prey) according to temperature and oxygen conditions.
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is not the case in the surface layer. Bigeye (of the selected size
range) have a very favorable sub-surface habitat temperature be-
tween 20�N–20�S all across the Pacific Ocean and still relatively
favorable habitat values extending to latitudes of 40�N and S. Of
course, bigeye can also compensate unfavorable habitat in sub-sur-
face by increasing the time spent in the surface layer.

The feeding habitat as defined above (Section 2.2) integrates the
accessibility to different mid-trophic groups, i.e., forage (Fig. 8b),
based on the temperature and oxygen constraints in the vertical
layers. On average, favorable feeding habitats (Fig. 8c) occur in
the central and south-eastern equatorial Pacific for both species,
and in the far western (Philippines–Indonesia), especially for skip-
jack. Despite high values of feeding habitat, it should be noted that
skipjack does not enter the very shallow waters like in the Torres
Strait (<20 m) and the Gulf of Carpentaria (<80 m). During summer,
favorable feeding habitats occur in the western sub-tropical re-
gions for skipjack and in the southern and northern sub-tropical
convergence zones for bigeye. However, predicted interannual var-
iability due to ENSO strongly disrupts such an average spatial
pattern.

Another interesting approach to analyzing the feeding habitat is
to compute the proportion of each mid-trophic group entering the
predicted diet of the predator. This allows comparisons with multi-
ple stomach contents analyses. Given the level of potential details
predicted by the model, i.e., biomass of each cohort at a given time
and position, we aggregated the data through a few regions and
compared average values for young and adult fish (Fig. 9). Overall,
there are limited changes for skipjack considering regions or life
stages. The diet is dominated by epipelagic group (�2/3), then mi-
grant mesopelagic and highly-migrant bathypelagic groups which
are the organisms present in the epipelagic layer between sunset
and sunrise. Nevertheless, in the western central tropical ocean
where sub-surface waters are still warm and well-oxygenated,
the adult skipjack diet also includes low proportions of mesope-
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lagic or bathypelagic organisms migrating in the mesopelagic layer
at night.

For bigeye, the diet is more variable between young and adult
fish and regions. The diet of young fish is dominated by non-mi-
grant mesopelagic species in the west, by migrant-mesopelagic
in the north-east, and by equal proportions of both migrant and
non-migrant mesopelagic species in the east. Other significant con-
tributions in the diet of young fish come from the epipelagic group
in the eastern Pacific, and from the migrant bathypelagic group.
When they are adult, bigeye can access to all forage components
except in the coldest north-east region where they cannot access
the meso- and bathypelagic layer.

3.3. Movement

The comparison of average spawning (Fig. 7d) and feeding
(Fig. 8c) habitat distributions shows that for skipjack, favorable
spawning habitat index occurs on average in the western central
tropical Pacific Ocean (20�N–20�S) but the highest feeding index
is in the eastern and sub-tropical regions. For bigeye, with the
notable exception of the area in the equatorial central Pacific,
spawning and feeding indices are also spatially shifted, with
Fig. 9. Average proportions of mid-trophic groups entering in the predicted diet of skipja
regions following a stratification based on fishing data used for stock assessment analyse
and adult mature (right) fish. The mid-trophic sub-model (Lehodey, 2004) includes
mesopelagic; meso, non-migrant mesopelagic; mbathy, migrant bathy-pelagic; hmbath
favorable feeding grounds in the eastern Pacific and at high lat-
itudes. As a result, the predicted average biomass distribution of
fish biomass (Fig. 10) is quite different from both habitat
indices.

It is also obvious that seasonal to interannual variability can
lead to drastic changes in the movements and spatial distribu-
tion of fish. Fig. 10 illustrates the changes in movements and
spatial distribution of fish due to ENSO variability. Predicted
movements of skipjack during El Niño events show strong east-
ward directed displacement in the equatorial region, in good
agreement with observations from catch and tagging data (Leh-
odey et al., 1997), and westward movement on either side of
this equatorial band. The diffusion is maximal in the southern
sub-tropical gyre where feeding index is very low (Fig. 8c). In
the reversed La Niña situation, skipjack move to the west of
the equatorial region and diffusion increases in the northern
sub-tropical gyre where biomass of epipelagic micronekton
reaches a minimum.

For bigeye tuna in general, predicted movements encompass a
range of lower advection and diffusion values than those observed
for skipjack. This is likely because bigeye can access meso- and
bathypelagic groups of prey, thus areas of very poor feeding habitat
ck (top) and bigeye (bottom). Data are aggregated over 10 years (1995–2004) in sub-
s (Hampton et al., 2006). There are two pie-plots by region for young immature (left)

six functional groups in three vertical layers: epi, epipelagic; mmeso, migrant
y, highly-migrant bathypelagic; bathy, non-migrant bathypelagic.



Fig. 10. Distribution of biomass of skipjack (a,b) and bigeye (c,d) cohort at first month after age of maturity in November 1997 (a,c: El Niño phase) and November 1998 (b,d:
La Niña phase) in the Pacific Ocean. Circles and arrows represent random (diffusion) and directed (advection) movements of population density correspondingly and averaged
by 10� squares.

P. Lehodey et al. / Progress in Oceanography 78 (2008) 304–318 313
for this species are less frequent and present weak gradients. The
model predicts a zone of concentration in the equatorial band east
of 150�W where relatively high diffusion values can be observed
despite a good habitat, but due to the density effect associated with
a high concentration of fish.
3.4. Food competition

The last mechanism investigated in the present analysis was
the potential interaction between species through changes in
natural mortality due to the food requirement index. As
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described above (Section 2.6), this index provides a relative mea-
sure of food competition between cohorts of all predator species
explicitly represented in the model. The results of a multi-spe-
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(Eq. (15)) was set to 0.5, which means that mortality defined by
Eq. (14) is lower when food requirement index IFR is above 0.5
and higher when IFR is below 0.5.

For skipjack, there is a slightly lower biomass (��5%) in the
case of the two-species simulation in both WCPO and EPO. For
bigeye however, the decrease is much higher with a 25% bio-
mass reduction in the EPO and 57% in the WCPO. The very
large biomass of skipjack has logically a strong impact on big-
eye cohorts through food competition, especially in the WCPO
which is the core habitat of skipjack. When computing the mor-
tality coefficients over the two east and west regions by age
resulting from Eq. (15) (Fig. 11), we obtain effectively higher
average mortality rates in the case of the multi-species simula-
tion, with higher intensity in the WCPO than in the EPO. But
these curves also indicate that this interaction occurs more
strongly between the oldest cohorts of skipjack and the youn-
gest cohorts of bigeye. In growing older, bigeye access deep for-
age components that are not available for skipjack (Fig. 9) and
thus the mortality effect due to food competition gradually de-
creases (Fig. 11).
4. Discussion

The model SEAPODYM has been upgraded to include more de-
tailed relationships between population dynamics and basic bio-
logical and ecological functions, including a more realistic
representation of the vertical oceanic habitat, both in terms of
physical and foraging conditions. On the other hand, because this
model is aimed to be used for ecosystem-based management, we
attempted to keep the number of parameters to a minimum to
facilitate formal parameter optimization required for assessment
analyses. The habitat-based approach used here facilitates this
parameterization since it allows combining several mechanisms
to consider relative effects (e.g., the ratio between prey and pred-
ator densities of larvae) instead of absolute values of parameters,
that are often difficult to measure (e.g., the natural mortality rate
of larvae) and to evaluate.

Because the model is driven by the bio-physical environment
of the ecosystem, it was possible to reduce the number of param-
eters that describe the complete spatially-explicit population
dynamics of a species to 21 (cf. Appendix), i.e., a small number
relative to the number of variables described in the model. A
few more parameters should be added to include the growth
function that is still provided by independent studies in this ver-
sion. Other parameters (not detailed here) concern the descrip-
tion of fisheries (selectivity and catchability), since the model
includes a full description of multiple-fisheries and predicts catch
and length frequency of catch (Bertignac et al., 1998; Lehodey
et al., 2003).

Fishing data is critical to evaluate the outputs of the model,
and make possible the discrimination between changes in catch
and population that are attributed either to the fishing activity
or to the climate-related variability (e.g., ENSO). Extending be-
yond a simple comparison of results between predicted and ob-
served catch, this fishing information can be used to optimize
the parameterization by implementing a statistical procedure di-
rectly in the model. This approach has been developed using the
maximum likelihood and adjoint techniques and tested with an
application to skipjack tuna (Senina et al., 2008), that yields
promising results. Once the best parameterization of the model
is obtained and the predicted results fully evaluated, it may be
possible to use this model for many different management sce-
narios taking advantage of its spatial multi-species multi-fisheries
structure. In a future version, parameter optimization should also
benefit from the use of conventional tagging data (e.g., Sibert
et al., 1999) that would bring significant additional information
for estimating several critical parameters (e.g., movements, habi-
tats, recruitment and mortality).

Another attribute of the model compared to standard popula-
tion assessment models (e.g., Hampton and Fournier, 2001;
Maunder and Watters, 2003), is that the predictions are suffi-
ciently detailed to allow quantitative comparisons with data
other than catches. There exists a large diversity of observations
collected over the previous decades for exploited tuna and tuna-
like species. The model can offer a simple framework to com-
pare the numerous diet studies that have been carried out in
many different regions during several decades (e.g., King and
Ikehara, 1956; Bertrand et al., 2002). At the same time, it pro-
vides accurate habitat prediction (in time, space and for a given
age) that can be used to investigate detailed individual behav-
iors as observed from electronic archival tags (e.g., Schaefer
and Fuller, 2002). Temperature data recorded by these tags
can help to evaluate and parameterize the proposed thermal
habitat, and depth records compared to predicted fractions of
the time spent in different layers during day and night. These
tags also can provide independent estimates of maximum sus-
tainable speed by age. Predicted distributions of larvae can be
compared to the past observations collected during sampling
cruises, and may in the future be used to plan or even optimize
new ones in real-time, e.g., to check particular areas predicted
to be highly favorable.

The present study shows that the model can produce realistic
habitats and dynamics for two tuna species based on coherent
and limited changes of a few parameters, i.e., essentially those
defining the spawning and feeding habitats. It demonstrates also
how complex patterns emerge from simple mechanisms embed-
ded in a highly dynamic environment. The case of tuna is partic-
ularly interesting since the different species cover a large range
of habitats with different biological characteristics, from species
with warm water affinities and short lifespan to species with
colder water affinities and long lifespan, i.e., skipjack, yellowfin,
bigeye, albacore and bluefin tunas. Typical tropical tuna species
like skipjack and yellowfin are thought to spawn opportunisti-
cally in warm waters, and do not show clear spawning seasonal-
ity. With increasing affinities for colder waters and longer
lifespan, in relation also with the extension of the feeding habi-
tat to the temperate regions, other tuna species appear to devel-
op such seasonality, lightly marked for bigeye, more evident for
albacore and fully obvious for the temperate bluefin tuna (e.g.,
Fromentin and Powers, 2005). Also, with the increasing seasonal
effect, the spawning grounds seem to become more limited in
space (and time by definition), but likely more favorable to lar-
val survival. This is a good illustration of an evolutionary con-
trast between r- and K- strategies. In a r-situation, organisms
invest in quick reproduction, usually as an adaptation to a risky
environment. This is clearly the case for skipjack, whose the
main habitat, i.e., the western and central equatorial Pacific, is
under the influence of the interannual (unpredictable) El Niño
Southern Oscillation signal (Lehodey et al., 1997, 2003; Lehodey,
2001). In a K-situation, species invest in prolonged development
and long life, in a more stable environment. Bluefin is a typical
example, with clear seasonal (predictable) migrations between
feeding grounds in rich temperate waters and spawning grounds
in relatively limited favorable areas (e.g., Fromentin and Powers,
2005). The gradation in the ecology of these tuna species is an-
other important feature that should help in the evaluation of the
model because the coherent and consistent parameter values be-
tween these species should emerge from future optimization
experiments.

On the other hand, since the model is driven by physical and
biogeochemical oceanic variables, the accuracy of its predictions
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strongly depend on the reliability of these variables. Here we
used a coupled ocean-biogeochemical model primarily developed
for investigating tropical regions (Murtugudde et al., 1996;
Christian et al., 2002) and driven by atmospheric forcing (NCEP
reanalysis). Though this model reproduces reasonably well the
seasonal and interannual variability (Christian et al., 2002), it
does display systematic biases in some regions, especially tem-
perate ones, and was not configured here to resolve the meso-
scale features that can play an important role in the dynamics
of marine populations. In addition, at the time of these simula-
tions, dissolved oxygen fields were available only as seasonal cli-
matologies which is another potential source of biases for
interannual variability. Therefore, we can expect that the param-
eter optimization techniques together with the rapid progress in
the modeling of physical and biogeochemical oceanic environ-
ment, in particular with the increasing use of data assimilation,
will considerably improve the prediction skills of future simula-
tions. At the same time, it will be important to test multiple
configurations of bio-physical outputs that can serve as forcing
for the model and thus produce an envelope (or ensemble) of
predictions, a more reliable result than any single simulation
(Krishnamurti et al., 1999).

SEAPODYM combines bottom-up and top-down mechanisms,
and intra- (i.e., between cohorts) and inter-species interactions.
Natural mortality of a predator cohort can be locally affected by
availability of forage, in relation to their own and all other preda-
tors’ food requirement, but there is no feedback here on the mor-
tality of forage groups, since it is pre-calculated (Lehodey, 2004)
and thus controlled primarily by physical/environmental condi-
tions. On the other hand, the spawning and recruitment processes
depend on both food and predation density on larvae, as well as a
relationship with spawning biomass. Our simulations have dem-
onstrated that the food competition mechanism can produce very
substantial changes in spatio-temporal distribution of natural
mortality. These changes can modify drastically the conclusions
of a fishery and ecosystem assessment study. Therefore, it will
be of particular importance in the future to run parameter opti-
mization experiments with multi-species configurations, as well
as to test the sensitivity of optimization to the mid-trophic sub-
model parameterization.

Any model is a simplified view of a system focusing on mecha-
nisms that their authors consider essential. Thus, it is always
worthwhile to compare simulations for the same system carried
out with different classes of models. For tuna and pelagic ecosys-
tem in the Pacific Ocean, such comparative analyses can include
the statistical stock assessment models MULTIFAN-CL (Hampton
and Fournier, 2001) and A-SCALA (Maunder and Watters, 2003),
the ecotrophic model ECOPATH (Cox et al., 2002; Kitchell et al.,
2002; Watters et al., 2003), or the ADR-bioenergetic model APE-
COSM (Maury et al., 2007). They should help in investigating bot-
tom-up and top-down effects in the ecosystem. These studies
will be part of the analyses planned through the international net-
work of collaboration developed with the GLOBEC/CLIOTOP (CLi-
mate Impacts on Oceanic TOp Predators) research program
(Maury and Lehodey, 2005). The configuration of the model offers
also an ideal tool to investigate the potential impacts of climate
warming on tuna populations.
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Appendix. Major notations

For simplicity, notations of species (sp), space (i, j) and time (t)
are omitted.
z
 Vertical layer, total number of layers is 3

Vz
 Vector (u,v) of horizontal currents
 m s�1
Tz
 Temperature, available for each z
 �C

Oz
 Concentration of dissolved oxygen,

available for each z

ml l�1
P
 Primary production, vertically integrated
 g m�2 d�1
F 0n
 Production of immature forage (source for
forage) density per unit of time step (six
components)
g m�2
Fn
 Biomass (density) of mature forage
populations (six components)
g m�2
Ja
 Density of juvenile age class of predator
(tuna) population in number
Na
 Density of adult age class a of predator
(tuna) population in number
Ba
 Biomass of adult age class a of predator
(tuna) population
g m�2
R
 New recruits to predator (tuna)
population in number
Fp
 Biomass of forage potentially feeding on
larvae
g m�2
Badult
 Total biomass of immature and mature
adult predators
g m�2
la
 Predator’ size of cohort a
 m

wa
 Predator’weight of cohort a
 g

I0
 Larvae’s habitat index (only one cohort in

present configuration)

I1,k
 Juvenile’s habitat index of cohort k

I2,a
 Adult’s habitat index of cohort a

HS
 Spawning habitat index

HF,a
 Feeding habitat index of cohort a

Ha,n
 Accessibility coefficient of predator (tuna)

cohort a to forage component n

#n,a
 Accessibility coefficient of predator

cohort a to forage component n relative to
all forage components
d
 Day-length function of latitude and date
 h

Gd
 Gradient of day-length
 h d�1
Gmax
 Maximum gradient of standardized
habitat
Gx(Gy)
 Gradient of habitat index in the x (y)-
direction
Da max
 Maximum diffusion coefficient for cohort
a (at size la)
nmi2 month�1
Da
 Diffusion coefficient for cohort a
(at size la)
nmi2 month�1
v
 Taxis coefficient
 nmi d�1
IFR,a
 Food requirement index of cohort a

FRn
 Total requirement of forage component n
 g

xn
 Mortality of forage component n due to all

predator cohorts

MP
 Tuna predation mortality
 time�1
MS
 Tuna senescence mortality
 time�1



Parameters to be defined/estimated unit skipjack bigeye

Population structure
1 Number of larvae cohorts Month 1 1
2 Number of juvenile cohorts Month 2 2
3 Age at first autonomous displacement Month 4 4
4 Number of young (immature) cohorts Quarter 3 9
5 Age at first maturity Quarter 4 10
6 Number of adult cohorts Quarter 12 30

Growth
7 Size-at-age m a a

8 Weight-at-age kg a a

Habitats
9 Ts Optimum of the spawning temperature function �C 29 26

10 rs Std. Err. of the spawning temperature function �C 2 2
11 a Larvae food–predator trade-off coefficient – 1 3
12 Ta Optimum of the adult temperature function at maximum age �C 26 13
13 ra Std. Err. of the adult temperature function at maximum age �C 3 3
14 bO Oxygen value at WO = 0.5 ml l�1 3 1
15 c Curvature coefficient of the oxygen function – �8 �8
16 j Curvature parameter in the function to switch continuously from feeding to

spawning habitat
– 1000 1000

17 bGd Threshold in the gradient of day-length at which the switch occurs between
spawning and feeding habitat

h d�1 0.015 0.025

Movements
18 VM Maximum sustainable speed Body

Length s�1
1 0.5

19 c Coefficient of diffusion habitat dependence (defines the curvature and the
minimum asymptotic value of the function)

– 0.1 0.1

20 g Coefficient of diffusion density dependence (defines the curvature and the
maximum asymptotic value of the function)

– 20 20

Food requirement
21 r Daily ration (relative to weight at age) – 0.1 0.05
22 q Coefficient of the Food requirement index function – 0.02

Larvae recruitment
23 Rs Coefficient of larvae recruitment – 0.2 0.001

Mortality
24 MPmax Maximal mortality rate due to predation Month�1 0.3 0.083
25 MSmax Maximal mortality rate due to senescence Month�1 0.153 0.077
26 bP Slope coefficient in predation mortality – 0.057 0.057
27 bS Slope coefficient in senescence mortality – �0.167 �0.167
28 A0.5 Age at which 1/2 MSmax occurs Month 30 36
29 e Coefficient of variability of tuna mortality with food requirement index – 0.5 0.2

a From independent studies (Langley et al., 2005; Hampton et al., 2006).
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